一元二次方程韦达定理

合集下载

一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理)【学习目标】1、学会用韦达定理求代数式的值。

2、理解并掌握应用韦达定理求待定系数。

3、理解并掌握应用韦达定理构造方程,解方程组。

4、能应用韦达定理分解二次三项式。

知识框图求代数式的值 求待定系数 一元二次 韦达定理 应用 构造方程方程的求 解特殊的二元二次方程组 根公式 二次三项式的因式分解 【内容分析】韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:(1)定理成立的条件0∆≥ (2)注意公式重12bx x a+=-的负号与b 的符号的区别 根系关系的三大用处 (1)计算对称式的值例 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2)121212112220072007x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=- (4) 22212121212||()()4(2)4(2007)22008x x x x x x x x -=-=+-=---=说明:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,2121212||()4x x x x x x -=+-2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【课堂练习】1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=3.已知方程2x 2-3x+k=0的两根之差为212,则k= ;4.若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;5.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;6. 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值: (1)x 12x 2+x 1x 22(2) 1x 1 -1x 27.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值:2221x 1x 1+(2)构造新方程理论:以两个数为根的一元二次方程是。

初中数学 一元二次方程的韦达定理有什么应用

初中数学  一元二次方程的韦达定理有什么应用

初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。

韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。

1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。

通过计算根的和与积,我们可以得到关于根的一些信息。

例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。

这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。

2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。

通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。

进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。

韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。

3. 拟合数据:韦达定理可以用于数据的拟合。

通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。

根的和与积可以提供关于数据的整体趋势和特征的信息。

这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。

4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。

例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。

总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。

韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。

了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根一、关于韦达定理的性质1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有x 1+x 2=-b a , x 1x 2=c a .2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a不妨假设 x 1=-b +b 2-4ac 2a , x 2=-b -b 2-4ac 2a不难得出 x 1+x 2=-b a , x 1x 2=c a .(法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式) 按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0 对比一元二次方程的一般式ax 2+bx +c =0,得b =-a (x 1+x 2),c =ax 1x 2,∴ x 1+x 2=-b a , x 1x 2=c a .3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q .(二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0.4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系.二、利用韦达定理求一元二次方程的根例如,求一元二次方程x 2―22x ―6=0的根.很明显,根据我们所学习惯,首选方法是十字相乘法.(法一)因式分解,得 (x -32)(x +2)=0,解得, x 1=32, x 2=- 2.当然,利用十字相乘法很难凑数时,我们就会选用求根公式法.(法二) a =1,b =-22,c =-6,∴ b 2-4ac =8+24=32,∴ x =-b ±b 2-4ac 2a =22±422=2±22, 于是有 x 1=32, x 2=- 2.结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十分灵活,若每一个系数都是整数,且满足x2-(x1+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.(法三)已知方程x2―22x―6=0,根据韦达定理有x1+x2=22,x1x2=―6.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=2+a,x2=2-a,(满足条件x1+x2=22)且(2+a)(2-a)=―6. (满足条件x1x2=―6)于是有2-a2=―6,则a2=8,因此a=2 2∴x1=2+22=32,x2=2-22=- 2.上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数. 观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用. 当然我们也可以看以下例子.例1:解方程x2―6x―25=0,根据韦达定理有x1+x2=6,x1x2=―25.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=3+a,x2=3-a,(满足条件x1+x2=6)且(3+a)(3-a)=―25. (满足条件x1x2=―25)于是有9-a2=―25,则a2=34,因此a=34∴x1=3+34,x2=3-34.例2:解方程x2+24x―63=0,根据韦达定理有x1+x2=-24,x1x2=―63.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-12+a,x2=-12-a,(满足条件x1+x2=-24)且(-12+a)(-12-a)=―63. (满足条件x1x2=―63)于是有144-a2=―63,则a2=207,因此a=207∴x1=-12+207,x2=-12-207.例3:解方程x2―14x+48=0,根据韦达定理有x1+x2=14,x1x2=48.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=7+a,x2=7-a,(满足条件x1+x2=14)且(7+a)(7-a)=48. (满足条件x1x2=48)于是有49-a2=48,则a2=1,因此a=1∴x1=7+1=8,x2=7-1=6.例4:解方程x2+18x+40=0,根据韦达定理有x1+x2=-18,x1x2=40.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-9+a,x2=-9-a,(满足条件x1+x2=-18)且 (-9+a )(-9-a )=40 (满足条件x 1x 2=40)于是有81-a 2=40, 则a 2=41, 因此a =41∴ x 1=-9+41, x 2=-9-41.通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如例5:解方程2x 2+9x ―5=0,(法一)根据韦达定理有x 1+x 2=-92,x 1x 2=―52.在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得x 1=-94+a , x 2=-94-a , (满足条件x 1+x 2=-92)且 (-94+a )(-94-a )=―52. (满足条件x 1x 2=―52)于是有 8116-a 2=―52, 则a 2=12116, 因此a =114∴ x 1=-94+114=12, x 2=-94-114=-5.(法二)a =2,b =9,c =-5,∴ b 2-4ac =81+40=121,∴ x =-b ±b 2-4ac 2a=9±114, 于是有x 1=12, x 2=-5.当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.。

利用韦达定理求一元二次方程的根#精选.

利用韦达定理求一元二次方程的根#精选.

利用韦达定理求一元二次方程的根一、关于韦达定理的性质1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有x 1+x 2=-b a , x 1x 2=c a . 2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a不妨假设 x 1=-b +b 2-4ac 2a , x 2=-b -b 2-4ac 2a不难得出 x 1+x 2=-b a , x 1x 2=c a .(法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式) 按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0 对比一元二次方程的一般式ax 2+bx +c =0,得b =-a (x 1+x 2),c =ax 1x 2,∴ x 1+x 2=-b a , x 1x 2=c a .3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q .(二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0.4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系.二、利用韦达定理求一元二次方程的根例如,求一元二次方程x 2―22x ―6=0的根.很明显,根据我们所学习惯,首选方法是十字相乘法.(法一)因式分解,得 (x -32)(x +2)=0,解得, x 1=32, x 2=- 2.当然,利用十字相乘法很难凑数时,我们就会选用求根公式法.(法二) a =1,b =-22,c =-6,∴ b 2-4ac =8+24=32,∴ x =-b ±b 2-4ac 2a =22±422=2±22, 于是有 x 1=32, x 2=- 2.结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十分灵活,若每一个系数都是整数,且满足x2-(x1+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.(法三)已知方程x2―22x―6=0,根据韦达定理有x1+x2=22,x1x2=―6.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=2+a,x2=2-a,(满足条件x1+x2=22)且(2+a)(2-a)=―6. (满足条件x1x2=―6)于是有2-a2=―6,则a2=8,因此a=2 2∴x1=2+22=32,x2=2-22=- 2.上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数. 观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用. 当然我们也可以看以下例子.例1:解方程x2―6x―25=0,根据韦达定理有x1+x2=6,x1x2=―25.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=3+a,x2=3-a,(满足条件x1+x2=6)且(3+a)(3-a)=―25. (满足条件x1x2=―25)于是有9-a2=―25,则a2=34,因此a=34∴x1=3+34,x2=3-34.例2:解方程x2+24x―63=0,根据韦达定理有x1+x2=-24,x1x2=―63.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-12+a,x2=-12-a,(满足条件x1+x2=-24)且(-12+a)(-12-a)=―63. (满足条件x1x2=―63)于是有144-a2=―63,则a2=207,因此a=207∴x1=-12+207,x2=-12-207.例3:解方程x2―14x+48=0,根据韦达定理有x1+x2=14,x1x2=48.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=7+a,x2=7-a,(满足条件x1+x2=14)且(7+a)(7-a)=48. (满足条件x1x2=48)于是有49-a2=48,则a2=1,因此a=1∴x1=7+1=8,x2=7-1=6.例4:解方程x2+18x+40=0,根据韦达定理有x1+x2=-18,x1x2=40.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-9+a,x2=-9-a,(满足条件x1+x2=-18)且 (-9+a )(-9-a )=40 (满足条件x 1x 2=40)于是有81-a 2=40, 则a 2=41, 因此a =41∴ x 1=-9+41, x 2=-9-41.通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如例5:解方程2x 2+9x ―5=0,(法一)根据韦达定理有x 1+x 2=-92,x 1x 2=―52.在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得x 1=-94+a , x 2=-94-a , (满足条件x 1+x 2=-92)且 (-94+a )(-94-a )=―52. (满足条件x 1x 2=―52)于是有 8116-a 2=―52, 则a 2=12116, 因此a =114∴ x 1=-94+114=12, x 2=-94-114=-5.(法二)a =2,b =9,c =-5,∴ b 2-4ac =81+40=121,∴ x =-b ±b 2-4ac 2a=9±114, 于是有x 1=12, x 2=-5.当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.最新文件 仅供参考 已改成word 文本 。

一元二次方程的判别式、韦达定理应用举例

一元二次方程的判别式、韦达定理应用举例

一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。

判别式的表达式为:D=b²-4ac。

其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。

2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。

举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。

3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。

抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。

虚系数一元二次方程满足韦达定理

虚系数一元二次方程满足韦达定理

虚系数一元二次方程满足韦达定理韦达定理是数学中一个重要的定理,它描述了一元二次方程的根与系数之间的关系。

在本文中,我们将探讨虚系数一元二次方程满足韦达定理的相关内容。

一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a ≠ 0。

韦达定理告诉我们,对于这样的一元二次方程,它的两个根x1和x2满足以下关系:x1 + x2 = -b/a,x1 * x2 = c/a。

然而,在某些情况下,我们会遇到虚系数的一元二次方程,即方程中的系数为复数。

虚系数一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为复数,且a ≠ 0。

对于这样的方程,韦达定理同样成立。

虚系数一元二次方程与实系数一元二次方程的解法基本相同。

我们可以使用求根公式来求解方程的解。

求根公式是这样的:x = (-b ± √(b^2 - 4ac))/(2a)。

在虚系数一元二次方程中,如果判别式D = b^2 - 4ac小于0,那么方程的解就是两个虚数。

举个例子来说明。

假设我们有一个虚系数一元二次方程2x^2 + (3+2i)x + (4-5i) = 0。

根据韦达定理,我们知道x1 + x2 = -b/a,即x1 + x2 = -(3+2i)/2。

同时,根据求根公式,我们可以计算出判别式D = (3+2i)^2 - 4*2*(4-5i)。

如果D小于0,我们就可以得出方程的解为两个虚数。

虚系数一元二次方程的求解与实系数一元二次方程的求解没有本质区别。

无论是实数还是复数,方程的解都可以通过韦达定理和求根公式得到。

因此,我们可以说韦达定理适用于任何类型的一元二次方程,包括虚系数一元二次方程。

虚系数一元二次方程在实际应用中也有一定的意义。

例如,在电路分析中,我们经常会遇到复数阻抗和复数电流等概念。

虚系数一元二次方程可以帮助我们解决这些问题,从而更好地理解和分析电路的行为。

总结起来,虚系数一元二次方程满足韦达定理,其解法与实系数一元二次方程的解法基本相同。

一元二次方程的解法一元二次方程解题步骤韦达定理公式变形6个

一元二次方程的解法一元二次方程解题步骤韦达定理公式变形6个

一元二次方程的解法•一元二次方程的解:能够使方程左右两边相等的未知数的值叫做方程的解。

解一元二次方程方程:求一元二次方程解的过程叫做解一元二次方程方程。

•韦达定理:一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)一般式:ax2+bx+c=0的两个根x1和x2关系:x1+x2= b/ax1·x2=c/a•一元二次方程的解法:1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。

用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程的求根公式:求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b24ac≥0。

即求根公式使用的前提条件是a≠0且b24ac≥0。

4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

•韦达定理公式变形:x1²+x2²=(x1+x2)²2x1x2,1/x1²+1/x2²=(x1²+x2²)/x1x2,x1³+x2³=(x1+x2)(x1²x1x2+x2²)等。

••与韦达定理有关的恒等变形••韦达定理公式•韦达定理:两根之和等于b/a,两根之差等于c/a. •x1*x2=c/a•x1+x2=b/a•韦达定理说明了一元二次方程中根和系数之间的关系。

利用韦达定理解一元二次方程

利用韦达定理解一元二次方程

利用韦达定理解一元二次方程韦达定理,听上去是不是有点复杂?别担心,我们来把它捋一捋,轻松聊聊一元二次方程。

大家都知道,一元二次方程的标准形式就是ax² + bx + c = 0。

这玩意儿其实就像生活中的一场闹剧,总是让人觉得扑朔迷离,想要找到解决的办法。

我们在解方程时,像在追一场影子,心里想着:这根本就没有线索啊!但是,韦达定理就像是那一束闪亮的光,带我们走出了迷雾。

韦达定理到底是什么呢?简单来说,它告诉我们,方程的两个根加起来等于 b/a,两个根的乘积等于 c/a。

这句话听上去有点抽象,但咱们可以把它想象成一对神奇的双胞胎,他们的性格和命运都跟这个方程紧紧相连。

就好比你和你的小伙伴,一起玩游戏,最后的结果可不是由单独一个人决定的,而是你们的默契和配合。

韦达定理就是在告诉我们,根与系数之间的那种默契,简直是亲密无间,密不可分。

想象一下,如果我们有一个方程2x² 8x + 6 = 0,来试试这位神奇的韦达老师。

我们先算出这个方程的根,别急,这里可以用公式法,或者简单点直接套用韦达定理。

咱们先看看根的和,也就是 (8)/2 = 4,然后根的乘积就是 6/2 = 3。

这两个数字简直就像是探险中的藏宝图,根与根之间的关系在这里呼之欲出。

好啦,假设这两个根就是 a 和 b。

你会发现 a + b = 4,而 ab = 3。

咱们把这个方程写成 (x a)(x b) = 0,这样就能轻松得出结果了。

是不是感觉特别简单?真的是很酷啊,韦达定理简直就像一个老朋友,总是能在关键时刻给你提个醒。

再举个例子,想象一下你在超市里选水果,买了两个苹果,价格是 3 元和 5 元。

你把这两个价格加起来就是 8 元,乘起来就是 15 元,这样你就能知道自己花了多少钱,买了多少东西。

这就跟韦达定理一样,帮助你快速理解各种信息。

生活中也有很多方程,比如我们在计划一个派对,预算是 1000 元,邀请了 10 个人。

如果每个人的花费是 x,那就可以用x² 10x + 100 = 0 来表示这件事。

初三数学第2讲韦达定理,一元二次方程应用

初三数学第2讲韦达定理,一元二次方程应用

第2讲 一元二次方程韦达定理的应用、一元二次方程的应用一、知识要点1. 一元二次方程一般式: ( , )的两根是:--==b b x a a 122,2--==b b x a a22 注意:(根的判别式)当2=b -ac ∆4>0时,方程有两个不相等的实根,当2=b -ac ∆4=0时,方程有两个相等的实根,当2=b -ac ∆4<0时,方程无实根。

2.韦达定理:若x 1,x 2是方程++=ax bx c 20的两个实根,则2=b -0ac ∆≥4 且b +=-a x x 12,c =ax x ⋅12 3. 为什么是0.618(1)什么叫黄金比线段AB 上一点C 分线段AB 成两条线段AC ,BC (AC>BC ),若AB AC =AC BC ,则C 点叫线段AB 的黄金分割点,其中ABAC 叫黄金比,其值为0.618。

(2)列一元二次方程解应用题的一般步骤一、审题;二、设求知数;三、列代数式;四、列方程;五、解方程;六、检验;七、答二、例题和练习例1 已知方程2-+=x x k 240(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程无实数根;变式练习已知a 、b 、c 是三角形的三边,则方程2(a+b)x ++(a+b)=0cx 2的根的情况是( )A.没有实数根B.有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根例2 关于x 的方程2-(+)+-1=x m x m 224120有两个相等的实数根,求m 的值变式练习1 关于x 的方程2-(+)+-1=x m x m 224120有两个实数根,求m 的取值范围变式练习2 (北京海淀九年级上学期期中考试,17)已知关于x 的一元二次方程-2+2k-3=x x 20有两个不相等的实数根。

(1)求k 的取值范围(2)若k 为符合条件的最大整数,求此时方程的根。

例3 一块矩形的土地,长是48m ,宽是24m ,要在它的中央划一块矩形的草地,四周铺上花砖路,路面宽都相等,草地占去矩形土地的59,则花砖路面的宽为 。

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根一、关于韦达定理的性质1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有x 1+x 2=-b a , x 1x 2=c a. 2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a不妨假设 x 1=-b +b 2-4ac 2a , x 2=-b -b 2-4ac 2a不难得出 x 1+x 2=-b a , x 1x 2=c a. (法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式) 按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0对比一元二次方程的一般式ax 2+bx +c =0,得b =-a (x 1+x 2),c =ax 1x 2,∴ x 1+x 2=-b a , x 1x 2=c a. 3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q .(二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0. 4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系.二、利用韦达定理求一元二次方程的根例如,求一元二次方程x 2―22x ―6=0的根.很明显,根据我们所学习惯,首选方法是十字相乘法.(法一)因式分解,得(x-32)(x +2)=0,解得,x1=32,x2=- 2.当然,利用十字相乘法很难凑数时,我们就会选用求根公式法.(法二)a=1,b=-22,c=-6,∴b2-4ac=8+24=32,∴x=-b±b2-4ac2a=22±422=2±22,于是有x1=32,x2=- 2.结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十分灵活,若每一个系数都是整数,且满足x2-(x1+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.(法三)已知方程x2―22x―6=0,根据韦达定理有x1+x2=22,x1x2=―6.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=2+a,x2=2-a,(满足条件x1+x2=22)且(2+a)(2-a)=―6. (满足条件x1x2=―6)于是有2-a2=―6,则a2=8,因此a=22∴x1=2+22=32,x2=2-22=- 2.上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数. 观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用. 当然我们也可以看以下例子.例1:解方程x2―6x―25=0,根据韦达定理有x1+x2=6,x1x2=―25.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x=3+a,x2=3-a,(满足条件x1+x2=6)1且(3+a)(3-a)=―25. (满足条件x1x2=―25)于是有9-a2=―25,则a2=34,因此a=34∴x1=3+34,x2=3-34.例2:解方程x2+24x―63=0,根据韦达定理有x1+x2=-24,x1x2=―63.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x=-12+a,x2=-12-a,(满足条件x1+x2=-24)1且(-12+a)(-12-a)=―63. (满足条件x1x2=―63)于是有144-a2=―63,则a2=207,因此a=207∴x1=-12+207,x2=-12-207.例3:解方程x2―14x+48=0,根据韦达定理有x1+x2=14,x1x2=48.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x=7+a,x2=7-a,(满足条件x1+x2=14)1且(7+a)(7-a)=48. (满足条件x1x2=48)于是有49-a 2=48, 则a 2=1, 因此a =1∴ x 1=7+1=8, x 2=7-1=6.例4:解方程x 2+18x +40=0,根据韦达定理有x 1+x 2=-18,x 1x 2=40.在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得 x 1=-9+a , x 2=-9-a , (满足条件x 1+x 2=-18)且 (-9+a )(-9-a )=40 (满足条件x 1x 2=40)于是有81-a 2=40, 则a 2=41, 因此a =41∴ x 1=-9+41, x 2=-9-41.通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如例5:解方程2x 2+9x ―5=0,(法一)根据韦达定理有x 1+x 2=-92,x 1x 2=―52. 在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得x 1=-94+a , x 2=-94-a , (满足条件x 1+x 2=-92) 且 (-94+a )(-94-a )=―52. (满足条件x 1x 2=―52) 于是有 8116-a 2=―52, 则a 2=12116, 因此a =114∴ x 1=-94+114=12, x 2=-94-114=-5. (法二)a =2,b =9,c =-5,∴ b 2-4ac =81+40=121,∴ x =-b ±b 2-4ac 2a =9±114,于是有x 1=12, x 2=-5. 当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.。

一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理)求代数式的值 求待定系数 一元二次 韦达定理 应用 构造方程方程的求 解特殊的二元二次方程组 根公式 二次三项式的因式分解【内容分析】韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:(1)定理成立的条件0∆≥ (2)注意公式重12bx x a+=-的负号与b 的符号的区别 根系关系的三大用处 (1)计算对称式的值例 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.说明:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-, 2121212||()4x x x x x x -=+-2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【课堂练习】1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=3.已知方程2x 2-3x+k=0的两根之差为212,则k= ;4.若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;5.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;6. 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值: (1)x 12x 2+x 1x 22(2) 1x 1 -1x 27.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值:2221x 1x 1(2)构造新方程理论:以两个数为根的一元二次方程是。

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理编号:撰写人:一、一元二次方程的解法:例题1:用配方法、因式分解、公式法解方程:x2-5x+6=0【总结】以上的三种方法之中,最简单的方法是哪一种?【一元二次方程的解法总结】1、直接法:对于形如—x 2=a 的方程,我们可以用直接法。

方程的解为x=推论:对于形如(x+a)2=b 的方程也是用直接开方的方法。

注意点:①二次项的系数为1,且a ≥0②假如a 为根式,注意化简。

例1:解方程:5x 2=1例2:解方程:x 2= 4-例3:解方程:4x 2+12x+9=122、配方法:对于形如:ax 2+bx+c=0〔其中a ≠0〕的方程,我们可以采用配方法的方法来解。

步骤:①把二次项的系数化为1.两边同时除以a ,可以得到:X 2+ b a x+ c a=0 ②配方: 〔x+ 2b a 〕2+c- 2()2b a=0 ③移项: 〔x+ 2b a 〕2=2()2b a-c ④用直接法求出方程的解。

X=-2b a注意点:解除方程的解后,要检查根号内是否要进一步化简。

例:解方程:x 2+x=13、公式法:对于形如:ax 2+bx+c=0〔其中a ≠0〕的方程,我们也可以采用公式法的方法来解。

根据配方法,我们可以得到方程的解为:X=-2b a 进一步变形,就可以知道:形如:ax 2+bx+c=0〔其中a ≠0〕的方程的解为:x 1x 2 注意点:① 解除方程的解后,要检查根号内是否要进一步化简。

② 解题步骤要标准。

例:解方程:x 2+5x+2=0除了以上几种教材里的方法,一元二次方程还有其他的解法。

4、换元法对于一个方程,假如在构造上有某种特殊的相似性,可以考虑用换元法;或者,当这个题目有比拟复杂的根式,换元法也是可以考虑的解法。

例1:解方程:〔x2+5x+2〕2+(x2+5x+2)-2=0例2:15、有理化方法:对于一个方程,假如含有两个根式,并且这两个根式内的整式的和或者差是特定的数值,那就可以考虑用有理化的方法。

课次三一元二次方程与韦达定理

课次三一元二次方程与韦达定理

(4)开平方法解方程.
2x 4x 1 0
2
用配方法解一般形式的一元二次方程 ax2+bx+c=0
x b
(a≠0) 叫做求根公式
b 2 4ac 2a
用求根公式解一元二次方程的方法叫做公式法.
解法四:公式法
用公式法解一元二次方程的一般步骤:
1.把方程化成一般形式,并写出a,b,c的
例1、已知一元二次方程
的两根为x1,x2 ,
x 4x 3 0 则x1x2等于
2

例2、已知一元二次方程
x 5 x m 0,
2

则x1 x2
例3关于 x的方程ax
2
3a 1x 2a 1 0

有两个不相等的实根 x1 , x2 , 且x1 x1 x2
4 a 2 求1 2 a 4 a
(3)6t2 -5=13t
(4)2x2+5x=3
2 2 2 例2 用公式法解方程: x x 0 3 3
例3.解方程:(x-2)(1-3x)=6.
例4 用公式法解方程: x 3 2 3x
2
二、根的判别式及应用 (1)判定一元二次方程根的情况.
b 4ac
2
△>0有两个不相等的实数根; △=0有两个相等的实数根; △<0没有实数根; △≥0有实数根. (2)确定字母的值或取值范围.
例 9、 已知关于x的方程x
2
2(m 1) x m 0.
2
(1)当m取什么值时,原方程没有实数根. (2)对m选取一个合适的非零整数,使原方程有两个实数根, 并求这两个实数根的平方和.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程韦达定理
一元二次方程韦达定理
一元二次方程,即用一个变量,表示二次的方程。

它的通解可以表示为ax2 + bx + c = 0(a≠0)。

韦达定理是一个重要的数学定理,他的公式为:
x = [-b +- √(b2 - 4ac)]/2a
该定理可以求解一元二次方程的两个实数根,其中a、b、c为系数,它们都是实数,x为实根。

该定理的本质是根据一元二次方程求解时,以b为中心,构成一个正方形,用其求得方程的实数根。

该定理可以用来解决方程的实数根,具体的,可以分为以下几种情况:
(1)b2 - 4ac > 0,这样有两个不相等的解
(2)b2 - 4ac = 0,这样有一个实数解
(3)b2 - 4ac < 0,这样没有实数解
韦达定理的应用非常广泛,它可以表示一元二次方程的两个实数根,还可以应用到物理中,例如轨道运动、动力学及研究分析等,从而解决实际的科学问题。

- 1 -。

相关文档
最新文档