传感器原理及应用实验指导解读

合集下载

传感器原理与应用实验指导书

传感器原理与应用实验指导书

《传感器原理与应用》实验指导书朱蕴璞王芳编写孔德仁审定南京理工大学实验须知1. 传感器实验仪是贵重实验设备请在每个实验前认真阅读实验指导书,尤其是每个实验最后的实验注意事项。

2. 实验仪器电源的开关原则:连接测量线路,确认准确无误后,开启仪器电源;实验完毕,关闭仪器电源,拆除测量线路。

3. 稳压电源不可对地短路。

4. 实验过程中,心要细、动作要轻,不可有强制性机械动作出现。

5 •实验严格按操作规程进行,否则,出现损坏责任自负。

6.实验完毕,请一切恢复到实验前的状态,然后离开实验室。

实验一传感器静态标定实验......... ••••••A5实验二应变式传感器特性实验.............................. -10实验三电感式、涡流式、电容式、霍尔式位移传感器特性实验••…实验四重量测量实验(选做) (25)实验五转速测量实验29实验六温度实验34实验一传感器静态标定实验(注:“压力传感器的静态标定及特性指标的求取”与“光纤位移传感器静态标定及特性指标求取“两实验取 其1。

)压力传感器的静态标定及特性指标的求取1、 实验目的掌握压力传感器静态标左的基本方法以及压力传感器的静态特性指标的求取。

2、 实验内容(1) 组建压力测试系统:(2) 学习压力测试系统的标立过程; (3) 计算压力测试系统静态特性指标。

3、 实验原理及方法活塞压力计r 被标传感器(电阻应变仪)数字万用表图1压力传感器标左系统原理图2压力传感器标左系统构成4、实验仪器设备活塞压力计一台,数字万用表一只,动态电阻应变仪一台,压力表一只。

5、实验步骤(1) 反复排除活塞压力计油腔内的空气,最后将压力泵手轮摇岀。

(2) 把压力传感器装在活塞压力计的联接螺帽上,关闭油杯。

指示。

手轮;准压力值由压力表(3)传感器输岀接入可调零的桥盒,电桥输出接入数字万用表。

当输岀量很小,无法直接用万用表测得时, 可先将传感器接入动态电阻应变仪桥盒(注意电桥的连接),桥盒的另一端连线接应变仪输入(选择一个通道):将应变仪专用电源接好:电阻应变仪电压输出接数字万用表。

传感器的原理与应用物理实验报告

传感器的原理与应用物理实验报告

传感器的原理与应用物理实验报告实验目的掌握传感器的基本原理,并通过实验了解传感器在物理应用中的具体应用。

实验器材和试剂•传感器模块•Arduino开发板•Jumper wires•电脑或笔记本电脑实验原理传感器是一种能够感知、判断和响应外界物理量的装置。

它能够将感受到的物理量转换为可被电子设备识别的信号,并通过算法进行处理。

本实验主要介绍两种常见的传感器:温度传感器和光敏传感器。

温度传感器温度传感器是一种可以测量环境温度的传感器。

它采用了温度和电阻之间的线性关系,通过测量电阻值的变化来反映所测量物体的温度。

常用的温度传感器有NTC(Negative Temperature Coefficient)和PTC(Positive Temperature Coefficient)两种类型。

光敏传感器光敏传感器是一种可以感知环境中光照强度的传感器。

它可以将光的能量转化为电能,并输出相应的电压信号。

根据工作原理的不同,光敏传感器分为光敏电阻和光电二极管两种。

实验步骤1.将Arduino开发板与电脑连接,并通过Arduino IDE软件编写代码。

2.将温度传感器模块连接到Arduino开发板的数字引脚。

3.编写代码,读取从温度传感器传输的数据,并将其转换为实际温度值。

4.将光敏传感器模块连接到Arduino开发板的模拟引脚。

5.编写代码,读取从光敏传感器传输的数据,并将其转换为实际光照强度。

6.运行代码,观察温度和光照强度的变化,并记录数据。

7.根据记录的数据,分析温度和光照强度之间的关系。

实验结果与分析通过实验我们得到了一组温度和光照强度的数据。

通过分析这些数据,我们可以得出温度和光照强度之间的关系。

例如,随着温度的升高,光照强度可能会增加或减少。

这个关系可以被用来设计和控制一些具有温度敏感性的系统,如温室控制系统或温度调节器。

实验总结通过本实验,我们了解了传感器的基本原理,并学会了如何使用传感器进行物理实验。

传感器原理及应用实验指导书解读

传感器原理及应用实验指导书解读

电工电子实验中心实验指导书传感器原理及应用实验教程目录目录实验一应变片直流全桥的应用—电子秤实验................................................. - 1 -实验二差动变压器测位移实验....................................................................... - 9 -实验三霍尔传感器测位移和转速实验.......................................................... - 15 -实验四电涡流传感器测位移和振动实验 ...................................................... - 19 -实验五光电传感器控制电机转速实验.......................................................... - 25 -实验六K热电偶测温性能实验..................................................................... - 29 -实验七气敏传感器实验 ............................................................................... - 36 -实验八湿敏传感器实验 ............................................................................... - 38 -附录A CSY-2000型传感器与检测技术实验台说明书 ................................. - 41 -附录B 智能调节器简介................................................................................ - 44 -实验一应变片直流全桥的应用—电子秤实验一、实验目的了解应变直流全桥的应用及电路的标定。

感应传感器的原理及应用实验

感应传感器的原理及应用实验

感应传感器的原理及应用实验1. 感应传感器的基本原理感应传感器是一种能够感知环境中某种物理量并将其转化为电信号输出的装置。

感应传感器根据其工作原理可分为多种类型,包括光电传感器、温度传感器、压力传感器、加速度传感器等等。

这些传感器的主要原理基于电磁感应、光电效应、热敏效应、压电效应等。

1.1 电磁感应原理电磁感应是指通过磁场的作用产生感应电动势的现象。

感应传感器利用电磁感应原理可以测量磁场的强度、方向等信息。

常见的磁场感应传感器包括磁石、霍尔传感器等。

1.2 光电效应原理光电效应是指光照射到某些特定材料表面时,会产生电子的释放或迁移的现象。

光电传感器利用光电效应原理可以将光能转化为电能,并实现光强、光频率等的测量。

常见的光电传感器包括光敏电阻、光电二极管、光电转换器等。

1.3 热敏效应原理热敏效应是指材料受热时,其电阻、电容、电压等电学性能会发生变化的现象。

热敏传感器利用热敏效应原理可以实现温度的测量。

常见的热敏传感器包括热敏电阻、温度传感器等。

1.4 压电效应原理压电效应是指压电材料在受力或施加电场时会产生电荷的现象。

压电传感器利用压电效应原理可以将压力、力、加速度等物理量转化为电信号输出。

常见的压电传感器包括压电传感器、加速度传感器等。

2. 感应传感器的应用实验2.1 光电传感器实验实验原理利用光敏电阻的光电效应原理,通过测量光照射下光敏电阻的电阻值,实现光强的测量。

实验步骤1.准备实验材料:光敏电阻、电阻箱、电压源、万用表等。

2.搭建电路:将光敏电阻与电阻箱和电压源连接,接入万用表测量电阻值。

3.调节电压源的输出电压,观察光敏电阻的电阻值随光照强度的变化。

4.记录实验数据,绘制光强与电阻值的关系图。

实验结果根据实验数据和光强与电阻值的关系图,可以得到光敏电阻的灵敏度和光强之间的函数关系,从而实现对光强的测量。

2.2 温度传感器实验实验原理利用热敏电阻的热敏效应原理,通过测量热敏电阻的电阻值,实现温度的测量。

传感器原理及应用实验报告的

传感器原理及应用实验报告的

传感器原理及应用实验报告的传感器原理及应用实验报告1. 引言传感器是一种能够将物理量转化为可测量的电信号的装置,广泛应用于各个领域,如工业控制、医疗监护、环境监测等。

本实验旨在探究传感器的工作原理,并通过一系列的应用示例,展示传感器在实际应用中的优势和价值。

2. 传感器的工作原理传感器的工作原理基于不同的物理原理,常见的有电阻、电容、磁性、光电等原理。

以电阻式传感器为例,其基本原理是通过测量感应电阻的变化来获得目标物理量的信息。

当被测量物理量发生变化时,传感器内部的电路会产生相应的变化,这种变化可以通过电压、电流等形式的输出信号来实现。

3. 传感器的分类与应用3.1 光电传感器光电传感器利用光敏元件(如光电二极管、光电三极管等)对光信号进行感知,并将其转化为电信号。

光电传感器广泛应用于工业自动化控制、安防监控、光电测距等领域。

3.2 压力传感器压力传感器通过测量物体受到的外部压力,将其转化为电信号。

压力传感器在汽车制造、气体检测、医疗器械等领域有着重要的应用。

3.3 温度传感器温度传感器通过测量物体的温度变化,将其转化为电信号。

温度传感器广泛应用于气象观测、温控设备、冷链物流等领域。

3.4 加速度传感器加速度传感器用于测量物体的加速度或振动状态,常见于汽车安全系统、运动监测、智能手机等设备中。

3.5 湿度传感器湿度传感器用于测量空气中的湿度水分含量,广泛应用于农业、气象观测、室内环境监测等领域。

4. 传感器应用实例4.1 工业领域在工业自动化领域,传感器起着至关重要的作用。

通过使用温度传感器和压力传感器,可以实现对生产过程中温度和压力的监测与控制,提升生产效率和质量。

4.2 医疗监护传感器在医疗监护领域也广泛应用。

心电传感器可以实时监测患者的心电图数据;血氧传感器可以测量血氧饱和度;体温传感器可以监测患者体温的变化,及时发现异常情况。

4.3 环境监测传感器在环境监测领域具有重要作用。

空气质量传感器可以检测空气中的恶劣气体浓度;水质传感器可以监测水质的污染程度;土壤湿度传感器可以及时监测土壤的湿度状况。

传感器原理及应用实验

传感器原理及应用实验

传感器原理及应用实验
传感器是一种能够感知和测量环境变量的装置或设备,它能够将环境中的物理量转换为电信号或其他方便处理的形式。

传感器原理及应用的实验是为了研究和验证某种传感器的工作原理以及应用场景。

在实验中,我们通常会使用模拟传感器或数字传感器来进行测量和控制。

模拟传感器是指将物理量转换为模拟电压或电流信号的传感器,如温度传感器、压力传感器等。

数字传感器是指将物理量转换为数字信号的传感器,如光电传感器、加速度传感器等。

实验的第一步通常是准备实验装置和所需材料,如传感器、电源、电路板等。

接下来,我们需要按照实验步骤连接电路,并将传感器与电路板相连接。

在实验过程中,我们需要根据传感器的工作原理合理地选择信号放大电路、滤波电路等辅助电路。

同时,对于数字传感器,我们还需要使用单片机或其他数字处理器对信号进行处理和分析。

实验中,我们可以通过改变环境条件或操控实验装置来模拟不同的应用场景。

例如,在温度传感器实验中,可以通过改变热源的温度来观察传感器输出的电信号变化;在光电传感器实验中,可以调节光源的强度或改变测试物体与光源之间的距离来观察传感器的反应。

进行实验后,我们可以通过观察和记录传感器输出的电信号或其他相应数据来分析传感器的性能,并根据实验结果来判断传
感器的可行性、精度和稳定性。

在实验结束后,如果有必要,我们还可以根据实验结果对传感器进行调整和优化,以适应更广泛的应用场景。

传感器的原理及应用实验对于探索和理解传感器的工作原理和应用具有重要意义。

通过实验,我们可以深入了解传感器的特性和性能,为传感器应用领域的研究和开发提供实验数据和依据。

传感器原理与应用实验报告

传感器原理与应用实验报告

传感器原理与应用实验报告实验名称:传感器原理与应用实验实验目的:1. 了解传感器的基本原理;2. 学习传感器的应用。

实验器材:1. Arduino开发板;2. 温度传感器;3. 光敏传感器;4. 气体传感器;5. 电位器。

实验原理:传感器是一种能够感知或测量特定物理量的装置,它能够将感知到的物理量转化为电信号输出。

传感器的工作原理根据不同的物理量而有所不同,常见的传感器包括温度传感器、光敏传感器、气体传感器等。

温度传感器是一种能够测量温度的传感器,它利用温度对电阻值的影响来测量温度。

常见的温度传感器有热敏电阻和热电偶等。

光敏传感器是一种能够感知光强的传感器,它利用光敏元件对光的敏感性来测量光强。

常见的光敏传感器有光敏电阻和光电二极管等。

气体传感器是一种能够检测、测量和监测气体浓度和组成的传感器。

常见的气体传感器有气敏电阻和气敏传感器等。

电位器是一种能够调节电阻值的装置,它通过改变电阻值来改变电路中的电流或电压。

实验步骤:1. 将温度传感器连接到Arduino开发板的模拟输入引脚;2. 将光敏传感器连接到Arduino开发板的模拟输入引脚;3. 将气体传感器连接到Arduino开发板的模拟输入引脚;4. 将电位器连接到Arduino开发板的模拟输入引脚;5. 编写Arduino代码,读取传感器的电信号,并将其转换为温度、光强、气体浓度等物理量;6. 将物理量通过串口输出或显示到LCD屏幕上。

实验结果:通过实验,我们成功地读取了温度传感器、光敏传感器、气体传感器和电位器的电信号,并将其转换为相应的物理量。

实验结果显示,温度传感器测得的温度为25℃,光敏传感器测得的光强为100 lux,气体传感器测得的气体浓度为200 ppm,电位器调节后的电阻值为500欧姆。

实验总结:通过本实验,我们深入了解了传感器的工作原理和应用。

传感器在现代科技中起着重要的作用,广泛应用于环境监测、工业自动化、智能家居等领域。

《传感器原理及应用》实验指导书

《传感器原理及应用》实验指导书
3、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R仁R3,R2=R4,而R1MR2时,是否可以组成全桥:(1)可以(2)不可以。
实验二 压阻式压力传感器的压力测量实验
一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。
二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下, 根据半导体的压阻效应, 基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我 们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压 力变化。
五、思考题:
试设计利用£的变化测谷物湿度的传感器原理及结构?能否叙述一下 在设计中应考虑哪些因素?
实验六 转速的测量

一、实验目的:了解磁电式传感器测量转速的原理。
二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线 圈中感应电势e=-d©/dt发生变化,因此当转盘上嵌入N个磁棒时,每 转一周线圈感应电势产生N次的变化,通过放大、整形和计数的电路即可 以测量转速。
三、实验设备:震动台、压电传感器、检波、移相、低通滤波器模板、压电 式传感器实验模板、双线示波器。
四、实验方法和要求:
1、压电传感器已装在震动台面上。
2、将低频震荡器信号接入到台面三源板震动源的激励插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端, 与传 感器外壳相连的接线端接地,另一端接R1。将压电传感情实验模 板电路输出端Vol接R6。将压电传感器实验模板电路输出端V02接入低通滤波器输入端Vi,低通滤波器输出Vo与示波器相连。
2、开启电源, 调节测微头使霍尔片在磁钢中间位置并使数显表指示为 零。
3、测微头向轴向方向推进,每转动0.2mm记下一个输出电压读数, 直到读数近似不变。

传感器实验原理及应用

传感器实验原理及应用

传感器实验原理及应用传感器实验是一种通过使用传感器来测量和监测环境中的物理量的实验。

传感器是一种能够将感知环境中的物理量(如温度、湿度、光线等)转换为电信号的装置。

传感器实验的原理是利用传感器的电特性来实现对物理量的测量和监测。

传感器实验的原理主要分为三个方面:传感器的感应原理、传感器的信号传输原理和传感器的信号处理原理。

首先是传感器的感应原理。

传感器能够感知和测量环境中的物理量,这是因为传感器本身具有与这些物理量有关的某种特性。

例如,温度传感器根据温度对其内部电阻值的影响来测量温度。

光传感器根据光照强度对其内部光敏电阻的影响来测量光照强度。

传感器的感应原理决定了其对特定物理量的测量灵敏度和测量范围。

其次是传感器的信号传输原理。

传感器将感知到的物理量转换为电信号,并通过电路传输到其他系统中进行处理和显示。

传感器的信号传输主要分为两个阶段:信号转换和信号传输。

信号转换是指将传感器感知到的物理量转换为与之对应的电信号。

信号传输是指通过电路传输将转换后的电信号传送到其他系统中。

传感器信号传输原理的设计既要保证信号传输的稳定性,又要尽量减小信号传输带来的干扰。

最后是传感器的信号处理原理。

传感器的信号处理主要是对传感器输出信号进行放大、滤波、数字化等处理,以便更好地显示、记录和分析。

信号处理的目的是提高传感器测量的精度和准确性,并使信号更易于人们理解和处理。

传感器信号处理原理的设计需要考虑到信号处理的实时性、可靠性和节能性。

传感器实验的应用广泛,涵盖了许多领域。

其中最常见的应用是环境监测。

通过传感器可以实时监测环境中的温度、湿度、光照等因素,并通过传感器实验可以对这些物理量进行测量和分析。

这对于环境研究、气象预测、空调控制等都具有重要意义。

此外,传感器实验还可以应用于智能家居、工业自动化、农业监测等领域。

在智能家居中,传感器实验可以通过感知环境中的物理量来实现智能控制,提高居住的舒适度和安全性。

在工业自动化中,传感器实验可以监测生产过程中的各种参数,及时发现问题并进行调整和优化。

传感器原理及应用实验报告

传感器原理及应用实验报告

传感器原理及应用实验报告引言传感器是现代科技发展中重要的组成部分,它们可以将物理量或化学量转化为电信号,用于测量和监测各种参数。

本实验报告将介绍传感器的原理及其在实际应用中的重要性。

传感器原理传感器的原理基于特定的物理或化学效应,用于测量目标物体或环境的特性。

传感器可以根据测量的参数分为多种类型,例如温度传感器、压力传感器、湿度传感器等。

以下是一些常见的传感器原理:1.电阻性传感器:根据目标物体的电阻变化来测量参数,如温度传感器和光敏电阻。

2.电容性传感器:根据目标物体的电容变化来测量参数,如接近传感器和湿度传感器。

3.电磁感应传感器:根据目标物体对电磁场的影响来测量参数,如电流传感器和磁场传感器。

4.光学传感器:利用光学效应来测量参数,如光电二极管和激光传感器。

5.化学传感器:根据目标物体的化学反应来测量参数,如气体传感器和pH传感器。

传感器的工作原理决定了其在不同领域中的应用。

传感器应用传感器在各个领域中都有广泛的应用,如工业、医疗、环境监测等。

以下是一些传感器的应用示例:1.温度传感器:用于测量环境温度,广泛应用于空调、温度控制等领域。

2.压力传感器:用于测量液体或气体的压力,常用于汽车制造和工业流程控制中。

3.湿度传感器:用于测量空气中的湿度,可应用于温室、气象监测等场合。

4.加速度传感器:用于测量物体的加速度,广泛应用于汽车、智能手机等设备中的运动检测。

5.光敏传感器:用于测量光线强度,常用于自动照明系统和光电设备中。

这些只是传感器应用的一小部分,实际上还有许多其他类型的传感器应用于各种领域。

传感器实验为了深入理解传感器的原理和应用,我们进行了一项传感器实验。

实验中我们选择了温度传感器作为研究对象,通过Arduino开发板进行数据采集和处理。

实验步骤1.准备实验材料:Arduino开发板、温度传感器、杜邦线等。

2.连接电路:将温度传感器与Arduino开发板连接,确保电路连接正确无误。

传感器原理与应用实验报告

传感器原理与应用实验报告

传感器原理与应用实验报告传感器原理与应用实验报告概述:传感器是一种能够感知和测量环境中各种物理量的装置或设备。

它通过将感知到的物理量转换成电信号,从而实现对环境的监测和控制。

本实验旨在探究传感器的工作原理以及应用领域,并通过实验验证其性能和可靠性。

一、传感器的工作原理传感器的工作原理基于物理效应,常见的包括电阻、电容、电感、压电效应等。

以压力传感器为例,其工作原理是通过测量被测物体对传感器施加的压力,进而转换成电信号输出。

压力传感器通常由一个弹性元件和一个电阻器组成,当被测物体施加压力时,弹性元件会产生形变,从而改变电阻器的电阻值,进而输出与压力成正比的电信号。

二、传感器的应用领域1. 工业自动化领域:传感器在工业自动化领域中起到了至关重要的作用。

例如,温度传感器、湿度传感器、压力传感器等被广泛应用于工业生产过程中的温度、湿度、压力监测与控制。

2. 环境监测领域:传感器在环境监测领域中也发挥着重要作用。

例如,气体传感器可用于检测空气中的有害气体浓度,光照传感器可用于测量光照强度,水质传感器可用于监测水体的污染程度等。

3. 医疗健康领域:传感器在医疗健康领域中的应用日益广泛。

例如,心率传感器、血压传感器、血糖传感器等可用于监测人体的生理参数,并实时反馈给医务人员,帮助进行疾病的诊断和治疗。

三、实验设计与结果分析本实验选择温度传感器作为研究对象,通过搭建实验装置,测量不同温度下传感器的电阻值,并进一步分析电阻值与温度之间的关系。

实验结果显示,随着温度的升高,传感器的电阻值呈现出线性增加的趋势。

通过对实验数据进行拟合分析,得到了温度与电阻值之间的数学关系模型。

这为后续的温度测量提供了理论基础。

四、传感器的性能与可靠性评估传感器的性能与可靠性是评估传感器质量的重要指标。

本实验通过对传感器的灵敏度、线性度、稳定性等性能指标进行测试,以及对传感器的抗干扰性和长期稳定性进行验证,对传感器的性能和可靠性进行评估。

传感技术与应用实验指导及实验报告

传感技术与应用实验指导及实验报告

传感技术与应用实验指导及实验报告
引言
随着现代社会的快速发展,人们在实现智能化、自动化、信息化社会
中有着更高的要求。

在系统自动化中,传感技术被广泛应用于测量、监测、测控和环境监测中。

传感技术由检测传感器、数据采集传输、物理量及信
号处理等组成,是现代智能化控制系统中重要的技术之一,本实验将介绍
传感技术的应用,以及通过实验来详细阐明这一技术的实际应用特点。

一、实验目的
1、掌握传感技术的基本原理和用法。

2、理解传感技术在智能化系统中的重要作用。

3、学习应用传感技术的实验流程和实验报告格式。

二、实验内容
1.传感器原理:介绍传感器原理和结构,包括热电式、光电式、声学式、机械式、电磁式、液位式等。

2.传感器应用:介绍传感技术在智能化系统中的应用,如安全报警系统、机器人控制等。

3.传感器实验:介绍传感器实验的基本步骤,如确定实验目的、检查
电路图表、确认电路连接、测试传感器输出等。

4.实验报告:介绍传感器实验报告的内容,如实验目的、实验步骤、
实验结果、实验结论等。

三、实验要求
1、根据实验指导完成传感器实验,并根据实验结论和讨论,写出实验报告。

2、认真阅读实验。

传感器原理及应用实验报告

传感器原理及应用实验报告

传感器原理及应用实验报告一、实验目的1、深入理解各类传感器的工作原理。

2、掌握传感器的性能参数和测量方法。

3、学会使用传感器进行物理量的测量和数据采集。

4、培养分析和解决实验中出现问题的能力。

二、实验设备1、压力传感器及测量电路。

2、温度传感器及测量电路。

3、位移传感器及测量电路。

4、数据采集卡及计算机。

三、实验原理(一)压力传感器压力传感器通常基于压阻效应或电容原理工作。

压阻式压力传感器是在硅片上扩散出电阻,并将其连接成电桥形式。

当压力作用于硅片时,电阻值发生变化,从而导致电桥输出电压的变化。

电容式压力传感器则是通过改变两个极板之间的距离或有效面积,从而改变电容值,进而反映压力的大小。

(二)温度传感器常见的温度传感器有热电偶和热敏电阻。

热电偶基于塞贝克效应,由两种不同的金属组成,当两端存在温度差时,会产生热电动势。

热敏电阻的电阻值随温度变化而显著改变,通过测量电阻值可以确定温度。

(三)位移传感器位移传感器包括电感式、电容式和光栅式等。

电感式位移传感器利用线圈的电感变化来测量位移;电容式位移传感器则依据电容的变化来检测位移;光栅式位移传感器通过光栅的莫尔条纹来实现高精度的位移测量。

四、实验步骤(一)压力传感器实验1、连接压力传感器到测量电路,确保连接正确无误。

2、打开电源,对传感器进行预热。

3、施加不同大小的压力,使用数据采集卡采集输出电压数据。

4、记录压力值和对应的电压值,绘制压力电压特性曲线。

(二)温度传感器实验1、将热电偶或热敏电阻插入恒温槽中。

2、改变恒温槽的温度,设置多个温度点。

3、测量不同温度下传感器的输出,记录温度和输出值。

4、绘制温度输出特性曲线。

(三)位移传感器实验1、安装位移传感器,使其能够准确测量位移。

2、移动测量对象,产生不同的位移量。

3、采集位移数据和传感器的输出信号。

4、绘制位移输出特性曲线。

五、实验数据及处理(一)压力传感器|压力(kPa)|输出电压(mV)|||||50|125||100|250||150|375||200|500|根据上述数据,绘制压力电压特性曲线(略)。

传感器原理及应用的实验报告

传感器原理及应用的实验报告

传感器原理及应用的实验报告1. 引言本实验旨在通过实际操作了解传感器的原理及其在不同领域的应用。

传感器是现代科技中不可或缺的一部分,它们能够将感知到的信息转换成可量化的信号,从而实现信息的采集和传输。

2. 传感器的原理传感器基本原理是通过特定的物理或化学效应,将被测量的物理量或化学量转换成电信号。

以下是一些常见传感器的工作原理:•光电传感器:光电传感器利用光的特性来探测物体的存在或非存在。

它会发射出光束,并通过测量光照度的变化来判断物体是否存在或被触发。

•压力传感器:压力传感器通过测量物体受力后的变形量来确定物体的压力。

常见的压力传感器应用于汽车制造、医疗设备和工业控制等领域。

•温度传感器:温度传感器通过测量物体的热量来确定物体的温度。

它们在许多领域中都起着重要作用,如气象学、热管理、工业控制等。

•湿度传感器:湿度传感器通过测量物体周围环境中的湿度来确定湿度水平。

它们在农业、气象学、仪器和设备制造等领域中广泛应用。

当然,以上只是传感器的一小部分类型和原理,不同的传感器有不同的原理和工作方式。

3. 实验设计及步骤为了更好地理解传感器的原理和应用,我们设计了以下实验,并依次进行了以下步骤:1.实验1:光电传感器的应用–步骤1: 准备实验所需材料和设备,包括光电传感器、灯光源、连线等。

–步骤2: 将光电传感器和灯光源连接,调整灯光源的亮度和位置。

–步骤3: 测试光电传感器在不同光照条件下的反应和输出信号。

2.实验2:压力传感器的应用–步骤1: 准备实验所需材料和设备,包括压力传感器、测试物体等。

–步骤2: 将压力传感器固定在测试物体上,并连接相关电路。

–步骤3: 测试不同压力下压力传感器的输出信号,并记录数据。

3.实验3:温度传感器的应用–步骤1: 准备实验所需材料和设备,包括温度传感器、温度计等。

–步骤2: 将温度传感器与温度计放置在相同环境中,并记录两者的温度数据。

–步骤3: 比较温度传感器和温度计的测量结果,探讨其准确性和精度。

传感器的原理及应用的实验

传感器的原理及应用的实验

传感器的原理及应用的实验1. 传感器的基本原理传感器是一种能够将感知的信号转化为可用电信号的装置。

它可以通过测量光、温度、压力、湿度、运动等多种物理或化学量来获取信息。

传感器的基本原理可以归纳为以下几种:1.光敏传感器:光敏传感器的基本原理是利用光电效应。

在光照射下,光敏物质会产生电荷,进而转化为电信号。

光敏传感器广泛应用于自动调光系统、照相机、环境监测等领域。

2.温度传感器:温度传感器可以通过热敏元件或热电偶来测量物体的温度。

热敏元件的电阻值随温度的变化而变化,通过测量电阻值的变化可以得到温度信息。

热电偶利用热电效应,将温度变化转化为电压信号。

温度传感器广泛应用于温度控制、气象观测等场合。

3.压力传感器:压力传感器通过测量压力对感应元件的影响来获得被测量物体的压力信息。

常用的压力传感器有电阻应变式和压电式两种。

电阻应变式通过测量弯曲或变形产生的电阻变化来得到压力值。

压电式则是利用压电效应将压力转化为电荷或电压信号。

压力传感器广泛应用于工业自动化控制、交通运输等领域。

4.湿度传感器:湿度传感器用于测量空气中的湿度水分含量。

它通常使用湿敏元件,如电容式、电阻式和振型式湿敏元件。

湿度的变化会引起感应元件的相应变化,通过测量这些变化可以得到湿度信息。

湿度传感器广泛应用于气象、农业、空调等领域。

2. 传感器实验的设计和操作为了深入了解传感器的原理和应用,我们可以进行一些传感器实验。

以下是一些常见的传感器实验案例及其操作过程:2.1 光敏传感器实验实验材料: - 光敏传感器 - 电源 - 电阻 - 示波器或电压表实验步骤: 1. 将光敏传感器连接到电源并接地。

2. 将一个电阻与光敏传感器并联连接,以构成电压分压电路。

3. 使用示波器或电压表测量电路的输出电压。

4. 在不同的光照条件下,记录并观察输出电压的变化。

2.2 温度传感器实验实验材料: - 温度传感器 - 温度控制装置 - 示波器或电压表实验步骤: 1. 将温度传感器安装在需要测量的物体或环境中。

传感器原理及应用实验报告

传感器原理及应用实验报告

传感器原理及应用实验报告一、引言传感器是一种将物理量转换为电信号的设备,广泛应用于各个领域,如工业自动化、医疗设备、环境监测等。

本实验旨在通过实际操作,深入了解传感器的原理及应用。

二、实验原理1. 传感器的基本原理传感器是一种将非电信号转换为电信号的装置。

其基本原理是根据被测量物理量与某种物理效应之间的关系来进行测量。

常见的物理效应包括压力效应、温度效应、光学效应等。

2. 温度传感器的工作原理温度传感器是一种将温度转换为电信号的装置。

其工作原理主要有热敏电阻法、热电偶法和热电阻法等。

其中,热敏电阻法利用材料在不同温度下具有不同电阻值这一特性进行测量;热电偶法则利用两个不同金属接触处产生温差时产生电势差这一现象进行测量;而热电阻法则利用材料在不同温度下具有不同阻值这一特性进行测量。

3. 实验器材本实验所需的器材包括温度传感器、数字万用表、电源、导线等。

三、实验步骤1. 连接电路将温度传感器与数字万用表连接,其中红色导线连接到数字万用表的正极,黑色导线连接到数字万用表的负极。

同时,将电源连接到传感器上。

2. 测量电压值打开电源,调整数字万用表的测量范围,并记录下此时测得的电压值。

3. 改变温度使用手持吹风机对传感器进行加热,待温度上升后再次记录下此时测得的电压值。

然后再使用冰块对传感器进行降温,待温度下降后再次记录下此时测得的电压值。

4. 数据处理根据所记录下的数据计算出不同温度下的电压值,并绘制出相应的图像。

四、实验结果及分析通过本实验,我们成功地了解了温度传感器的原理及应用。

在实验过程中,我们发现随着温度变化,传感器输出的电压也随之变化。

这说明了在不同温度下,材料具有不同阻值这一特性被成功地利用了起来。

五、实验总结本实验通过实际操作,深入了解了传感器的原理及应用。

同时,我们也学会了如何正确地连接电路、测量电压值,并进行数据处理。

这将对我们今后的科研和工作中有着重要的意义。

传感器认识实验实验报告

传感器认识实验实验报告

传感器认识实验实验报告传感器是一种能够将物理量转换为电信号输出的装置,广泛应用于各种测量和控制系统中。

本次实验旨在通过对传感器的认识与实验来探究其基本原理和应用。

实验一:温度传感器的原理和应用温度传感器是一种将环境温度转换为电信号输出的传感器。

在实验中,我们使用了一种基于热敏电阻的温度传感器,即NTC热敏电阻。

通过实验,我们发现NTC热敏电阻的电阻值与温度呈负相关。

当温度升高时,电阻值下降,反之电阻值上升。

这是因为热敏电阻的材料具有温度敏感性,随着温度的变化,其导电性能也会发生变化,从而导致电阻值的变化。

我们还使用了一个AD转换器将传感器输出的模拟电信号转换为数字信号,以便于计算机进行处理和存储。

通过编写计算机程序,我们可以实现实时监测温度变化并进行数据记录和分析。

除了温度传感器,其他常见的传感器还包括压力传感器、光敏传感器、加速度传感器等。

它们都基于不同的物理原理,但其本质都是将环境信号转换为电信号输出。

实验二:光敏传感器的原理和应用光敏传感器是一种将光信号转换为电信号输出的传感器。

在实验中,我们使用了一种基于硒电池的光敏传感器。

通过实验,我们发现光敏传感器的电阻值与光照强度呈负相关。

当光照强度增加时,电阻值下降,反之电阻值上升。

这是因为硒电池的材料具有光敏感性,随着光照强度的变化,其导电性能也会发生变化,从而导致电阻值的变化。

我们还使用了一个运算放大器将传感器输出的微弱电信号放大,以便于计算机进行处理和存储。

通过编写计算机程序,我们可以实现实时监测光照强度变化并进行数据记录和分析。

结论通过本次实验,我们了解了传感器的基本原理和应用,掌握了使用传感器进行数据采集和处理的方法。

传感器在现代工业、医疗、农业等领域中都有着广泛的应用,对提高生产效率、提高产品质量、保障生命安全等方面都有着重要的作用。

因此,深入研究传感器的原理和应用,将对实现智能化、信息化发展有着重要的意义。

传感器原理及应用实验指导

传感器原理及应用实验指导

电子科技大学中山学院传感器原理及应用实验指导实验项目1实验一电桥性能试验2实验二电容式传感器的实验3实验三光电转速传感器实验4一、实验目的1.了解金属箔式应变片的应变效应,理解单臂电桥、半桥和全桥工作原理和性能。

2.比较半桥与单臂电桥的不同性能、了解其特点。

3.理解并掌握全桥测量电路的原理及优点。

电子科技大学中山学院金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。

÷øöçèæD -D +D -D »÷÷øöççèæ+-+=R R R R R R R R U R R R R R R U Uo i i 432143421141144e K U R R U Uo ii =÷øöçèæD »)(442121e e -=÷øöçèæD -D »K U R R R R U Uo i i)(4443214321434211e e e e -+-»÷øöçèæD -D +D -D »÷÷øöççèæ+-+=K U R R R R R R R R U R R R R R R U Uo i i i四、电桥实验注意事项1.砝码盘不能放置过重的物体!2.电桥电压为+-5V!3.两组电源不能接错!电子科技大学中山学院电子科技大学中山学院四、电桥实验注意事项±15V ±5V数字电压表电阻应变传感电感电容四、电桥实验注意事项1.砝码盘不能放置过重的物体!2.电桥电压为+-5V!3.两组电源不能接错!4.调零(参照书上说明!)电子科技大学中山学院电子科技大学中山学院五、电桥连接注意事项R2R1R4R1R7R3R5R6R8Rw+5V-5V单臂电子科技大学中山学院五、电桥连接注意事项R2R1R4R1R7R3R5R6R8Rw+5V-5V半桥电子科技大学中山学院五、电桥连接注意事项R2R1R4R1R7R3R5R6R8Rw+5V-5V全桥电子科技大学中山学院五、电桥连接注意事项R2R1R4R1R7R3R5R6R8Rw+5V-5V单臂电子科技大学中山学院五、电桥连接注意事项R2R1Rw+5VR4R1R7R3R5R6R8-5V半桥电子科技大学中山学院五、电桥连接注意事项R2R1Rw+5VR4R1R7R3R5R6R8-5V全桥六、实验报告记录实验数据,绘制特性曲线计算分线性误差大小,分析非线性误差的原因归纳电桥特性电子科技大学中山学院实验项目1实验一电桥性能试验2实验二电容式传感器的实验3实验三光电转速传感器实验4实验二电容传感器性能实验一、实验目的了解电容式传感器的结构及其特点电子科技大学中山学院x d x C C -=D 00电子科技大学中山学院二、基本原理三、实验步骤1、将电容传感器装于传感器试验箱(一)的黑色支架上,将传感器引线插入传感器调理电路中电容式传感器实验单元的插孔中。

实验一 常用传感器的原理和应用

实验一   常用传感器的原理和应用

实验一常用传感器的原理和应用一、实验目的通过本实验了解几种常用传感器的原理及应用。

二、实验原理1、位移传感器位移是指物体的某个表面或某点相对于参考表面或参考点位置的变化,对此进行测量的方法很多。

本实验主要介绍差动变压器式位移传感器, 其工作原理是由铁心位移引起线圈输出电压的变化, 进而对位移进行测量。

其优点是: 灵敏度和精确度较高; 非线性误差小; 量程较宽(±0.1~±200㎜), 但是, 结构复杂, 造价略高。

图1—1 SZGB—11型光电转速传感器的光路图本光电转速传感器为SZGB—11型, 测量范围为被测轴直径≧3mm,转速30转/分~48万转/分,采用了单头反射式光电变换头, 可以将机械移动转换为电频率。

用于无接触测量转速。

当被测点由反光面到无反光面时, 光敏管则随光的强弱产生相应变化的电信号, 通过适当的电子线路放大、整形, 输出大于8 V幅度的方波信号。

本实验测试实例为: 用本传感器与光线示波器配和, 对电风扇的转速进行测量。

3、SZGB—6光电转速传感器本SZGB—6光电转速传感器采用调制光结构的单头反射式光电传感器,由调制光发生器产生高频调制信号,向被测物体发射调制脉冲光,当调制光反射回来后被接收,经电压放大,解调输出高电平,在非反射面输出低电平。

接收电路只对调制光起作用。

故传感器抗干扰能力极强。

具有测量距离远和不受环境光干扰的优点;可以与各种显示仪配套使用及计算机接口电路直接连接,无接触测量转速、线速等使用。

转速测量范围:1r ~30000r/min 。

4、速度传感器(速度拾振器)速度传感器有线圈活动型、磁钢活动型和衔铁活动型等类型,本实验所用的传感器为CD-2型是线圈活动型传感器。

频率范围:2~500 Hz 灵敏度:)(6001-⋅s cm mV 最大加速度:10 g最大位移±1.5mm工作原理: 当它被紧固在振动体上时, 其外壳随之振动, 位于气隙间的线圈切割磁力线, 于是就发出正比于振动速度的感应电势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《传感器原理及应用》实验指导书自动控制技术教研室编者:张春芳王海荣实验一金属箔式应变片----单臂、半臂、全桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂、半臂、全电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为:ΔR/R电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部件受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压Uο1=Ekє/4。

在半桥性能实验中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。

当应变片阻值和应变量相同时,其桥路输出电压Uο2=Ekє/2。

在全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻力值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uο3=Ekє。

其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、实验设备:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V、±4V直流电源、万用表。

四、实验方法和要求:1、根据电子电路知识,实验前设计出实验电路连线图。

2、独力完成实验电路连线。

3、找出这三种电桥输出电压与加负载重量之间的关系,并作出V o=F(m)的关系曲线。

4、分析、计算三种不同桥路的系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)。

五、思考题1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

2、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。

3、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

实验二压阻式压力传感器的压力测量实验一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。

二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。

在压力作用下,根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。

三、实验设备:压力源、压力表、压阻式压力传感器、压力传感器实验模板、流量计、三通连接导管、数显单元、直流稳压源±4V、±15V。

四、实验方法和要求:1、根据电子电路知识完成电路连接,主控箱内的气源部分、压缩泵、储气箱、流量计在主控箱内部已接好。

将标准压力表放置传感器支架上,三通连接管中硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用双指按住气源插座边缘往内压,则硬管可轻松拉出)。

其余两根软导管分别与标准表和压力传感器接通。

将传感器引线插头插入实验模板的插座中。

2、先松开流量计下端进气口调气阀的旋钮,开通流量计。

3、合上主控箱上的气源开关,启动压缩泵,此时可看到流量计中的滚珠浮子在向上浮起悬于玻璃管中。

4、逐步关小流量计旋钮,使标准压力表指示某一刻度,观察数显表显示电压的正、负,若为负值则对调传感器气咀接法。

5、仔细地逐步由小到大调节流量计旋钮,使压力显示在4—14KP之间,每上升1KP分别读取压力表读数,记下相应的数显表值。

6、计算本系统的灵敏度和非线性误差。

五、思考题:如果本实验装置要成为一个压力计,则必须对其进行标定,如何标定?实验三压电式传感器测震动实验一、实验目的:了解压电式传感器的测量震动的原理和方法。

二、基本原理:压电式传感器由惯性量块和受压的压电片等组成。

(仔细观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的震动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

三、实验设备:震动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板、双线示波器。

四、实验方法和要求:1、压电传感器已装在震动台面上。

2、将低频震荡器信号接入到台面三源板震动源的激励插孔。

3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。

将压电传感情实验模板电路输出端V o1接R6。

将压电传感器实验模板电路输出端V02接入低通滤波器输入端V i,低通滤波器输出V o与示波器相连。

4、合上主控箱电源开关,调节低频震荡器的频率和幅度旋钮使震动台震动,记录示波器波形。

5、改变低频震荡器的频率,记录输出波形变化。

6、用示波器的两个通道同时记录低通滤波器输入端和输出端波形。

7、求出压电传感器的振动方程。

五、思考题:根据压电传感器的振动方程,是否能得到其速度和加速度方程。

实验四差动变压器的性能实验一、实验目的:差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段和三段式,本实验是三段式结构。

当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。

其输出电势反映出被测体的移动量。

三、实验设备:差动变压器实验模板、测微头、双线示波器、差动变压器、音频信号源(音频震荡器)、直流电源、万用表。

四、实验方法和要求:1、将差动变压器装在差动变压器实验模板上。

2、将传感器引线插头插入实验模板的插座中,接好外围电路,音频震荡器信号必须从主控箱中的L v端子输出,调节音频震荡器的频率,输出频率为4—5KHZ(可用主控箱的频率表输入Fin来检测)。

调节输出幅度为峰-峰值V p-p=2V(可用示波器检测)3、旋转测微头,使示波器第二通道显示的波形峰-峰值V p-p最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从V p-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压V p-p值,至少记录一个周期的数据。

在实验过程中,注意左、右位移时,初、次级波形的相位关系。

4、在实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。

画出输出电压峰值V op-p—位移X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。

五、思考题:1、用差动变压器测量较高频率的振幅,可以吗?差动变压器测量频率的上限受什么影响?2、试分析差动变压器与一般电源变压器的异同?实验五位移传感器特性实验-霍尔式、电涡流式、电容式(一)霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:根据霍尔效应,霍尔电势Uн=KнIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。

三、实验设备:霍尔传感器实验模板、霍尔传感器、直流电源、测微头、数显单元。

四、实验方法和要求:1、将霍尔传感器安装于实验模板的支架上。

再将传感器引线插头接入实验模板的插座中,完成实验电路的连线。

2、开启电源,调节测微头使霍尔片在磁钢中间位置并使数显表指示为零。

3、测微头向轴向方向推进,每转动0.2mm记下一个输出电压读数,直到读数近似不变。

4、作出V—X曲线,计算不同线性范围时的灵敏度和非线性误差。

五、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?(二)电涡流传感器位移实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。

二、基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

三、实验设备:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。

四、实验方法和要求:1、将电涡流传感器安装在实验模板的支架上。

2、观察传感器结构,这是一个平绕扁线圈。

3、将电涡流传感器输出线接入实验模板标有L的两端插孔中,作为震荡器的一个元件。

4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。

5、用连接导线从主控台接入±15V直流电源接到模板上标有+15V的插孔中。

6、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出电压几乎不变为止。

7、画出V—X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3mm及5mm时的灵敏度和线性度(可以用端基法或拟合直线法)。

六、思考题:1、电涡流传感器的量程与哪些因素有关?2、电涡流传感器进行非接触位移测量时,如何根据量程选用传感器。

(三)电容式传感器的位移实验一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用平板电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变),测微小位移(d 变)和测量液位(A变)等多种电容传感器。

三、实验设备:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压电源。

四、实验方法和要求:1、将电容传感器装于电容传感器实验模板上,将传感器引线插头插入实验模板的插座中。

2、将电容传感器实验模板的输出端V o1与数显表单元V i相接,R w调节到中间位置。

3、接入±15V电源,旋转测微头推进电容传感器动极板位置,每间隔0.2mm记下位移X与输出电压值。

4、计算电容传感器的系统灵敏度S和非线性误差δf。

五、思考题:试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?实验六转速的测量-磁电式、光电式、霍尔式(一) 磁电式转速传感器测速实验一、实验目的:了解磁电式传感器测量转速的原理。

二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势е=–dφ/dt发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生Ν次的变化,通过放大、整形和计数的电路即可以测量转速。

三、实验设备:磁电式传感器、数显单源测速档、直流电源2—24V。

四、实验方法和要求:1、根据磁电式传感器原理,独立完成实验电路的连线。

磁电式传感器端面离转动盘面2mm左右,并且将磁电传感器中心对准磁钢中心。

2、使转速电机带动转盘旋转,将转速电源从5V起,每增加5V电压记录一组转速数椐。

3、作出转速与转速电压关系曲线。

相关文档
最新文档