红岗区一中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红岗区一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)
2. 若复数
2b i
i
++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )
13 (D ) 12
- 3. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )
A .(﹣2,0)
B .(﹣∞,﹣2)∪(﹣1,0)
C .(﹣∞,﹣2)∪(0,+∞)
D .(﹣2,﹣1)∪(0,
+∞)
4. 已知平面向量与的夹角为
3
π
,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D .
5. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )
A .
B .
C .
D .
6. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2 7. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )
A .至少有一个白球;都是白球
B .至少有一个白球;至少有一个红球
C .恰有一个白球;一个白球一个黑球
D .至少有一个白球;红、黑球各一个
8. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件
9. 半径R 的半圆卷成一个圆锥,则它的体积为( )
A .
πR 3
B .
πR 3
C .
πR 3
D .
πR 3
10.已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( )
A .1
B .
C .e ﹣1
D .e+1
11.487被7除的余数为a (0≤a <7),则展开式中x ﹣3
的系数为( )
A .4320
B .﹣4320
C .20
D .﹣20
12.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( )
A .M ∪N
B .M ∩N
C .∁I M ∪∁I N
D .∁I M ∩∁I N
二、填空题
13.计算sin43°cos13°﹣cos43°sin13°的值为 .
14.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .
15.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .
16.若x ,y 满足线性约束条件
,则z=2x+4y 的最大值为 .
17.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .
18.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
三、解答题
19.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.
(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;
(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.
20.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:AD⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.
21.己知函数f(x)=lnx﹣ax+1(a>0).
(1)试探究函数f(x)的零点个数;
(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.
22.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,
(Ⅰ)求数列{a n } 的通项公式和S n ;
(Ⅱ)记b n =a n 2n ﹣1
,求数列{b n }的前n 项和T n .
23.(本小题满分10分)选修41-:几何证明选讲
如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;
(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.
【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.24.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为
(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.
红岗区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】C
【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,
又f (﹣1)=﹣1<0,f (0)=30
+0=1>0,
∴f (﹣1)f (0)<0,
可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .
【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.
2. 【答案】C
【解析】
b +i 2+i =(b +i)(2-i)(2+i)(2-i)
=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =1
3.故选C.
3. 【答案】B
【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,
∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .
4. 【答案】C
考点:平面向量数量积的运算. 5. 【答案】D
【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成
个分
数,
由于这种分数是可约分数的分子与分母比全为偶数,
故这种分数是可约分数的共有个,
则分数是可约分数的概率为P==

故答案为:D
【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.
6. 【答案】B 【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.
7. 【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:
2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况, 所以至少有一个白球,至多有一个白球不互斥;
至少有一个白球,至少有一个红球不互斥; 至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,
故选:D
【点评】本题考查了互斥事件和对立事件,是基础的概念题.
8. 【答案】A
【解析】解:由“|x ﹣2|<1”得1<x <3,
由x 2
+x ﹣2>0得x >1或x <﹣2,
即“|x ﹣2|<1”是“x 2
+x ﹣2>0”的充分不必要条件,
故选:A .
9. 【答案】A
【解析】解:2πr=πR ,所以r=,则h=,所以V=
故选A
10.【答案】C
【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,
∴0<1+ln(x2﹣m)≤,∴.
∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.
∴1+ln(x2﹣m)≤x2﹣m,
令x2﹣m≤,
化为m≥x﹣e x﹣e,x>m+.
令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.
∴m≥e﹣1.
故选:C.
11.【答案】B
解析:解:487=(49﹣1)7=﹣+…+﹣1,
∵487被7除的余数为a(0≤a<7),
∴a=6,
∴展开式的通项为T r+1=,
令6﹣3r=﹣3,可得r=3,
∴展开式中x﹣3的系数为=﹣4320,
故选:B..
12.【答案】D
【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},
∴M∪N={1,2,3,6,7,8},
M∩N={3};
∁I M∪∁I N={1,2,4,5,6,7,8};
∁I M∩∁I N={2,7,8},
故选:D.
二、填空题
13.【答案】.
【解析】解:sin43°cos13°﹣cos43°sin13°=sin(43°﹣13°)=sin30°=,
故答案为.
14.【答案】(0,5).
【解析】解:∵y=a x的图象恒过定点(0,1),
而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,
∴函数f(x)=a x+4的图象恒过定点P(0,5),
故答案为:(0,5).
【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.15.【答案】m≥2.
【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},又B={x|﹣2<x<4},且(∁U A)∩B=∅,所以有﹣m≤﹣2,所以m≥2.
故答案为m≥2.
16.【答案】38.
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,
直线y=﹣x+的截距最大,此时z最大,
由,解得,
即A(3,8),
此时z=2×3+4×8=6+32=32,
故答案为:38
17.【答案】 (1,2) .
【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3), ∴0<a <1,x >0,
若f (2x ﹣1)<f (2﹣x ),


解得:1<x <2, 故答案为:(1,2).
【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.
18.【答案】(1,2)-,(,5)-∞.
【解析】将圆的一般方程化为标准方程,2
2
(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞.
三、解答题
19.【答案】(1)()21sin cos S θθ=+,其中02
π
θ<<
.(2)6
π
θ=
时,max S =
【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得
AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,
()1cos sin BC θθ=++最后根据梯形面积公式得()2
AD BC AB
S +⋅=
()21sin cos θθ=+,交代定义域
02
π
θ<<
.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6
π
θ=

列表分析函数单调性变化规律,确定函数最值
试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2
AD BC AB
S +⋅=
()21sin cos θθ=+,其中02
π
θ<<

考点:利用导数求函数最值
【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x )>0或f′(x )<0求单调区间;第二步:解f′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小. 20.【答案】
【解析】(Ⅰ)证明:∵AB 是圆O 的直径, ∴AC ⊥BC , 又∵DC ⊥平面ABC ∴DC ⊥BC , 又AC ∩CD=C , ∴BC ⊥平面ACD , 又AD ⊂平面ACD , ∴AD ⊥BC .
(Ⅱ)解:设CD=a ,以CB ,CA ,CD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示.
则C(0,0,0),B(2,0,0),,D(0,0,a).
由(Ⅰ)可得,AC⊥平面BCD,
∴平面BCD的一个法向量是=,
设=(x,y,z)为平面ABD的一个法向量,
由条件得,=,=(﹣2,0,a).
∴即,
不妨令x=1,则y=,z=,
∴=.
又二面角A﹣BD﹣C所成角θ的正切值是2,
∴.
∴=cosθ=,
∴==,解得a=2.
∴V ABCDE=V E﹣ADC+V E﹣ABC
=+
=+
=
=8.
∴该几何体ABCDE的体积是8.
【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.
21.【答案】
【解析】解:(1),
令f'(x)>0,则;令f'(x)<0,则.
∴f(x)在x=a时取得最大值,即
①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞
∴f(x)的图象与x轴有2个交点,分别位于(0,)及()
即f(x)有2个零点;
②当,即a=1时,f(x)有1个零点;
③当,即a>1时f(x)没有零点;
(2)由得(0<x1<x2),
=,令
,设,t∈(0,1)且h(1)=0
则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0
即,又,
∴f'(x0)=<0.
【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a <1进行研究时,一定要注意到f (x )的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学
生的综合能力有比较高的要求.
22.【答案】
【解析】解:(Ⅰ)设等差数列的公差为d ,

=4得
=4,
所以a 2=3a 1=3且d=a 2﹣a 1=2, 所以a n =a 1+(n ﹣1)d=2n ﹣1,
=
(Ⅱ)由b n =a n 2n ﹣1,得b n =(2n ﹣1)2n ﹣1
. 所以T n =1+321+522+…+(2n ﹣1)2n ﹣1

2T n =2+322+523+…+(2n ﹣3)2n ﹣1+(2n ﹣1)2n ② ①﹣②得:﹣T n =1+22+222+…+22n ﹣1﹣(2n ﹣1)2n
=2(1+2+22+…+2n ﹣1)﹣(2n ﹣1)2n ﹣1
=2×
﹣(2n ﹣1)2n
﹣1
=2n (3﹣2n )﹣3.
∴T n =(2n ﹣3)2n
+3.
【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.
23.【答案】
【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.
(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆, ∴
ED
EP
EF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅.
∵EC EF DE ⋅=2,2,3==EF DE ,∴ 2
9
=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .
∴4
15
=
-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2 ∴)29427(4152+⨯=PA ,解得4
315=PA .……………………10分 24.【答案】
【解析】解:(Ⅰ)根据直线l 的参数方程为(t 为参数),
消去参数,得
x+y ﹣
=0,
直线l 的直角坐标方程为x+y ﹣
=0,
∵圆C 的极坐标方程为p 2
+2psin (θ+
)+1=r 2
(r >0).
∴(x+
)2
+(y+)2=r 2
(r >0).
∴圆C 的直角坐标方程为(x+)2
+(y+
)2=r 2
(r >0).
(Ⅱ)∵圆心C (﹣,﹣
),半径为r ,…(5分)
圆心C 到直线x+y ﹣
=0的距离为d=
=2,
又∵圆C 上的点到直线l 的最大距离为3,即d+r=3, ∴r=3﹣2=1.
【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.。

相关文档
最新文档