第3讲 排列组合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 排列组合
1.分类加法计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2
m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =++
+种不同的方法.又称加法原理.
如图,从甲地到乙地有3条公路,2条铁路,某人要从甲地到乙地,共有多少种不同的方法?
2.分步乘法计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.
如图,从甲地到乙地有3条道路,从乙地到丙地有2条道路,那么从甲地经乙地到丙地共有多少种不同的方法?
【教师备案】因为我们在必修3的时候讲过计数原理,所以本讲我们在讲计数原理之前给学生复习一下加法和乘法
原理,老师可以借助于上边的两个图让学生从直观理解加法和乘法原理,讲完两个原理之后就可以让学生做例1.
【例1】 两个原理
⑴一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. ① 从两个口袋中任取一封信,有多少种不同的取法? ②从两个口袋里各取一封信,有多少种不同的取法?
③ 把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? ⑵乘积()()()a b c d m n x y z ++++++展开后共有多少项?
【解析】 ⑴①任取一封信,不论从哪个口袋里取,都能单独完成这件事,因此是两类办法,用分类计
数原理,共有549+=种.
②各取一封信,不论从哪个口袋中取,都不能算完成了这件事,因此应分两个步骤完成,由分步计数原理,共有5420⨯=种.
③若以邮筒装信的可能性考虑,第一个邮筒有10种可能性,即可能装入0,1,2,…,9封信等不同情况.但再考虑第二个邮筒时,装信的情况要受到第一个邮筒装信情况的影响,非常麻烦;若以每封信投入邮筒的可能性考虑,第一封信投入邮筒有4种可能,第二封信仍有4种可能……第九封信还有4种可能.由分类计数原理可知,共有94种不同的放法. ⑵由分步计数原理得一共有42324⨯⨯=项.
将三封不同的信投入五个信箱里,共有几种投信方法?
【解析】 125种
3.1课前回顾
经典精讲
知识点睛
丙
乙
甲
乙
甲
铁路2铁路1
公路3公路2公路1
【思路】第一封信可投入5个信箱中任一个,故有5种投法;第二、三封信也可随机地投入5个信箱
中的任一个,各有5种投法,依乘法原理,共有35555125⨯⨯==种投法.
【错因分析】误区:分步,第一个信箱可以不放信,放1封,放2封,放3封,共有4种不同的放法,
所以共有54种投信方法.
错误原因是对完成一件事的过程认识模糊,且对象选定不准,若第一步三封信都在第一个信箱里,则事件已完成,不需后续几步;若五步都没有放信,则五步全做完,事件还未完成.
【备选】 ⑴ 5名学生从3项体育项目中选择参赛,若每一名学生只能参加一项,则有多少种不同的参
赛方法?
⑵ 若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有几种不同情
况(没有并列冠军)? 【解析】 ⑴每名学生都可从3项体育项目中选1项,有3种选法,故5名学生的参赛方法有53种;
⑵每个冠军皆有可能被5名学生中任1人获得,3个冠军依次被获得的不同情况有35种.
1.排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中
取出m 个元素的一个排列.(其中被取的对象叫做元素)
【教师备案】在日常生活中我们经常遇到下面一些问题,这些问题有什么共同特征呢? 问题1:3名同学排成一行照相,有多少种排法?
方法1(枚举法)把3名同学用A B C ,,作为代号,于是有以下6种排法:
ABC ACB BCA BAC CAB CBA ,,,,, 方法2(分步计数)A B C ,,三人排成一行,可以看作将字母
A B C ,,顺次排入图中的方格中.首先排第一个位置:从 A B C ,,中任选1个人,有3种方法;其次排第二个位置:从
剩下的2个人中任选1人,有2种方法;最后排第三个位置:只
有1种方法.根据乘法原理,3名同学排成一行照相,共有3216⨯⨯=种排法.
问题2:北京、广州、南京、天津4个城市相互通航,应该有多少种机票? 方法1(枚举法)列出每一个起点和
终点情况,如图所示:
所以一共有12种机票.
方法2(分步计数)我们按照始点、终点站的顺序进行排列:
第一步:先确定起始站,起始站有4种选择方法;第二步:再确定终点站,对应于起始站的每一种选择,终点站都有3种选择方法.根据乘法原理,共有4312⨯=种机票.
问题3:从4面不同颜色的旗子中,选出3面排成一行作为一种信号,能组成多少种信号:
知识点睛
3.2排列
广州
天津广州
北京
解决这个问题可以分三步进行:
第一步:先选第1面旗子,有4种选择方法;第二步:在剩下的3种颜色中,再选第2面旗子,有3种选法;第三步:在剩下的2种颜色中,选最后一面旗子,有2种选法.根据乘法原理,共有43224⨯⨯=种选法,而每种选法对应一种信号,故共能组成24种信号
在上面讨论的问题中,问题1是从3个不同元素中取出3个元素的排列,问题2是从4个不同元素中取出2个元素的排列问题,问题3是从4个不同元素中取出3个元素的排列问题.
【挑战五分钟】写出:⑴从4个元素a b c d ,,,中任取2个元素的所有排列;
⑵从5个元素a b c d e ,,,,中任取3个元素且包含e 的所有排列. 【解析】 ⑴ab ac ad bc bd cd ,,,,,,ba ca da cb db dc ,,,,,
⑵从排列的直观意义可以看出是从⑴中的每个排列加一个e 就可以了,而e 又可以随便放,所以共有:abe ace ade bce bde cde ,,,,,,bae cae dae cbe dbe dce ,,,,,,
aeb aec aed bec bed ced ,,,,,,bea cea dea ceb deb dec ,,,,,,
eab eac ead ebc ebd ecd ,,,,,,eba eca eda ecb edb edc ,,,,,
2.排列数:从n 个不同的元素中取出()m m n m n +∈N ≤,,个元素的所有排列的个数,
叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.
3.排列数公式:A (1)(2)
(1)m n n n n n m =---+,m n *∈N ,,并且m n ≤.从形式上看排列数A m n 等于从n 开始的
m 个数相乘,比如:39A 987=⨯⨯是从9开始的3个数相乘.
【教师备案】在讲排列时我们讲了几个排列问题,那么,对于一般的排列问题如何计算所有排列的个数呢?
我们把从n 个不同的元素中任意取出()m m n ≤个元素的排列,看成从n 个不同的球中选出m 个球,放
第2步:从剩下的1n -个球中选出一个放入第2个盒子,有1n -种选法;
第3步:从剩下的2n -个球中选出一个放入第3个盒子,有2n -种选法;
第m 步:从剩下的()1n m --个球中选出一个放入第m 个盒子,有()1n m --种选法.
根据乘法原理,一共有()()
()121n n n n m ----⎡⎤⎣⎦种放法.
4.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.
1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.
()A 121!n n n n n =⨯-⨯⨯⨯= ()!
A (1)(2)
(1)!
m n n n n n n m n m =---+=-. 【教师备案】我们可以对A (1)(2)
(1)m
n n n n n m =---+进行变形:
A (1)(2)(1)m n n n n n m =---+
()()()()()()()()121121
!121
!n n n n m n m n m n n m n m n m ⋅-⋅-⋅
⋅-+⋅-⋅--⋅
⋅⋅=
=
-⋅--⋅
⋅⋅-
【教师备案】老师在讲排列时,建议先讲排列问题,什么是排列,让学生从直观上理解排列,多举几个小例子,具
体例子见上边排列问题中的教师备案,然后让学生写排列,这时就可以让学生做【挑战五分钟】了.学生会写所有的排列之后,那排列数是多少呢?不可能每次做题时都把所有的排列写出来,然后数一下,这时,我们就需要排列数的公式了,所以老师就可以给学生讲解排列数公式,讲完排列数之后,要让学生熟练的运用排列数公式,这时,就可以做例2.学生理解排列并知道排列数如何计算后,就要
从直观理解排列,具体见例3.最后讲数字问题,在讲数字问题时,先以【铺垫】为例,给学生讲一个最简单的排数字问题,然后再讲例4,含有0的排数字问题.
【例2】 计算排列数
⑴计算310
A ,66
A ,428
8
A 2A -,5488
85
89
2A 7A A A +- ⑵求证:1
1A A A m m m n n n m -+-=. ⑶解方程322A 100A x x =.
【解析】 ⑴3
10A 1098720=⨯⨯=,66A 654321720=⨯⨯⨯⨯⨯=,
4288A 2A 87652871568-=⨯⨯⨯-⨯⨯=,
548885
892A 7A 28765478765
A A 8765432198765+⨯⨯⨯⨯⨯+⨯⨯⨯⨯=-⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯8765(87)18765(249)
⨯⨯⨯⨯+==⨯⨯⨯⨯-. ⑵ 解法一:∵1(1)!!A A (1)!()!m m
n n n n n m n m ++-=
-+--!11()!1n n n m n m +⎛⎫
=⋅- ⎪-+-⎝⎭
1
!!A ()!(1)(1)!
m n n m n m m n m n m n m -=⋅=⋅=-+-+-,
∴1
1A A A m m m n n n
m -+-=. 解法二:可以从排列的直观意义解释,1A m n +表示从1n +个元素中取m 个元素的排列个数,其中不含某
元素1a 的有A m n 个,故含1a 的排列共有1A A m m n n +-种;
含有1a 的可这样进行排列:先排1a ,有m 种排法,再从另外n 个元素中取出1m -个元素排在剩下的1m -个位置,有1A m n -种排法,故含1a 的排法有1A m n m -种.所以11A A A m m m n n n
m -+-=. ⑶ 原方程可化为2(21)(22)100(1)x x x x x --=-
∵0x ≠且1x ≠,∴2125x -=
解得13x =,经检验13x =是原方程的根.
【备选】学生刚接触排列,所以对排列数的计算还不是很熟悉,要求学生加强训练,老师可以从下面
的题中挑选几个让学生练练. 计算下列各题:
⑴25
A =_____,⑵46A =____,⑶48A =____,⑷210A =____,⑸410A =____, ⑹332A =____,⑺55A =____,⑻56A =____,⑼88A =_____,⑽43
99A A -=____, ⑾32109A A -=____,⑿32545A 4A +=_____,⒀42
88A 4A -=____,
⒁12344444A A A A +++=_____,⒂1148A A =_____,⒃1299
A A =_____,⒄8
12
712
A A =_____,
⒅731251212
2A A A =_____,⒆3
7107
A A 10!=_____,⒇5410105
4
994A A A A -=-____ 【解析】 ⑴25
A 5420=⨯=;⑵46A 6543360=⨯⨯⨯=;⑶4
8A 87651680=⨯⨯⨯=; ⑷210A 10990=⨯=;⑸410A 109875040=⨯⨯⨯=;⑹332A 232112=⨯⨯⨯=; ⑺55A 54321120=⨯⨯⨯⨯=;⑻5
6A 65432720=⨯⨯⨯⨯=;
⑼88A 8765432140320=⨯⨯⨯⨯⨯⨯⨯=;⑽4399A A 98769872520-=⨯⨯⨯-⨯⨯=; ⑾32109A A 109898648-=⨯⨯-⨯=;⑿32
545A 4A 5543443348+=⨯⨯⨯+⨯⨯=;
经典精讲
⒀42
88A 4A 87654871456-=⨯⨯⨯-⨯⨯=;
⒁12344444A A A A 443432432164+++=+⨯+⨯⨯+⨯⨯⨯=;⒂1148A A 4832=⨯=; ⒃1
299
A A 998648=⨯⨯=;⒄8
12712A 12111098765
5A 1211109876
⨯⨯⨯⨯⨯⨯⨯=
=⨯⨯⨯⨯⨯⨯; ⒅
731251212
2A A 21211109876543
1A 121110987654321⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯; ⒆37107A A 10987654321110!10987654321⨯⨯⨯⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯⨯⨯⨯;
⒇54101054
994A A 410987610987115
A A 98765987612
-⨯⨯⨯⨯⨯-⨯⨯⨯==-⨯⨯⨯⨯-⨯⨯⨯.
【铺垫】⑴一家有四口人,每年照一张全家福,他们突然想到一件事情,想让每年这四个人的排列方式都不完全相
同.比如今年是ABCD ,明年就可以是ABDC .那么这家人的 “全家福”计划最多可以实行多少年呢? ⑵这家人掐指一算,发现很快就不能继续拍了,可能过了某年之后,无论怎么排列都会和往 年重复,于是这家人决定要一个小孩,这样又可以多拍几年,那么假设有了一个孩子之后, “全家福”计划最多可以实行多少年呢? 【解析】 ⑴若一家有4口人,则能得到每张全家福每个人的位置都不相同的照片,因为4个人全排有
44A 24=种情况,也就是24年内可以不重复,以后就会出现重复,所以“全家福”计划最多实行24年.
⑵5个人全排有55A 120=种情况,所以“全家福”计划最多实行120年.
【例3】
从直观上理解排列
⑴从4种不同的蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少 种不同的种植方法?
⑵在某乒乓球团体赛中,有一方派了4名运动员参赛,采取三局两胜制,前两局单打,最后一局双打,每个运动员只出场一次,则有几种出场顺序?
【追问】在2012年的伦敦奥运会中,参加乒乓球团体赛的有3个人,每名运动员出场两次,按照五局三胜
制,一、二、四、五场单打,第三场双打,并且比赛顺序是:第一场:A ;第二场:B ;第三场:
C A +或B ;第四场:A 或B ;第五场:C ;且如果参加了双打比赛,就不能参加后面的单打比
赛;不参加双打比赛的运动员需要参加后面的单打比赛.现我们派张继科、王皓、马龙出场,则有多少不同的方法排定他们的出场顺序?
【解析】 ⑴将4种不同的蔬菜品种看作4个不同的元素,则本题即为从4个不同元素中任取3个元素
的排列问题,所以不同的种植方法共有34A 43224=⨯⨯=种
⑵因为前两局是单打,所以从参赛的4名运动员中取2名运动员去打单打比赛,最后两个人打双打比赛就可以了,所以不同的出场顺序共有24A 4312=⨯=种
【追问】由比赛规则和比赛顺序我们可以知道三个人分别打了一场单打比赛,所以有33A 6=种出场顺序;又因为第三场的双打有2种情况,它唯一决定了第四场的情况,所以,一共有332A 12⨯=种出场顺序.
提高班学案1
【拓1】有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?
【解析】 从5本不同的书中选出3本分别送给3名同学的一种选法,对应于从5个元素中取出3个元素的一个排列,
因此,不同送法的种数是35A 54360=⨯⨯=种
尖子班学案1
【拓2】在2012的韩国足球联赛中共有15支球队参加,每队都要与其余各队在主、客场分别比赛1次,共要进行多
少场比赛?
【解析】 由于任何两队间进行1次主场比赛与1次客场比赛,所以一场比赛相当于从15个不同元素中任取2个元素
的一个排列.因此总共进行的比赛场次是2
15
A 1514210=⨯=
目标班学案1
【拓3】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、
乙二人不能担任文娱委员,则不同的选法共有____种.(用数字作答) 【解析】 36
文娱委员有3种选法,则安排学习委员、体育委员有24A 12=种方法.由分步乘法计数原理,共有31236⨯=种选法.
【铺垫】用12345,,,,这五个数字:
⑴可以组成多少个数字允许重复的五位数?
⑵可以组成多少个数字不允许重复的五位数? ⑶可以组成多少个数字不允许重复的三位数?
【解析】 ⑴由于数字允许重复,故每个位置的数字都有5种选法.因此所求五位数共有553125=个;
⑵由于数字不允许重复,故每个位置的数字全排就可以了.因此所求五位数共有55A 120=个;⑶由于数字不允许重复,故每个位置的数字从5个数字中选出3个全排就可以了.因此所求 三位数共有35A 60=个.
【例4】
数字问题
用0,1,2,3,4,5这六个数字:
⑴可以组成多少个数字允许重复的六位数? ⑵可以组成多少个数字不允许重复的六位数? ⑶可以组成多少个数字允许重复的五位数? ⑷可以组成多少个数字不允许重复的五位数?
【解析】 ⑴先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字允许重复,故其它位
置的数字都有6种选法.因此所求六位数共有55638880⨯=个.
⑵先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字不允许重复,故其它位置的数字全排就可以了.
因此所求六位数共有555A 600=个.
⑶先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字允许重复,故其它位 置的数字都有6种选法.因此所求五位数共有4566480⨯=个.
⑷先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字不允许重复,故其它位置的数字从剩余的5个数字中选出4个全排就可以了.
因此所求五位数共有455A 600=个.
提高班学案2 【拓1】用01234,,,,五个数字:
⑴可组成多少个无重复数字的五位数?
⑵可组成多少个无重复数字的五位奇数?
【解析】 ⑴ 方法一:考虑特殊位置“万位”,从1234,,,中任选一个填入万位,共有4种填法,其
余四个位置,4个数字全排列为44A ,故共有4
44A 96⋅=个.
方法二:考虑特殊元素“0”,先排0,从个、十、百、千位中任选一个位置将0填入,有14A 种填法,
然后将其余4个数字在剩余4个位置上全排列为44A 种,故共有1444A A 96⋅=个;
⑵ 考虑特殊位置个位和万位,先填个位,从13,中选一个填入个位有12A 种填法,然后从剩余3个非0数
中选一个填入万位,有13A 种填法,包含0在内还有3个数在中间三个位置上全排列,排列数为33A ,故
共有113233A A A 36⋅⋅=个.
尖子班学案2
【拓2】 用0,1,2,3,4,5这六个数字,
⑴可以组成多少个数字不允许重复的五位数的偶数?
⑵可以组成多少个数字不允许重复且能被5整除的五位数?
【解析】 ⑴分两类:个位是0时,有5432120⨯⨯⨯=个;个位是2或4时,由于万位不能为0,所以
万位有4种选法;千位有4种选法;百位有3种选法;十位有2种选法,故共有24432192⨯⨯⨯⨯=个,所以可组成的五位偶数有120192312+=个
⑵分两类:个位是0时,有5432120⨯⨯⨯=个;个位是5时,由于万位不能为0,所以
万位有4种选法;千位有4种选法;百位有3种选法;十位有2种选法,故共有443296⨯⨯⨯=个,所以组成能被5整除的五位数有12096216+=个
目标班学案2
【拓3】 用0,1,2,3,4,5这六个数字,
⑴组成没有重复数字的五位数中十位数字大于百位数字的有多少个? ⑵组成没有重复数字的五位数,由小到大排列,21350是第多少个数?
【解析】 ⑴由题意可知,组成没有重复数字的五位数共有600个,又∵排成的五位数中十位大于百位
的和十位小于百位的数字一样多.∴共有1
6003002
⨯=个
⑵ 万位是1的五位数有4
5A 120=个;万位是2且千位为0的五位数有34A 24=个;万位是2且
千位为1百位为0的五位数有2
3
A 6=个;万位是2且千位为1百位为3十位为0或4的五位数有122A 4⨯=个.因此,在21350的前面共有154个数,所以21350是第155个数
1.组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的
一个组合.
【教师备案】2000年8月,华研国际搭上《电视大国民》举办储备新人的“宇宙2000实力美少女争霸战”,上千
名爱唱歌的小女生站上舞台,接着淘汰,最后脱颖而出了三位音域不一、个性迥异的新秀——任家萱()S 、田馥甄()H 和陈嘉桦()E .后来将这三个人组成了一个组合叫SHE ,在每场演唱会上,她们都会边唱边跳,但是无论她们在台上怎么站,这个组合都叫做SHE ,不会叫HES 或者ESH .所以组
合与顺序没有关系.
【挑战五分钟】写出:⑴从4个元素a b c d ,,,中任取2个元素的所有组合;
⑵从5个元素a b c d e ,,,,中任取3个元素且包含e 的所有组合.
【解析】 ⑴先画一个示意图
知识点睛
3.3组合
d
c
b
a
b
d
c d
由此即可写出所有的组合:ab ac ad bc bd cd ,,,,,
⑵从组合的直观意义可以看出是从⑴中的每个组合加一个e 就可以了,所以共有:abe ace ade bce bde cde ,,,,,
2.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出
m 个元素的组合数,用符号C m n 表示.
3.组合数公式:(1)(2)(1)!
C !!()!
m n n n n n m n m m n m ---+=
=
-,*m n ∈N ,,并且m n ≤. n m ()个元素的计数问题,它们的差别是:排列考虑元素
顺序,组合不考虑元素顺序.前面我们已经学习了如何计算排列数,下面,我们看一看能否通过排列数计算组合数.
先看一个简单情况:从3个元素a b c ,,中任取2个元素的组合有ab ac bc ,,3种情况,再对每一种组合的2个元素进行排列,这样,就可以得到从3个元素中取2个元素的所有排列(如图).
从上面的分析可以看出,“从3个不同的元素中选出2个元素进行排列”这件事,可以分两步进行:
第一步:从3个不同元素中取出2个元素,一共有2
3C 种取法;
第二步:把取出的2个元素进行排列,一共有22A 种排法.根据乘法原理,我们得到“从3个不同的元素
中选出2个元素进行排列”一共有2
23
2
C A ⋅种排法,即2223
3
2
A C A =⋅.由此我们可以得出:2
233
22A 32
C A 2!
⨯==.
一般地,考虑C m n 与A m
n 的关系:把“从n 个不同的元素中选出m ()m n ≤个元素进行排列”这件事,分
两步进行:
第一步:从n 个不同元素中取出m 个元素,一共有C m n 种取法; 第二步:把取出的m 个元素进行排列,一共有A m m 种排法.
根据乘法原理,我们得到“从n 个不同的元素中选出m ()m n ≤个元素进行排列”一共有C A m m n m ⋅种排
法,即A =C A m
m m n
n
m
⋅,由此我们可以得出:()()()
121A C =A !m
m n n
m m
n n n n m m ---+=,因为()
!
A !m n n n m =
-,
所以上面的组合数公式还可以写成:()!
C !!
m n n m n m =
-
4.组合数的两个性质:性质1:C C m n m -=;性质2:1
C C C m m m -=+.(规定0C 1n =)
2
个小题进行讲解:
性质1:计算“从10个人中选出6人参加比赛”与“从10个人中选出4人不参加比赛”的方法数. 【解析】每次选出6人相当于剩下4人,所以,选出6人参加比赛和选出4人不参加比赛的方法数是一
样的.即64
1010C C =
性质2:从10名战士和1名班长这11人中选出5人参加比武,一共有多少种方案?
【解析】一方面,从11人中选出5人参加比武,一共有5
11C 种方案.
另一方面,选出的5人可以分为两类:
第一类:含有班长,一共有4
10C 种方案; 第二类:不含班长,一共有510C 种方案. 依据加法原理,一共有45
1010C +C 种方案. 由此,我们得到545
111010C C +C =.
【教师备案】老师在讲组合时,建议先讲组合问题,什么是组合,让学生从直观上理解组合,多举几个小例子,具
体例子见上边组合问题中的教师备案,然后让学生写组合,这时就可以让学生做【挑战五分钟】了.学生会写所有的组合之后,那组合数又是多少呢?同样也不可能每次做题时都把所有的组合写出来,然后数一下,这时,我们就需要组合数的公式了,所以老师就可以给学生讲解组合数公式,讲完组合数之后,要让学生熟练的运用组合数公式,这时,就可以做例5.学生理解组合并知道组合数如何计算后,就要从直观理解组合,具体见例6.
【例5】 计算组合数
⑴计算:4
3107C C ,;239999C C +.
⑵解方程:32
111C 24C x x +=.
【解析】 ⑴41010987C 2104321⨯⨯⨯==⨯⨯⨯,37765C 35321
⨯⨯=
=⨯⨯,233
99991001009998C C C 161700321⨯⨯+===⨯⨯ ⑵原方程可化为!(1)!
11243!(3)!2!(1)!
x x x x +⨯=⨯
-- 整理得211105500x x --= 解得10x =或5
11
x =-(不合题意舍去).
经检验10x =是原方程的根.(应强调解组合数方程要验根)
【备选】学生刚接触组合,所以对组合数的计算也还不是很熟悉,要求学生加强训练,老师可以从下
面的题中挑选几个让学生练练. 计算下列各题:
⑴25
C =_____,⑵47C =____,⑶58C =____,⑷29C =____,⑸510C =____, ⑹315
C =____,⑺235C =____,⑻4850C =____,⑼98100C =_____,⑽4399C C -=____, ⑾32109C C -=____,⑿32545C 4C +=_____,⒀4288C 2C -=____,
⒁12344444C C C C +++=_____,⒂1148C C =_____,⒃1299
C C =_____,⒄8
12
712
C C =_____,
⒅731251212
2C C C =_____,⒆37
107
C C 10!=_____,⒇5410105
3
994C C C C -=-____ 【解析】 ⑴25
C 10=;⑵47C 35=;⑶58C 56=;⑷29C 36=;⑸510C 252=;⑹315C 455=;⑺235C 595=;⑻48
50C 1225=;⑼98100C 4950=;⑽4399C C 42-=;⑾32109C C 84-=;⑿32545C 4C 74+=;
⒀4288C 2C 14-=;⒁12344444C C C C 15+++=;⒂1148C C 32=;⒃1299
C C 324=;⒄8
12712C 5
C 8
=;
⒅731251212
2C C 15840C =;⒆37
107C C 1
10!30240=;⒇54101053
994C C 19C C -=-
【铺垫】李代沫在中国好声音的文化测试中,需从5个试题中任意选答3题,问:
⑴有几种不同的选题方法?
经典精讲
⑵若有一道题是必答题,有几种不同的选题方法?
【解析】 ⑴所求不同的选题方法数,就是从5个不同元素里取出3个元素的组合数,即35C 10=种
⑵因为已有一道题必选,所以只要在另外4道题中选2道,不同的选题方法有24C 6=种
【例6】
从直观上理解组合
⑴现有10名学而思高中数学教师,其中男教师6名,女教师4名 ①现要从中选2名去参加非诚勿扰,有多少种不同的选法? ②现要从中选出男、女教师各2名去参加,有多少种不同的选法?
【追问】假定这一期只有学而思派出去的两位男老师,台上24个女士(其中包括学而思派出去的两个女
老师),那么学而思的两位男老师去相亲,最终都成功且相亲对象不是学而思女老师的情况有多少种.
⑵甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有
____种.(用数字作答)
【解析】 ⑴①从10名教师中选2名去参加非诚勿扰的选法数,就是从10个不同元素中取出2个元素的
组合数,即2
10
C 45=种 ②从6名男教师中选2名的选法有2
6C 种,从4名女教师中选2名的选法有24C ,根据分步乘
法计数原理,因此共有不同的选法22
6
4C C 90=种 【追问】2221462⨯=. ⑵96
甲选2门有24C 6=种选法,乙、丙各有3
4C 4=种选法,由分步乘法计数原理可知,
共有64496⨯⨯=种选法.
解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,
同时要掌握一些常见类型的排列组合问题的解法:
①捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排
列,然后再给那“一捆元素”内部排列.
②插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.
【教师备案】排列组合的一些典型题型在本讲只讲捆绑法和插空法,其它的方法我们放到同步再去讲解,所以老
师可以先以【铺垫】为例,讲解捆绑和插空,然后让学生做例7,例7⑴是直接就可以看出捆绑和插空的,例7⑵从表面上看不出来是捆绑还是插空,但是仔细分析一下题就知道是插空.
【铺垫】2名女生、4名男生排成一排,问:
⑴2名女生相邻的不同排法共有多少种?
⑵2名女生不相邻的不同排法共有多少种?
【解析】
⑴因为2名女生必须相邻,所以可以将2名女生看成1个元素,与4名男生共5个元素排成一 排,不同的排法有55A 种.又因为2名相邻的女生有22A 种排法,因此不同的排法种数是52
52A A 1202240=⨯=
3.4排列组合的一些典型题型
经典精讲
知识点睛
11
⑵2名女生不相邻的排列可分2步完成:
第一步:将4名男生排成一排,有4
4A 种排法;
第二步:排2名女生,由于2名女生不相邻,于是可以在每2名男生之间及两端共5个位置中选出2个
排2名女生,有2
5A 种排法.根据分步计数原理,不同的排法种数是4
2
45A A 2420480=⨯=
【例7】 捆绑、插空
⑴求不同的排法种数:
①6男2女排成一排,2女相邻; ②6男2女排成一排,2女不能相邻; ③4男4女排成一排,同性別者相邻; ④4男4女排成一排,同性別者不能相邻.
⑵一排有九个座位,将六个人依次坐好,若每个空位两边都坐有人,共有多少种不同的坐法?
27
27A A 10080=.
②是 “不相邻”问题,可以用插空法直接求解.6男先排,再在7个空位中排2女,即用插空法解决:
62
67A A 30240=.
③是“相邻”问题,应先捆绑后排位:442442A A A 1152=.
④是 “不相邻”问题,可以用插空法直接求解: 441442A A A 1152=.
【点评】对于④很多学生会写成4445A A ,但是这种写法是错误的,因为当排完男生(或女生)之后,从5个
空选4个空的时候有可能两个端点都选,这样中间就会有男生(或女生)相邻了
⑵九个座位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有6
6A 种不同的坐法,再将三个空座位“插入”到坐好的六个人之间的五个“间隙”(不包括两
端)之中的三个不同的位置上有35C 中不同的“插入”方法.根据乘法原理共有63
65A C 7200=种不同的坐法.
提高班学案3
【拓1】分别求出符合下列要求的不同排法的种数
①6人排成一排,甲、乙必须相邻; ②6人排成一排,甲、乙不相邻.
【解析】 ①将甲乙“捆绑”成“一个元素”与其他4人一起作全排列共有25
25A A 240=种排法
②甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右及之间的
空挡插位,共有42
45A A 480=.
尖子班学案3
【拓2】4男3女排成一排,在下列条件下分别有多少种不同的排法
⑴甲、乙、丙三人一定相邻 ⑵甲、乙、丙三人不能相邻
【解析】 ⑴把甲、乙、丙看成一个整体,有33A 种排法;把其余的四个人和甲、乙、丙看成的整体全
排,有55A 种排法,共有35
35A A 720=种排法
⑵把除去甲、乙、丙的四个人全排,有44A 种排法;因为甲、乙、丙不相邻,所以采用插空
法,有35A 种排法,共有43
45A A 1440=种排法
目标班学案3
【拓3】4男3女排成一排,在下列条件下分别有多少种不同的排法
⑴甲必须站在中间,且乙与丙必须相邻 ⑵甲必须站在中间,且乙与丙不能相邻。