高二上册数学知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上册数学知识点总结
高二上册数学学问点总结1
高二班级数学必修二学问点总结
基本概念
公理1:假如一条直线上的两点在一个平面内,那么这条直线上的全部的点都在这个平面内。
公理2:假如两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线相互平行。
等角定理:假如一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
高二班级数学学问点
空间两条直线只有三种位置关系:平行、相交、异面
按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp。空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有许多个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
直线和平面垂直
直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面相互垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点
直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高二数学重点学问点梳理
简洁随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),假如每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简洁随机抽样。
简洁随机抽样的特点:
(1)用简洁随机抽样从含有N个个体的总体中抽取一个容量为n
的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为
(2)简洁随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简洁随机抽样方法,体现了抽样的客观性与公正性,是其他更简洁抽样方法的基础。
(4)简洁随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简洁抽样常用方法:
(1)抽签法:先将总体中的全部个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜接受抽签法。
(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;其次步,选定开头的数字;第三步,猎取样本号码概率。高二上册数学学问点总结2
一、导数的应用
1、用导数争论函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,争论在零点左、右的函数的单调性,若左增,右
减,则在该零点处,函数去极大值;若左边削减,右边增加,则该零点处函数取微小值。
学习了如何用导数争论函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2、生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益最大问题
3)面积、体积最(大)问题
二、推理与证明
1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论供应的信息,从中发觉一般规律;类比推理的难点是发觉两类对象的相像特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经把握的数学学问,分析两类对象之间的关系,通过两类对象已知的相像特征得出所需要的相像特征。
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的争辩
1)二次项系数:假如二次项系数含有字母,要分二次项系数是正数、零和负数三种状况进行争辩。