surf特征点的匹配过程
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
surf特征点的匹配过程
Surf特征点的匹配过程包括以下步骤:
1. 提取特征点:通过Surf算法提取两幅图像中的特征点。
Surf算法通过计算图像中的Hessian矩阵的行列式来检测潜在的特征点,然后通过计算特征点的主方向和构建特征描述子。
2. 计算特征描述子:对于每个特征点,Surf算法会将其周围的图像区域划分为若干个子区域,然后提取每个子区域的Haar小波响应。
这些Haar小波响应将组成特征描述子。
通过这种方式,每个特征点都能够具有一个128维的特征描述子。
3. 特征点匹配:通过计算两幅图像中特征点的相似度来进行匹配。
常用的方法是计算两个特征描述子之间的欧氏距离或是余弦相似度。
对于每个特征点,选择在另一幅图像中与其具有最小距离的特征点作为匹配点。
4. 特征点筛选:根据匹配点之间的距离进行筛选,排除一些不太可信的匹配点。
常用的方法是计算匹配点的距离与次近距离之间的比值,如果这个比值小于一个给定的阈值,就将匹配点保留下来。
5. 可选的优化步骤:可以通过使用RANSAC(随机抽样一致性)算法进一步筛选匹配点,消除由于噪声或误识别造成的错误匹配。
RANSAC算法会随机选择一组匹配点,并计算这些匹配点与模型之间的误差,然后根据误差进行筛选,最后得到更准确的匹配结果。
通过以上步骤,Surf特征点的匹配过程可以得到两幅图像中匹配点的对应关系,从而进行图像配准、目标跟踪等应用。