传感器原理-第一章
传感器原理课后答案
第一章传感与检测技术的理论基础1.什么是测量值的绝对误差、相对误差、引用误差?答:某量值的测得值和真值之差称为绝对误差。
相对误差有实际相对误差和标称相对误差两种表示方法。
实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。
引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。
引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。
2.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。
测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
3.用测量范围为-50~+150kPa的压力传感器测量140kPa压力时,传感器测得示值为142kPa,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差2140142=-=∆kPa实际相对误差%43.1%100140140142=⨯-=δ标称相对误差%41.1%100142140142=⨯-=δ引用误差%1%10050150140142=⨯---=)(γ4.什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
第一章 传感器的基本知识
第一章传感器的基本知识复习思考题1. 简述传感器的概念、作用及组成。
2. 传感器的分类有哪几种?各有什么优缺点?3. 传感器是如何命名的?其代号包括哪几部分?在各种文件中如何应用?4. 传感器的静态性能指标有哪些?其含义是什么?5. 传感器的动态特性主要从哪两方面来描述?采用什么样的激励信号?其含义是什么?1.1 传感器的作用与地位◆世界是由物质组成的,各种事物都是物质的不同形态。
人们为了从外界获得信息,必须借助于感觉器官。
◆人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉等直接感受周围事物变化的功能,人的大脑对“五官”感受到的信息进行加工、处理,从而调节人的行为活动。
◆人们在研究自然现象、规律以及生产活动中,有时需要对某一事物的存在与否作定性了解,有时需要进行大量的实验测量以确定对象的量值的确切数据,所以单靠人的自身感觉器官的功能是远远不够的,需要借助于某种仪器设备来完成,这种仪器设备就是传感器。
传感器是人类“五官”的延伸,是信息采集系统的首要部件。
电量和非电量◆表征物质特性及运动形式的参数很多,根据物质的电特性,可分为电量和非电量两类。
◆电量——一般是指物理学中的电学量,例如电压、电流、电阻、电容及电感等;◆非电量——则是指除电量之外的一些参数,例如压力、流量、尺寸、位移量、重量、力、速度、加速度、转速、温度、浓度及酸碱度等等。
◆人类为了认识物质及事物的本质,需要对物质特性进行测量,其中大多数是对非电量的测量。
传感器的作用◆非电量不能直接使用一般的电工仪表和电子仪器进行测量,因为一般的电工仪表和电子仪器只能测量电量,要求输入的信号为电信号。
◆非电量需要转化成与其有一定关系的电量,再进行测量,实现这种转换技术的器件就是传感器。
◆传感器是获取自然或生产中信息的关键器件,是现代信息系统和各种装备不可缺少的信息采集工具。
采用传感器技术的非电量电测方法,就是目前应用最广泛的测量技术。
传感器的地位◆随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。
传感器原理及应用
一、传感器的静态特性
6、滞后性-续1
对滞后性的衡量,一般用滞环的最大偏差或最大 偏差的一半与满量程输出值的百分比来表示,称为 滞环误差
或
如果传感器存在滞后性,则输入与输出就不能保持 一一的对应关系,因此应尽量使之变小。产生滞后 性的原因主要是材料的物理性质所造成的。
精品文档
一、传感器的静态特性
精品文档
烟尘浊度测量
精品文档
传感器与遥感技术
飞机及航天飞行器:近紫外线、可见光、远红外线、微波 船舶:超声波传感器
微波
地面
红外接收传感器
红外线分布差异 矿藏埋藏地区
精品文档
二、传感器的分类
1、按传感器输入量(用途)分类
生产厂家往往按输入量分类,以向户提供基本的使用信息。 如:位移传感器、速度传感器、加速度传感器、力传感器、压 力传感器、流速传感器、温度传感器、光强传感器、湿度传感 器、粘度传感器、浓度传感器、…。
精品文档
传感器的分类
2、按传感器工作机理分类
此种分类方法能表示输入变量和输出变之间的关系。
精品文档
传感器的分类
2、按传感器工作机理分类-续1
(1)物性型传感器 是利用某些功能材料本身所具有的内在特性及效应把被测量直接 转换为电量的传感器。如:各种压电晶体传感器。
(2)结构型传感器 是以结构(如形状、尺寸)为基础,利用某些物理规律实现把被 测量转换为电量。如:气隙型电感式传感器。
(2) 传感器输入、输出端均存在噪声干扰,Δx过小
时,被外界噪声所淹没。 最小检测量:
其中,C为系数,一般取1~5,N为噪声电平, K为灵敏度。对于数字式传感器,则用输出数字指
示值最后一位数字所代表的输入量来表示,称为分 辨率。
传感器复习题与答案
传感器复习题与答案传感器原理与应⽤复习题第⼀章传感器概述1.什么是传感器?传感器由哪⼏个部分组成?试述它们的作⽤和相互关系。
(1)传感器定义:⼴义的定义:⼀种能把特定的信息(物理、化学、⽣物)按⼀定的规律转换成某种可⽤信号输出的器件和装置。
⼴义传感器⼀般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界⾮电信号转换成电信号输出的器件。
我国国家标准对传感器的定义是:能够感受规定的被测量并按照⼀定规律转换成可⽤输出信号的器件和装置。
以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的⼀种检测装置;能按⼀定规律将被测量转换成电信号输出;传感器的输出与输⼊之间存在确定的关系。
(2)组成部分:传感器由敏感元件,转换元件,转换电路组成。
(3)他们的作⽤和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输⼊,转换成电路参量;上述电路参数接⼊基本转换电路,便可转换成电量输出。
2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出?(1)发展趋势:①发展、利⽤新效应;②开发新材料;③提⾼传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和⽹络化。
(2)特征:由传统的分⽴式朝着集成化。
数字化、多动能化、微型化、智能化、⽹络化和光机电⼀体化的⽅向发展,具有⾼精度、⾼性能、⾼灵敏度、⾼可靠性、⾼稳定性、长寿命、⾼信噪⽐、宽量程和⽆维护等特点。
(3)输出:电量输出。
3.压⼒、加速度、转速等常见物理量可⽤什么传感器测量?各有什么特点?本⾝发热⼩,缺点是输出⾮线性。
4(1)按传感器检测的量分类,有物理量、化学量,⽣物量;(2)按传感器的输出信号性质分裂,有模拟和数字;(3)按传感器的结构分类,有结构性、物性型、复合型;(4)按传感器功能分类,单功能,多功能,智能;(5)按传感器转换原理分类,有机电、光电、热电、磁电、电化学;(6)按传感器能源分类,有有源和⽆源;根据我国的传感器分类体系表,主要分为物理量传感器、化学量传感器、⽣物量传感器三⼤类。
传感器原理及其应用(李艳红、李海华主编)-部分课后习题
传感器原理及其应用(李艳红、李海华主编)-部分课后习题第一章P10 1、2、5、61.传感器的定义答:传感器是一种以一定精确度把被测量(主要是非电量)转换为与之有确定关系、便于应用的某种物理量(主要是电量)的测量装置。
2.传感器组成及作用答:(1)传感器一般由敏感元件、转换元件、测量电路三部分组成;(2)敏感元件:直接感受被测量,并输出与被测量有确定关系的物理量;转换元件:将敏感元件输出的非电量转换为电量;测量电路:将转换元件输出的电量变换成便于显示、记录、控制和处理的信号3.开环测量系统和闭环测量系统区别答:开环测量系统(1)信息只沿着一个方向传递(2)系统相对误差等于各环节相对误差之和(3)结构简单,但每个环节特性变化都会造成测量误差闭环测量系统(1)有正向通道和反馈通道(2)输入输出关系由反馈环节特性决定,测量处理等环节造成的误差较小4.测量不确定度及其评定方法答:(1)测量不确定度:表征合理赋予被测量值的分散性,与测量结果相联系的参数即结果的可靠性和有效性的怀疑程度(2)不确定度按其评定方法可分为A类评定和B类评定A类评定是用统计方法进行评定。
即对某被测量进行等精度的独立多次重复测量,得到一系列的测得值。
B类评定用非统计分析法,它不是由一系列的测得确定,而是利用影响测得值分布变化的有关信息和资料进行分析,并对测量值进行概率分布估计和分布假设的科学评定B类评定的信息来源有以下6项:①以前的观测数据;②对有关技术资料和测量仪器特性的了解和经验;③生产部门提供的技术说明文件;④校准文件、检定证书或其他文件提供的数据、准确度的等级或级别,包括的输出,从而实现非电量的测量。
(2)金属在外力作用下产生机械形变,其电阻值也发生相应改变的现象。
(3)半导体由于应力的作用而使材料电阻率发生变化的现象称为压阻效应。
2.画出桥式测量电路,并推导直流电桥平衡条件,以及不对称电桥输出电压变化。
答:(1)(2)直流电桥平衡条件上图为负载电阻,→∞时,有:U0=0时,有为电桥平衡条件(3)把电桥平衡条件 代入上式化简,并忽略高阶无穷小量得:3.采用应变片进行测量时为什么要进行温度补偿?常用补偿方法有哪些?P34答:(1)应变片的阻值受环境(包括被测试件的温度)的影响很大。
传感器原理与应用习题及答案
《第一章传感器的一般特性》1转速(r/min)0 500 1000 1500 2000 2500 3000输出电压(V)0 9.1 15.0 23.3 29.9 39.0 47.51)该测速发电机的灵敏度。
2)该测速发电机的线性度。
2.已知一热电偶的时间常数τ=10s,若用它来测量一台炉子的温度,炉内温度在540οC和500οC 之间按近似正弦曲线波动,周期为80s,静态灵敏度k=1,试求该热电偶输出的最大值和最小值,以及输入与输出信号之间的相位差和滞后时间。
3.用一只时间常数为0.355s 的一阶传感器去测量周期分别为1s、2s和3s的正弦信号,问幅值误差为多少?4.若用一阶传感器作100Hz正弦信号的测试,如幅值误差要求限制在5%以内,则时间常数应取多少?若在该时间常数下,同一传感器作50Hz正弦信号的测试,这时的幅值误差和相角有多大?5.已知某二阶系统传感器的固有频率f0=10kHz,阻尼比ξ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。
6.某压力传感器属于二阶系统,其固有频率为1000Hz,阻尼比为临界值的50%,当500Hz的简谐压力输入后,试求其幅值误差和相位滞后。
《第二章应变式传感器》1.假设某电阻应变计在输入应变为5000με时电阻变化为1%,试确定该应变计的灵敏系数。
又若在使用该应变计的过程中,采用的灵敏系数为 1.9,试确定由此而产生的测量误差的正负和大小。
2.如下图所示的系统中:①当F=0和热源移开时,R l=R2=R3=R4,及U0=0;②各应变片的灵敏系数皆为+2.0,且其电阻温度系数为正值;③梁的弹性模量随温度增加而减小;④应变片的热膨胀系数比梁的大;⑤假定应变片的温度和紧接在它下面的梁的温度一样。
在时间t=0时,在梁的自由端加上一向上的力,然后维持不变,在振荡消失之后,在一稍后的时间t1打开辐射源,然后就一直开着,试简要绘出U0和t的关系曲线的一般形状,并通过仔细推理说明你给出这种曲线形状的理由。
传感器原理及应用(第三版)第1章
三、精确度(精度)
精确度由三个指标:精密度、正确度和精确度 (一)精密度
它说明测量结果的分散性。即对某一稳定的对象(被测量)由 同一测量者用同一传感器和测量仪表在相当短的时间内连续反复测 量多次其测量量的分散程度。 愈小则说明测量越精密。
常数;对非线性
传感器而言,灵
敏度随输入量的
变化而变化。
从输出曲线看,
曲线越陡,灵敏
度越高。可以通
xmax
过作该曲线某一 点的切线的方法
x (作图法)求得 曲线上任一点的
灵敏度。
灵敏度太高,检测系统的稳定性将降低。
例1 :已知某传感器静态特性方程y=ex,试分别用切线 法,端基法和最小二乘法,在0<x<1范围内拟合基准直 线方程,并求出相应的线性度。
电阻R/ 765 826 873 942 1032
电阻R随温度t的变化规律必须用MATLAB进行曲线拟合
1100
1000
900
800
700
20
40
60
80
100
例:一组测量数据的曲线拟合
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…n,利用MATLAB,可以寻求到一个函数(曲线) y=f(x), 使 y=f(x)在某种准则下与所有数据点最为接近, 即曲线拟合得最好。
Y a1X a2 X 2 a4 X 4
(4)具有 X奇、偶次阶项的非线性[图1-1(d)]
Y a1X a2 X 2 a3 X 3 a4 X 4
上一页
下一页
返回
奇次项的曲 线在原点附 近较接近直 线
传感器原理及应用(技能)
SIPIVT 机电工程系
电容式传感器在液位测量控制中的应用
SIPIVT 机电工程系
Capacitive sensor
汉堡检测 电容式传感器应用:
用于物体位置检测、行程限位、产品计数等;
SIPIVT 机电工程系
3.磁感应式传感器 Magnetic Sensor 电气图形符号
SIPIVT 机电工程系
其作用检测外界信息变化,并转换为系统可识别的电信号, 传送给PLC、计算机等核心控制器。
SIPIVT 机电工程系
1.传感器定义 自动检测装置中, 直接感受被测量, 并将其转换为
可用电信号输出的器件。
传感器组成: 检测部分 转换部分 辅助电源
被测量
敏感元件
转换元件
电信号
辅助电源
SIPIVT 机电工程系
SIPIVT 机电工程系
案例2: 现有两个传感器S1和S2, 当两个传感器同时检测到物体时,
则控制指示灯HL2亮; 分析:两个传感器为“逻辑与”控制关系; 方案1:选择输出特性相同的S1和S2, 可直接串联控制; 用S2的输出端控制 S1电源“-”极的接通
SIPIVT 机电工程系
思考与练习: 选择输出特性不同的S1和S2, 如何设计控制电路?
按照铭牌参数正确连接电源及负载(指示灯); (2)通电运行,选择适合的被测物体进行检测,记录传感器
的输出特性、检测物体、检测距离范围; (3)选择一个OMRON传感器,记录“型号、工作电压、接线图”
等铭牌参数,正确连接电源和负载(指示灯); 通电运行,记录传感器输出特性、检测物体、检测距离范围;
SIPIVT 机电工程系
SIPIVT 机电工程系
实训项目1:使用检测模块识别材料属性
传感器技术手册
传感器技术手册随着科技的不断发展,传感器技术在各个领域中扮演着越来越重要的角色。
传感器是一种能够感知并转换物理量、化学量或生物量的设备,它们广泛应用于自动化工业控制、环境监测、医疗诊断、智能交通等众多领域。
本手册将为读者提供关于传感器技术的全面介绍和详细内容。
第一章:传感器基础知识1.1 传感器的定义与分类1.2 传感器的工作原理1.3 传感器的特性参数1.4 传感器的选择与应用第二章:传感器应用领域2.1 工业自动化领域的传感器应用- 温度传感器的应用- 压力传感器的应用- 液位传感器的应用2.2 环境监测领域的传感器应用- 气体传感器的应用- 光学传感器的应用- 水质传感器的应用2.3 医疗诊断领域的传感器应用 - 心电传感器的应用- 血糖传感器的应用- 呼吸传感器的应用2.4 智能交通领域的传感器应用 - 路面传感器的应用- 车速传感器的应用- 道路监控传感器的应用第三章:传感器技术的发展趋势 3.1 微型化与集成化3.2 智能化与自适应性3.3 高灵敏度与高精度3.4 高可靠性与长寿命第四章:传感器技术的挑战与应对 4.1 跨学科融合4.2 信号处理与数据分析4.3 能源供给与节能技术4.4 新材料与新工艺第五章:传感器技术的前景展望5.1 人工智能与传感器技术的结合5.2 物联网与传感器技术的发展5.3 生物传感器与医疗应用的突破5.4 可穿戴设备与传感器技术的融合通过阅读本手册,读者将能够深入了解传感器技术的基础知识、应用领域、发展趋势以及面临的挑战和应对措施。
传感器技术的持续创新与发展将为各个行业带来巨大的改变和机遇,期待读者通过本手册对传感器技术有更为全面的认识和理解,为相关领域的研究和应用提供参考和指导。
第一章传感器技术基础知识
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X
传感器的概述
第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。
2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。
3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。
传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。
第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。
2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。
3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。
4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。
5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。
3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。
现已知某玻璃水银温度计特性的微分方1)(1)(+=ωτωj j H )(11)(ωτω+=A s rad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。
求该温度计的时间常数及灵敏度。
解:原微分方程等价于:x y dt dy3102-=+所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。
传感器原理与应用---数据分析 第1章 数据采集与系统设计基础
第一章数据采集与处理概述
传感器原理
3、数据采集与处理包含的内容
模拟信号处理 模数转换 数模转换 接口技术
4、怎样学好本课程
抗干扰技术 数据分析 总线技术 采集处理系统设 计
第一章数据采集与处理概述
【主要内容】 1.1 采集与处理的意义 1.2 采集与处理系统组成
1.3 系统涉及的相关技术 1.4 采集与处理系统的发展 【重点内容】 1、单个微机控制的采集处理系统结构框图,及各 部分的作用。
第一章数据采集与处理概述
1.2.2 集散型数据采集系统
上位机 通讯接口 数据采集站 数据采集站 数据采集站
模拟信号和数字信号
集散型数据采集系统框图
由若干个数据采集站和一台上位机及通信线路组成。 上位机:为微型计算机,配置有打印机和绘图机。
第一章数据采集与处理概述
1.2.3 分布式数据采集系统
第一章数据采集与处理概述
第一章数据采集与处理概述
1.1 研究意义
数据采集是指把被测对象的各种模拟量(如:温 度、压力、流量、位移等)通过传感器作适当变化后, 再经过信号调理、采样、量化、编码等步骤,最后由 计算机进行存储、显示或打印、传输的过程。
1.2 系统结构形式
典型的数据采集系统由硬件和软件组成。 按硬件结构分,有三种结构形式: 单个微型计算 机数据采集系统、 集散型数据采集系统以及分布式数 据采集系统。
第一章数据采集与处理概述 1.2.1 单机控制采集处理系统
由传感器、模拟多路开关、程控放大器、采样/保持 器、A/D转换器、计算机及外设等部分组成。
模拟开关 传感器 程控放大 被 测 物 理 量 采 样 / 保 持 器 A/D 转 换 器 显示器 计 算 定时与逻辑控制 传感器 传感器 机 绘图机 打印机
第一章传感器原理与检测技术ppt课件
第1章 传感与检测技术的理念基础
测量概论
一、测量 测量是以确定被测量的值或获取测量结果
为目的的一系列操作。
由测量所获得的被测的量值叫测量结果。 测量结果可用一定的数值表示, 也可以用一条 曲线或某种图形表示。但无论其表现形式如何, 测量结果应包括两部分:比值和测量单位。 确 切地讲, 测量结果还应包括误差部分。
测量概论 二、测量方法
2、偏差式测量、 零位式测量与微差式测量 电位差计式测量:
UX:传感器信号 (未知量)
UK:标准量信号 (已知量)
D: 检零计 (电压表)
平衡:UK=UX
测量概论 二、测量方法
2、偏差式测量、 零位式测量与微差式测量 微差式测量是综合了偏差式测量与零位式测量的
传感器世界
中国传感器
第1章 传感与检测技术的理念基础 测量概论.
表征物质特性或其运动形式的参数很多,总的 可分为电量和非电量两大类,电量一般是物理 学中的电学量(电压、电流等)。非电量是指 电量之外的一些参数(压力、流量等)。
法测量; 根据被测量变化快慢可分为静态测量与 动态测量等。
测量概论 二、测量方法
1、直接测量、间接测量与组合测量
直接测量:
在使用仪表或传感器进行测量时, 对仪表读 数不需要经过任何运算就能直接表示测量 所需要的结果的测量方法称为直接测量。
例如,用磁电式电流表测量电路的某一支路 电流, 用弹簧管压力表测量压力等, 都属于 直接测量。直接测量的优点是测量过程简 单而又迅速, 缺点是测量精度不高
传感器原理及应用第三版课后答案
②当电容式传感器用于变间隙原理进行测量时具有非线性输出特性。
3-2分布和寄生电容的存在对电容传感器有什么影响?一般采取哪些措施可以减小其影响。
1-7:解:YFS=200-0=200
由A=ΔA/YFS*100%有
A=4/200*100%=2%。
精度特级为2.5级。
1-8:解:根据精度定义表达式:A=ΔA/AyFS*100%,由题意可知:A=1.5%,YFS=100
所以ΔA=A YFS=1.5
因为1.4<1.5
所以合格。
1-9:解:Δhmax=103-98=5
2-3:答:金属应变片单位应变引起的应变片电阻的相对变化叫金属应变片的灵敏度系数;它与金属丝应变灵敏度函数不同,应变片由于由金属丝弯折而成,具有横向效应,使其灵敏度小于金属丝的灵敏度。
2-4:答:因为(1)金属的电阻本身具有热效应,从而使其产生附加的热应变;
(2)基底材料、应变片、粘接剂、盖板等都存在随温度增加而长度应变的线膨胀效应,若它们各自的线膨胀系数不同,就会引起附加的由线膨胀引起的应变;常用的温度补偿法有单丝自补偿,双丝组合式自补偿和电路补偿法。
εr=-με=-3*10-4
(2) :F=εES=0.001*2*1011*0.00196=3.92*105N
1-10:解:(1)贴片习题中图2-7所示,R3、R2靠近中心处,且沿切向方向,R1、R4靠近圆片边缘处且沿径向贴。位置在使-εr=εt即
(2)
R1R2
USC
R3R4
E
(3)
εr2、3=
传感技术 第一章 传感技术概述
6
2、按工作原理分:
(1)物理原理
电学式:R、L、C、电涡流、磁电式 磁学式:磁敏电阻、磁敏二极管、磁敏三极管 光电式:光敏管、亮度计、CCD 电势型:热电偶、光电管、Hall sensor
电荷式:压电、热释电
半导体式:压阻、内光电、气敏、湿敏 谐振式:f(张力)
1、表征方法
数学处理-微分方程
bn dny d n 1 y d 1x d 2x d mx b ... b c c c ... c ... n 1 0 0 1 2 m dt n dt n 1 dt dt 2 dt m
传递函数 H(S)=Y(S)/X(S)作Laplace变换
• 3、种类: 线绕式
合成膜
非连续可变
R/ Uo
x
金属膜
导电塑料 导电玻璃
连续可变
R/ Uo
32
x
4、负载特性
• 1)空载特性
(RL=?)
Ui
R x U0 Ui Ui R0 l0 加负载RL后,输出电压U0如何变化?
R0 R Uo RL
• 2)负载特性
U0 I RRL R RL
I Ui
衡量sensors静态特性的指标有哪些?
16
1、线性度
y=a0 +a1x +a2X2 +a3X3 +••••••
y-out,x-in,a0-constant(zero),a1-sensitivity (theory),a2,a3…..-nonlinear coefficient a2,a3…..不大时,线性化处理(端点连线法、平均斜率法、 过零旋转法、端点连线平移法、最小二乘法等)
传感器原理及其应用考试重点
传感器原理及其应用第一章传感器的一般特性1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
2)传感器又称变换器、探测器或检测器,是获取信息的工具广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
3)传感器的组成:敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。
基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。
4)传感器的静态性能指标(1)灵敏度定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比,传感器输出曲线的斜率就是其灵敏度。
①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。
(2)线性度定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。
线性度又可分为:①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。
②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。
端基直线定义:实际平均输出特性首、末两端点的连线。
③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。
④独立线性度:以最佳直线作为参考直线的线性度。
⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。
(3)迟滞定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。
即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
(4)重复性定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输出之间相互偏离的程度。
传感器原理与应用复习要点
第一章传感器的一般特性1.传感器技术的三要素。
传感器由哪3部分组成?2.传感器的静态特性有哪些指标?并理解其意义。
3.画出传感器的组成方框图,理解各部分的作用。
4.什么是传感器的精度等级?一个0.5级电压表的测量范围是0~100V,那么该仪表的最大绝对误差为多少伏?5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、非线性度?第二章应变式传感器6.应变片有那些种类?金属丝式、金属箔式、半导体式。
7.什么是压阻效应?8.应变式传感器接成应变桥式电路的理解、输出信号计算。
应变片桥式传感器为什么应配差动放器?9.掌握电子称的基本原理框图,以及各部分的作用。
10.电阻应变片/半导体应变片的工作原理各基于什么效应?11.半导体应变片与金属应变片各有哪些特点。
第三章电容式传感器12.电容式传感器按工作原理可分为哪3种?13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电容影响的方法有那些?14.什么是电容电场的边缘效应?理解等位环的工作原理。
15.运算法电容传感器测量电路的原理及特点。
第四章电感式传感器16.了解差动变压器的用途及特点。
17.差动变压器的零点残余电压产生的原因?第五章压电式传感器18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些?19.压电传感器能否测量缓慢变化和静态信号?为什么?20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放大器、电荷放大器的作用。
第六章数字式传感器21.光栅传感器的原理。
采用什么技术可测量小于栅距的位移量?22.振弦式传感器的工作原理。
第七章热电式传感器23.热电偶的热电势由那几部分组成?24.热电偶的三定律的理解。
25.掌握热电偶的热电效应。
26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。
27.铂电阻采用三线制接线方式的原理和特点?28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作原理。
29.集成温度传感器AD590的主要特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪 论§1-1 测试技术1、什么是测试技术?测试技术(Measurement and Test):测量与试验相结合的方法和技术。
是科学研究过程的主要工作内容。
科学研究的方法:观察、假设、验证。
伽利略通过观察和测量得知,物体自由坠落过程的速度随时间而增加; 他提出自由落体位移与时间成平方成正比的假设,即:()212x t gt = 在比萨斜塔上反复进行实验,验证了以上假设并测得系数 981g .= 测试技术,是科学观察的基本方式、科学验证的基本手段;是工程实践中,运用科学理论、科学思想和科学方法的基本手段。
例1-1. 为了设计某个自动抛物系统,设计师需要知道特定形状的物体自由坠落过程中所受到的空气阻力大小。
建立系统模型:• 现有研究结果表明,物体在空气中运动时受到的阻力与其速度成正比: ()()R d f t c x t dt= c —— 空气阻力系• 运动方程:()()22d d m x t c x t m g dt dt+=⋅ • 初始条件:()()0000t d x x t dt ===• 解得坠落过程的运动规律:,2,1i j c t m i i j m m x g e g t c c -⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ • 试验设计:自由坠落,多位置计时:1111,11,21,3x x x t t t ⎡⎤⎢⎥⎣⎦ 1111,11,21,3x x x t t t ⎡⎤⎢⎥⎣⎦ 1111,11,21,3x x x t t t ⎡⎤⎢⎥⎣⎦ • 数据处理:寻找一个 c 使误差()332,11,i i j i j e x x t c ==⎡⎤=-⎣⎦∑∑达到最小。
2、测试技术的任务及测试系统的组成相关术语和概念:实验:为了验证某个假设或概念的存在性和合理性而进行的测量和数据分析过程。
( 以演示的目的为主 )试验:为了检验某个功效的程度或特定参量的大小而进行的测量和数据分析过程。
(以测定的目的为主 )测量:使用一定的装置,通过实验来测定某个物理数据的过程;数据处理:利用特定的技术和设备,为了获得某种信息而对数据进行分析运算过程。
包括:数据的传输、存储、检索、比较、变换和运算等等。
测试:测量 + 实验/试验,以获取被测对象的某个物理参数、物理性能、物理性质而进行的实验或试验设计、数据测量和数据处理的全过程。
测试技术:借助一定的测量手段和试验方法,获得被观测对象的某些参量或特征的技术。
例如:心理测试、智商测试等,通过答题过程测定被试者的某种能力。
✓ 包含一个或一系列试验过程;✓ 测试结果是通过分析测量数据后间接获得;例1-2. 测试两只步枪的射击精度。
(1)、试验设计:为减小子弹装药量多少、环境风速变化、空气密度变化等随机因素的影响,在同样固定方式下,每只枪各射击多次,记录全部弹着点坐标。
(2)、试验和数据记录1111121211181377347168516562196N N x y ..x y ..x y ..--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,2121222222614679885247679273474577N N x y ..x y ..x y ..⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (3)、数据处理✓ 中心坐标:1111N N n n n n X x Y y N N ====∑∑ ✓正确度:Mean =✓ 精密度:STD =测试结果中心: -1.5387 , 1.255 中心: 6.104 , 6.9098A 正确度: 1.9856B 正确度: 9.2197精密度: 3.7276 精密度: 1.2657 不确定性:事件结果的不可预测程度。
✓ 事件1:明天早上会下雨吗?✓ 事件2:明天早上会地震吗?✓ 事件3:明天还会是白天吗?信息量:对信息接受者的原有不确定性 (uncertainty )的消除程度;信息的定量描述,某事件发生后有 N 个可能的结果,每个结果出现的概率分别为:12N p p p ,并且11Nn n p ==∑,则该事件的信息熵为:211N n n nH p log p ==∑ 例如:国家队 vs 五邑大学队 ; 输赢概率:0.99 : 0.01 H 1=0.0808国家队 vs 伊朗国家队; 输赢概率:0.55 : 0.45 H 2=0.9928国家队 vs 韩国国家队; 输赢概率:0.25 : 0.75 H 3=0.8133国家队 vs 巴西国家队; 输赢概率:0.05: 0.95 H 4=0.2864信号:是信息的载体,其物理形态可以转换、传输和记录,而承载的信息不变。
本课程中的信号:随时间变化的物理量,且以机械量和热工量为主。
✓机械量:例如,应力、应变、位移、速度、转速、角度等等;✓热工量:例如,压力(压强)、流量、温度等等;非电量电测法:将非电物理量变换成电压、电流、电容、电阻等等电量进行传输、记录和显示,从而达到测量目的的方法;传感器:在非电量电测过程中,实现非电量到电量的转换的器件或设备; 传感器标定:通过实验建立被测非电物理量与传感器输出电量的之间精确函数关系的方法和过程;测试工作的内容:1、依据研究对象的既有模型或假设,结合具体的研究目的设计实验;2、利用适当的仪器设备、通过合理的操作过程获得必要的测试数据;3、通过数据处理获取描述、评价和比较研究对象状态和属性的“信息”。
测试系统的组成及测试的工作流程:3、测试技术的发展方向新材料应用:新型压电、磁敏、光敏、气敏等敏感材料应用——新型传感器;计算机技术应用,主要体现在以下两个方面:✓嵌入式计算机的应用——智能传感器和传感设备;✓计算机技术与通讯技术的应用——网络化测试技术、虚拟仪器技术;数据处理技术发展:新型变换域方法、人工智能在数据挖掘、知识获取方面的应用等等,使得数据分析的结果更加丰富、更加深入。
4、本课程的内容和任务工程中常见动态物理量的传感、信号调理、数据采集的方法及设备应用;常用数据处理方法的算法原理及应用,基本的时域处理和频域处理方法;5、特别强调:被测对象的性质和测试目的是试验/实验设计的基础,因此,完成一项测试任务,需要融合专业领域的知识和测试技术的知识。
6、几个实例例一:空调管路振型、固频及动应变测试,为减振降噪和疲劳预测提供依据。
例二:玻璃材料冲击测试,获取玻璃在冲击载荷作用下的力学特性,为建筑物防的爆设计提供依据。
例三:异响测试,消除“工频”噪声,保留机械故障音,以便监测机器状态。
例四:轴心轨迹测试。
分离出转子动不平衡、电机定子磁力不平衡,对整机振动的影响。
为整机减震、降噪,提供了技术依据。
例五:测量机械波在黑板上的传播速度。
1、试验设计:在黑板上,沿振源径向已知间距 L 安置两个振动加速度传感器。
检测两个传感器拾到的振动波的时间差 t 0,计算波速:L v t2、利用虚拟仪器,记录并处理数据。
3、数据处理方法。
信号之间关系:()()210x t k x t t =⋅-令,信号()1x t 的Fourier 变换为:()(){}11X x t ω=F由时延性质知:()(){}()02101j t X k x t t kX e ωωω-=-=F 于是:()()()(){}(){}02211j t x t X H ke X x t ωωωω-===F F取传递函数()H ω的相位函数()0t ϕωω=-其斜率就是时间差 t 0。
§1-2 量的基本概念§ 1-2-1 量和量纲,国际单位制量:现象、物体或物质可定性区别和定量确定的一种属性。
基本量:确定单位制时选定的相互独立的量。
1971年,第14届国际计量大会确定了国际通用的“国际单位制”,简称“SI 制”( 法语 Système International d‘unités 缩写)。
其中包括七个基本量:✧ 时间单位:s / 秒;✧ 长度单位:m / 米;✧ 重量单位:kg / 千克;✧ 电流单位:A / 安培;✧ 温度单位:ºC / 摄氏度;✧ 光强度单位:cd / 坎德拉;✧ 物质的量:mol / 摩尔 (以1克C 12所包含的C 原子个数为一个单位) 两个辅助量:✧ 平面角度单位: rad / 弧度;✧ 球面角单位: sr / 球面度;导出量:以基本量为基础,为表示物质属性或运动状态而导出的量。
例如: 速度,物体在单位时间运动的距离,m / s ,或, km / h 等;压强,单位面积上的压力,Pa = N/m2,帕斯卡。
国际制中的倍数单位和分数单位:✧ 倍数单位:k ( kilo 103) / M ( mega 106) / G ( giga 109 ) / T ( tera 1012 ); ✧ 分数单位:d (10-1) / c (10-2) / m (10-3) / μ (10-6) / n (10-9) / p (10-12) ; 例如:压力(压强) 1,000,000 Pa = 1 000kPa= 1 MPa长度 1 m = 10 dm = 100 cm = 1000 mm , 1 mm = 1000 μm电容 1 F = 106 F μ, 1F μ = 1000 nF = 106 pF测试技术中常用的几个电学量:✧ 电压:1 V = 1000mV = 1,000,000V μ✧ 电流:1 A = 1000mA = 1,000,000 A μ✧ 电阻:1 Ω=1000m Ω = 1,000,000μΩ✧ 电荷:1 C = 1000mC = 1,000,000 C μ§1-2-2 基准、标准和量值的传递计量:为实现测量准确和单位统一而进行的测量过程;计量特点:准确性、一致性、溯源性、法制性。
计量基准:用来保存和复现计量单位的计量器具。
三级基准:国家基准、副基准和工作基准,分别由国家、省、市质量监督局保存。
计量标准:按照国家计量检定系统规定的准确度等级制作的计量器具,用于检定低一级的计量标准或计量器具。
如,检定测长器具(如游标卡尺)的量块。
量值传递:通过自上而下逐级检定或校准,将国家基准所复现的单位量值逐级传递到测量用的器具上,以保证测量量值的准确和一致。
第二十八条 县级以上人民政府计量行政部门依法设置的计量检定机构,为国家法定计量检定机构。
其职责是:负责研究建立计量基准、社会公用计量标准,进行量值传递,执行强制检定和法律规定的其他检定、测试任务,起草技术规范,为实施计量监督提供技术保证,并承办有关计量监督工作。
常用仪表精度级别:0.05级、0.1级、0.2级、0.5级、1.0级、1.5级、2.5级;称重仪表:用分度数表示,分度数3000表示其准确度为满量程的 1/3000。