高中物理必修3物理 全册全单元精选试卷综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修3物理 全册全单元精选试卷综合测试卷(word 含答案)
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。

已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。

(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2
=G
M E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'
E 引,如果它们满足
'0.02E E E -≤引引

,则该空间就可以近似为匀强场,也就是我们常说的重力场。

请估算地
球重力场可视为匀强场的高度h (取地球半径R =6400km );
(3)某同学查阅资料知道:地球引力场的“引力势”的表达式为=-G M
r
ϕ引(以无穷远处引力势为0)。

请你设定物理情景,简要叙述推导该表达式的主要步骤。

【答案】(1)引力场强度定义式F
E m
=引,推导见解析;(2)h =64976m ;(3)推导见解析. 【解析】 【分析】 【详解】
(1)引力场强度定义式F E m
=
引 2Mm
F G
r = 联立得
2M E G
r =引 (2)根据题意
2M E G
R =引 '
2M E G r
=引 '0.02E E E -=引引

h r R R =-=
解得
h =64976m
(3)定义式引力势=
p E m
ϕ引,式中p E 为某位置的引力势能
把某物体从无穷远移动到某点引力做的功
=0-=-p p W E E 引

=-p E W 引
则当质量为m 的物体自无穷远处移动到距离地球r 处时,引力做功为W 引 通过计算得
0Mm
W G
r =引> 所以
=-p Mm
E G
r =-M G
r
ϕ引
2.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求: (1)点电荷在该点受到的电场力?
(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)
方向:由A 指向B
(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为
方向:由A 指向B
3.A 、B 是两个电荷量都是Q 的点电荷,相距l ,AB 连线中点为O 。

现将另一个电荷量为q 的点电荷放置在AB 连线的中垂线上,距O 为x 的C 处(图甲)。

(1)若此时q 所受的静电力为F 1,试求F 1的大小。

(2)若A 的电荷量变为﹣Q ,其他条件都不变(图乙),此时q 所受的静电力大小为F 2,求F 2的大小。

(3)为使F 2大于F 1,l 和x 的大小应满足什么关系?
【答案】(1)
223
(())
2
l
x+
(2)
223
(())
2
l
x+
(3) 2
l x
>
【解析】
【详解】
(1)设q为正电荷,在C点,A、B两电荷对q产生的电场力大小相同,为:
2
2)
4
(
A B
kQq
F F
l
x
==
+
方向分别为由A指向C和由B指向C,如图:
故C处的电场力大小为:
F1=2F A sinθ
方向由O指向C。

其中:2
2
4
sin
l
x
θ=
+
所以:
3122
2
24
()kQqx
F l x
=
+ (2)若A 的电荷量变为-Q ,其他条件都不变,则C 处q 受到的电场力:
F 2=2F A cosθ
其中:
22
24
l cos l x θ=
+
所以:
22
2
23(4
)kQql
F l x +=
方向由B 指向A 。

(3)为使F 2大于F 1,则:
22223(4)kQql F l x +=
>3122
2
24
()kQqx
F l x =+ 即:
l >2x
4.如图所示,在绝缘水平面上,相距L 的A 、B 两点处分别固定着两个带电荷量相等的正点电荷,a 、b 是AB 连线上的两点,其中4
L
Aa Bb ==
,O 为AB 连线的中点,一质量为m 、带电荷量为+q 的小滑块(可以看作质点)以初动能E 从a 点出发,沿直线AB 向b 点运动,其中小滑块第一次经过O 点时的动能为初动能的n 倍(1)n >,到达b 点时动能恰好为零,小滑块最终停在O 点重力加速度为g ,求: (1)小滑块与水平面间的动摩擦因数; (2)O 、b 两点间的电势差; (3)小滑块运动的总路程.
【答案】(1)k02E mgL μ= (2)k0(21)2Ob n E U q -=- (3)21
4
n s L +=
【解析】 【详解】
(1)由4
L
Aa Bb ==,0为AB 连线的中点知a 、b 关于O 点对称,则a 、b 两点间的电势差0ab U =;
设小滑块与水平面间的摩擦力大小为f ,在滑块从a 点运动到b 点的过程中,由动能定理得
k002
ab L
qU f E -⋅
=- 又摩擦力
f m
g μ=
解得
2k E mgL μ=
. (2)在滑块从O 点运动到b 点的过程中,由动能定理得
004
ob k L
qU f nE -⋅
=- 解得
ko
(21)2ob n E U q
-=-
. (3)对于小滑块从a 开始运动到最终在O 点停下的整个过程,由动能定理得
000a x k qU f E -=-

(21)2kO
aO Ob n E U U q
-=-=
解得
21
4
n s L +=
.
5.一个质量m =30g ,带电量为-1.7×10-8C 的半径极小的小球,用丝线悬挂在某匀强的电场中,电场线水平.当小球静止时,测得悬线与竖直方向成30o ,求该电场的电场强的大小和方向?
【答案】7110/E N C =⨯,水平向右 【解析】 【分析】 【详解】
小球在电场中受重力、电场力、拉力三个力,合力为零,则知电场力的方向水平向左,而小球带负电,电场强度的方向与负电荷所受电场力方向相反,所以匀强电场场强方向水平向右.
由图,根据平衡条件得
tan30
qE mg
=︒

tan30
mg
E
q ︒
=
代入解得
7
110/
E N C
=⨯
6.如图所示,边长为a的等边三角形ABC的三个顶点分别固定三个点电荷+q、+q、-q,已知静电力常量K.
(1)求C点电荷受到的电场力的大小和方向
(2)求三角形中心O点处的场强的大小和方向
【答案】(1
2
2
3
q
k
a
方向由C指向O- (2)
2
6
q
k
a
场强方向O向C
【解析】
(1)根据库仑定律,A对C的引力
2 12
q F k
a =
根据库仑定律,B对C的引力:
2 22
q F k
a
=
根据平行四边形定则可以得到:2
122cos303q F F k a
== ,合力方向由C 指向O
(2) 设OA 距离为r,由几何关系知3r a = 则A 在O 点产生场强大小为122
3q q E k k r a ==,方向由A 指向O B 在O 点产生场强大小为2223q q E k k r a ==,方向由B 指向O C 在O 点产生场强大小为322
3q q E k
k r a ==,方向由O 指向C 所以根据平行四边形定则可以得到:22
26q q
E k
k r a ==,合场强方向O 向C . 点睛:本题考查库仑定律以及电场的叠加问题,关键要掌握库仑定律公式、点电荷场强公式和平行四边形定则,结合数学知识求解.
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图所示,两平行金属板A 、B 长L=8cm ,两板间距离d=8cm ,A 板比B 板电势高300V ,一不计重力的带正电的粒子电荷量q =10-10C ,质量m =10-20kg ,沿电场中心线RD 垂直电场线飞入电场,初速度v 0=2×106m/s ,粒子飞出平行板电场后可进入界面MN 、PS 间的无电场区域.已知两界面MN 、PS 相距为12cm ,D 是中心线RD 与界面PS 的交点.
(1)粒子穿过MN 时偏离中心线RD 的距离以及速度大小? (2)粒子到达PS 界面时离D 点的距离为多少?
(3)设O 为RD 延长线上的某一点,我们可以在O 点固定一负点电荷,使粒子恰好可以绕O 点做匀速圆周运动,求在O 点固定的负点电荷的电量为多少?(静电力常数k = 9.0×109N·m 2/C 2,保留两位有效数字) 【答案】(1),
(2)
(3)
【解析】 【分析】
【详解】
(1)粒子进入A、B后应做类平抛运动,设在A、B板间运动时加速度大小为a,时间为t1,在MN界面处速度为v,沿MN的分速度为v y,偏转位移为y,v与水平夹角为α,运动轨迹如图
则:01
l v t
=①
2
11
1
2
y at
=②
AB
U q
a
dm
=③
1
Y
v at
=④
tan Y
v
v
α=⑤
由以上各式,代入数据求得:0.03m
y=,6
1.510m/s
Y
v=⨯,
3
tan
4
α=
故粒子通过MN界面时的速度为:226
2.510m/s
Y
v v v
=+=⨯
(2)带电粒子在离开电场后将做匀速直线运动,其运动轨迹与PS线交于a点,设a到中心线的距离为Y
则:
2
2
L
y
L
Y S
=
+
解得:0.12m
Y=
(3)粒子穿过界面PS后将绕电荷Q做匀速圆周运动,设圆周运动的半径为r,由几何关系得:0
v Y
v r
=,即0.15m
r=

2
2
qQ v
k m
r r
=得:
2
8
110C
mrv
Q
kq
-
==⨯
【点睛】
(1)由类平抛知识,带入数值便可求出偏离RD的距离;带电粒子在离开电场后将做匀速直线运动,求出时间即可知道aD的距离;
(2)库仑力提供向心力,根据牛顿第二定律联合即可求得电量及其电性.
8.如图所示,从电子枪射出的电子束(初速度不计)经电压U 1=2000V 加速后,从一对金属板Y 和Y′正中间平行金属板射入,电子束穿过两板空隙后最终垂直打在荧光屏上的O 点.若现在用一输出电压为U 2=160V 的稳压电源与金属板YY′连接,在YY′间产生匀强电场,使得电子束发生偏转.若取电子质量为9×10﹣31kg ,YY′两板间距d=2.4cm ,板长l=6.0cm ,板的末端到荧光屏的距离L=12cm .整个装置处于真空中,不考虑重力的影响,试回答以下问题:
(1)电子束射入金属板YY′时速度为多大?
(2)加上电压U 2后电子束打到荧光屏上的位置到O 点的距离为多少?
(3)如果两金属板YY′间的距离d 可以随意调节(保证电子束仍从两板正中间射入),其他条件都不变,试求电子束打到荧光屏上的位置到O 点距离的取值范围. 【答案】(1)2.67×107m/s ;(2)15mm ;(3)0~30mm . 【解析】 【分析】 【详解】
(1)根据动能定理,设电子在加速电极作用下获得速度为v 0, 有2
1012
U e mv =
, 解得:102U e
v m
=
…①
代入数据解得:7708
10/ 2.6710/3
v m s m s =
⨯≈⨯; (2)电子穿过偏转电极过程中,在沿初速度方向做匀速直线运动有l=v 0t…② 在沿电场方向受力为F=Eq…③ 根据匀强电场性质U 2=Ed…④ 根据牛顿第二定律F=ma…⑤
根据匀变速直线运动规律,在出偏转电场时其在电场方向位移为[来2
12
y at =
…⑥
根据①﹣⑥
式可推得:2
21
4U l y dU =
…⑦ 此时在电场方向上的分速度为:v y =at…⑧
出电场后电子做直线运动最终打在荧光屏上,距离O 点的距离设为y´,根据几何关系及①⑦⑧可得
()21
22´4U l l L l L
y y l dU ++=
=…⑨ 将数据代入⑦式可得y=3mm <
2
d
,所以此时电子可以射出偏转电场 于是将数据代入⑨式可得y′=15mm
(3)d 越小则偏转电场越强,电子的偏转也越厉害,但是同时两板间距缩小电子更容易打在极板上,
所以电子的偏转应有最大值,且临界条件为电子刚好擦YY´极板而出.即:2
d
y =…⑩ 联立⑦式代入数据可解得此时:y=6mm , 继续代入⑨式可得此时:y′=30mm ,
所以电子束打到荧光屏上的位置到O 点距离的取值范围为0~30mm ;
9.电容器是一种重要的电学元件,基本工作方式就是充电和放电.由这种充放电的工作方式延伸出来的许多电学现象,使得电容器有着广泛的应用.如图1所示,电源与电容器、电阻、开关组成闭合电路.已知电源电动势为E ,内阻不计,电阻阻值为R ,平行板电容器电容为C ,两极板间为真空,两极板间距离为d ,不考虑极板边缘效应.
(1)闭合开关S ,电源向电容器充电.经过时间t ,电容器基本充满. a .求时间t 内通过R 的平均电流I ;
b .请在图2中画出充电过程中电容器的带电荷量q 随电容器两极板电压u 变化的图象;并求出稳定后电容器储存的能量E0;
(2)稳定后断开开关S .将电容器一极板固定,用恒力F 将另一极板沿垂直极板方向缓慢拉开一段距离x ,在移动过程中电容器电荷量保持不变,力F 做功为W ;与此同时,电容器储存的能量增加了ΔE .请推导证明:W=ΔE .要求最后的表达式用已知量表示. 【答案】(1)a .CE I t
= b .2
012E CE = (2)见解析
【解析】
试题分析:(1)a.设充电完毕电容器所带电量为Q,即时间t内通过电阻R的电量,此时电容器两端电
压等于电源的电动势
根据电容的定义(2分)
根据电流强度的定义(2分)
解得平均电流(2分)
b.根据q = Cu,画出q-u图像如图1所示(2分)
由图像可知,图线与横轴所围面积即为电容器储存的能量,如图2中斜线部分所示
由图像求出电容器储存的电能(2分)
解得(2分)
(2)设两极板间场强为,两极板正对面积为S
根据,,得,可知极板在移动过程中板间场强不变,两极板间的相互作用力为恒力.两板间的相互作用可以看作负极板电荷处于正极板电荷产生的电场中,可知两板间的相互作用力.(2分)缓慢移动时有
根据功的定义有
代入已知量得出(2分)
电容器增加的能量(或)
(2分)
代入已知量得出(2分)
所以
考点:电容,电动势,能量守恒.
10.如图所示,直角坐标系xOy在竖直平面内,x轴沿水平方向,空间有平行坐标平面竖直向上的匀强电场,电场强度大小为E,在第一、四象限内以坐标原点O为圆心的半圆形
区域内有垂直坐标平面向里的匀强磁场,磁场的磁感应强度大小为B 0,圆的半径为R ,一个带电荷量为q 的小球A 静止于Q 点,另一个质量和带电荷量都与A 球相同的小球B 在P 点,获得一个沿x 轴正方向的初速度,小球B 与小球A 在进磁场前碰撞并粘合在一起,两球经磁场偏转后,最终竖直向上运动,不计两球碰撞过程中电量损失,P 点到O 点的距离为R ,重力加速度大小为g ,求:
(1)小球B 从P 点向右运动的初速度0v 的大小;
(2)撤去小球A ,改变y 轴左侧电场强度的大小,将小球B 从P 点向右开始运动的速度减为原来的
2
4
,结果小球B 刚好从y 轴上坐标为0,2R ⎛⎫- ⎪⎝⎭的位置进入磁场,试确定粒子经
磁场偏转后出磁场的位置坐标。

【答案】(1)002gB R v E =;(2)37,44R R ⎛⎫- ⎪ ⎪⎝⎭
【解析】 【分析】 【详解】
(1)因为小球A 静止在Q 点,所以与A 球质量和电荷量相等的B 球将向右做匀速直线运动,然后与A 球相碰,设两球的质量为m ,B 球的初速度大小为0v ,A 、B 碰撞后的共同速度为1v ,根据动量守恒有
012mv mv =
解得
101
2
v v =
由于小球A 在碰撞前处于静止状态,则
qE mg =
解得
mg
q E
=
粒子进入磁场后做匀速圆周运动,设小球在磁场中做圆周运动的半径为r ,根据粒子运动的轨迹,依据几何关系
2
r R =
根据牛顿第二定律有
2
11022v qv B m r
=
解得
00R
v E
=
(2)由题意可知,粒子从P 点出射的速度大小
00042gB R v E
=
=' 粒子在进磁场前做类平拋运动,进磁场时的速度的反向延长线交于水平位移的中点,则粒子进磁场时速度与x 轴正正向的夹角为45度,则粒子进磁场时的速度大小
20v ='
粒子在磁场中做匀速圆周运动,则
2
2
202
v qv B m r =
解得
22
r R =
由几何关系可知,粒子在磁场中做圆周运动的圆心位置为
,02R ⎛⎫ ⎪⎝⎭
有界场边界满足
222x y R +=
粒子在磁场中做圆周运动的轨迹满足
2
22
22R x y r ⎛⎫-+= ⎪

⎭ 解得
3
4x R =
4
y R =-
因此粒子出磁场时的位置坐标为
3,44R R ⎛⎫- ⎪ ⎪⎝⎭
11.如图所示,真空室中电极K 发出的电子(初速度不计)经过电势差为U 1的加速电场加速后,沿两水平金属板C 、D 间的中心线射入两板间的偏转电场,电子离开偏转电极时速度方向与水平方向成45°,最后打在荧光屏上,已知电子的质量为m 、电荷量为e ,C 、D 极板长为l ,D 板的电势比C 板的电势高,极板间距离为d ,荧光屏距C 、D 右端的距离为
1
6
.电子重力不计.求:
(1)电子通过偏转电场的时间t 0; (2)偏转电极C 、D 间的电压U 2; (3)电子到达荧光屏离O 点的距离Y . 【答案】(1)12m eU (2)
12d U l (3)2
3
l 【解析】 【分析】 【详解】
(1)电子在离开B 板时的速度为v ,根据动能定理可得:2
112
eU mv = 得:1
2eU v m
=
电子进入偏转电场水平方向做匀速直线运动,则有:01
2l m t v eU ==(2)电子在偏转电极中的加速度:1
eU a md
=
离开电场时竖直方向的速度:201
2y U l e
v at d
mU == 离开电场轨迹如图所示:
电子的速度与水平方向的夹角:21
tan 45?=2y v U l
v
dU =
解得:1
22dU U l
=
(3)离开电场的侧向位移:21012
y at = 解得:12
l y =
电子离开电场后,沿竖直方向的位移:2tan 45=66l l y =
︒ 电子到达荧光屏离O 点的距离:122
3
Y y y l =+= 【点睛】
本题考查带电粒子在电场中的运动,要注意明确带电粒子的运动可分加速和偏转两类,加速一般采用动能定理求解,而偏转采用的方法是运动的合成和分解.
12.如图所示,光滑水平面上方以CD 为界,右边有水平向右的匀强电场,电场强度大小E =104N/C,水平面上有质量为M =0.1kg 的绝缘板,板的右端A 恰好在边界CD 处,板上距A 端l =1.8m 放置一质量m 1=0.1kg 、带电量为q =-8×10-5 C 的小滑块P .质量为m 2=0.5kg 的小滑块Q 以初速度v 0=5.5m/s 从B 端滑入绝缘板,在与小滑块P 相遇前,小滑块P 已进入电场.已知小滑块P 、Q 与板之间的动摩擦因数分别为μ1=0.5、μ2=0.1,最大静摩擦力近似等于滑动摩擦力.g =10m/s 2.求:
(1)小滑块Q 刚滑上板时,滑块P 的加速度大小a 1; (2)小滑块P 进入电场后的加速度大小和方向;
(3)若小滑块P 、Q 恰好在CD 边界相向相遇,AB 板的长度L . 【答案】(1)2.5m/s 2(2)3m/s 2;方向向右(3)12.52m 【解析】
(1)设:小滑块P 与绝缘板一起向右加速运动.
由牛顿第二定律:2211
()
m g m M a
μ=+,解得:2
1
2.5m/s
a=;
对小滑块P,由牛顿第二定律:1110.25N
f m a
==,
1max111
0.5N>
f m
g f
μ
==假设正确;(2)小滑块P进入电场后,设:小滑块P相对绝缘板运动,
对绝缘板,由牛顿第二定律得:2211)
m g m g M a
μμ
-=,解得:a=0,做匀速直线运动;对小滑块P,由牛顿第二定律1111
qE m g m a
μ'
-=,解得2
1
3m/s
a'=,方向向左,假设正确;
(3)设刚进入电场时小滑块P的速度为v1
由运动学公式:
11
23m/s
v a l
==,
滑块P进入电场前运动的时间为1
1
1
1.2s
v
t
a
==,
设滑块P回到CD边界时间为t2,
由运动学公式:2
1212
1
2
v t a t'
-=,解得
2
2s
t=;
对小滑块Q,加速度大小为a2,
由牛顿第二定律得:2222
m g m a
μ=,2
22
1m/s
a g
μ
==;
设:经过t3时间,小滑块Q与绝缘板共速,即:1023
v v a t
=-;
解得:01
312
2
2.5s<
3.2s
v v
t t t
a
-
==+=,
设:此后小滑块Q与绝缘板共同做匀减速运动,其加速度大小为2a',
由牛顿第二定律得:1122
()
m g m M a
μ'
=+,
解得:2
11
2
2
5
m/s
6
m g
a
M m
μ
'==
+

Q相对于绝缘板的总位移:22
1032311131
11
()[()] 4.925m
22
x v t a t a t v t t
=--+-=,
小滑块P相对于板的总位移:
2
213111232123
1
()()() 5.796m
2
x v t t v t t t a t t t
'
=-++--+-≈,
板的总长度为1212.52m
L x x l
=++≈.
三、必修第
3册 电路及其应用实验题易错题培优(难)
13.现提供如下器材,测量定值电阻x R (约
)的阻值.
a .两个相同电流计1G 、2G (50A μ,内阻约)
b .电阻箱1R ()
c .电阻箱2R ,()
d .电源E (电动势约3V ,内阻不计)
e .开关两个,导线若干
f .滑动变阻器R (最大阻值20Ω)
(1)由于电流计量程很小,需要先将它们进行改装.某同学设计了用半偏法测电流计内阻的电路如图.实验过程如下:先将2R 调为最大,然后闭合1S 、2S ,调节1R 、2R ,使___________满偏,
使_____________半满偏(填写元件符号),由此可测电流计2G 的内阻. (2)若测得电流计2G 的内阻为,要将2G 改装成量程为3V 的电压表,需串联的电阻
值为_____________.
(3)采用改装后的电压表和改装后电流表并用伏安法测量待测电阻阻值,请在答题卷虚线框內画出实验电路图____________.
【答案】G 1 G 2 55.8kΩ
【解析】 【详解】
(1)若并联的两个支路电流相等,则电流表内阻与电阻箱内阻相等;故保证G 1满偏,使G 2半偏;
(2)电流计内阻为4.2KΩ,满偏电流为50μA ,要将G 2改装成量程为3V 的电压表,需串联的电阻值为:3463 4.210 5.581055.85010
g g U R R K I -=
--⨯⨯ΩΩ⨯===
(3)采用伏安法测电阻,要测量多组数据,滑动变阻器采用分压式接法,电流表内外接法依据待测电阻的电阻值与电流表、电压表的内阻关系进行判断,故内外接均可;电路中电流约为:3/5000A=600μA;给出的电流计不能测量电流值;故应将电流计改装为大量程的电流表.电路原理图如图所示:
14.某同学设计了如图所示的实验电路测量电压表的内阻和电阻丝的电阻,实验室提供的器材有:两节干电池、电阻箱R0、粗细均匀的电阻丝、与电阻丝接触良好的滑动触头P、开关、灵敏电流计(灵敏电流计的零刻度在表盘正中央)、待测电压表、导线.他进行了下列实验操作:
(1)按原理如图将如图所示的实物图连接成完整电路,请你帮他完成实物连线_______;(2)先将电阻箱的阻值调至最大,将滑动触头P移至电阻丝的正中间位置;
(3)闭合开关K,将电阻箱的阻值逐渐减小,当电阻箱的阻值为R0时,灵敏电流计示数为0,可知电压表内阻R V=_____;
(IV)将电阻箱的阻值调至0,将cd导线断开,然后将滑动触头P移至最左端.此时电压表的示数为U,灵敏电流计的示数为I,则电阻丝的电阻为_____,测得的电阻值_____(填“偏大”“偏小”或“准确”).
【答案】电路连线如图:
R 0
U
I
偏大 【解析】 【详解】
(1)电路连线如图:
(3)灵敏电流计的示数为0时,说明电压表和电阻箱分压之比与电阻丝右边和左边电阻分压相等,故0V R R =;
(4)将电阻箱的阻值调至0,将cd 导线断开,将滑动触头P 移至最左端后,电阻丝的全部电阻与灵敏电流计串联,电压表测量的是灵敏电流计和电阻丝的总电压,电阻丝电阻的测量值U R I =
,因为采用了内接法,A U
R R I
=+ ,故电阻的测量值偏大.
15.现将一满偏电流Ig =1mA 且内阻未知的电流表改装成量程为3V 的电压表.电流表的电阻可用下面(甲)图电路测定.连接好电路,先将电位器R 2调至最大,断开S 2,闭合S 1,调节电位器R 2,使电流表指针偏转到满刻度.再闭合S 2,调节电阻箱R 1,使电流表的指针偏转到满刻度的
2
3
,此时电阻箱R 1的示数如图(乙)所示.
(1)电阻箱的示数R1=________Ω.
(2)按要求将该电流表改装成量程为3V的电压表时应串联一个阻值R=_______Ω的电阻.
(3)用此电路测定电流表的内阻会产生系统误差,导致测量值_______真实值(填“大于”或“小于”).
(4)要对改装好的电压表进行逐刻度校对,实验器材如(丙)图所示,请完成实物图连线
__________.
【答案】120 2940 小于
【解析】
(1)电阻箱的读数是从最大的数开始读.该电阻的阻值:1000×0+100×1+10×2+1×0=120Ω.
(2)将上述电流表改装成量程为6.0V的电压表,应给该表头串联一个阻值为:I g×(r g+R)=U,而r g=240Ω,代入数据得:R=2940Ω.
(3)闭合S2后,电路总电阻变小,电路总电流变大,通过R1的电流小于原来电流的三分之二,则该实验测出的电表内阻偏小;
(4)为了使改装后的电压表跟标准电压表V从0开始一一进行校对,采用滑动变阻器的分压接法,同时两表需要并联,实物连线如图所示:
【点睛】本题考查半偏法测电流表内阻的原理和电压表的改装原理以及改装表的校对,难点是对半偏法测电流表内阻原理的解释.
16.某小组设计实验对电流表内阻进行测量,电路如图甲,其中 A1是标准电流表(量程100mA,内阻约15Ω),电流表A2(量程略小于 100mA,内阻约18Ω)表刻度盘刻度完整
但缺少刻度值。

R1、R2为电阻箱,实验步骤如下:
①使用螺丝刀,调整A2机械调零旋钮,使指针指向“0”刻度;
②分别将R1和R2的阻值调至最大
③断开S2,合上开关 S1,调节R1使A2的指针达到满偏刻度,记下此时A1的示数I0
④开关S2接到1,反复调节R1和R2,使A1的示数仍为I0,记录不同R2阻值和对应电流表A2示数为I0的 n 倍(n<1)即 n I0。

⑤做出n-1—R-1 图象,如图乙所示。

(1)根据图甲和题给条件,将图丙中的实物连线补充完整;
(____)
(2)电流表A2的量程为______(用所测物理量表示);根据图象可计算电流表A2内阻为
_____Ω;(保留两位有效数字)
(3)一同学认为该电路可以进一步测量电流表A1内阻,他把单刀双掷开关接到2,调整电阻箱R1和R2阻值,使电流表A1和电流表A2示数恰当,并分别记下电流表示数I1,I2,请用R1、R2、I1和I2表示电流表 A1内阻R=_____________________________________ 。

【答案】I0202212
1
I
R R R
I
--
【解析】
【分析】
【详解】
(1)[1].电路连线如图:
(2) [2].使A
2的指针达到满偏刻度时,此时A 1的示数I 0,可知电流表A 2的量程为I 0;
[3].根据电路的结构可得
22002
A R nI I R R =
+ 可得 22
11A R n R =+ 所以11n R ---图象斜率表示A 2内阻,内阻为
2 2.0 1.0200.05
A R k -==
Ω=Ω; (3)[4].当单刀双掷开关接到2,根据并联关系
12211I R I I R R =-+ 所以
22121
I R R R R I =--
17.某学习小组在做“测定金属丝的电阻率”的实验时,用了两个电压表,目的是可以同时测定电源的电动势和内阻,电路图如图甲所示,实验室可选用的器材有:
A .金属丝(阻值几欧)
B .电池(电动势3V 左右,内阻几欧)
C .电压表两个(量程3V ,内阻很大)
D .电流表(量程0.6A ,内阻0.2Ω左右)
E.电流表(量程3A ,内阻0.04Ω左右)
F.滑动变阻器(0〜2kΩ)
G.滑动变阻器(0〜20Ω)
H.毫米刻度尺,螺旋测微器
I.开关,导线若干
(1)实验前在选用器材时,电流表应选择_____,滑动变阻器应选择_____;(均填器材前的字母)
(2)测得金属丝的长度为0.5023m ;在测金属丝直径时,螺旋测微器的测量结果如图乙所示,则金属丝的直径为______mm ;
(3)实验过程中电压表V 1、V 2与电流表A 的测量结果已经在图丙中的图像中描出,由U —I 图像可得,电源的电动势为_____V ,电源的内阻为_____Ω,金属丝的电阻为____Ω;(均保留三位有效数字)
(4)由电阻定律可得,金属丝的电阻率为______Ω⋅m (保留两位有效数字)。

【答案】D G 0.580 3.00(2.98〜3.00均给分) 2.0(2.17〜2.22均给分) 3.00(2.97
〜3.09均给分) 1.6×10-6
【解析】
【分析】
【详解】 (1)该实验中金属丝的电阻为几欧姆,所以滑动变阻器的阻值选择量程为20欧姆的即可,所以选择G ,所以电流表选择0.6A 的就可以,所以是D 。

(2)根据螺旋测器的读数规则0.50.018.00.580d mm mm mm =+⨯=
(3)V 2测的是电源电动势,V 1测的是金属丝的电压,根据图像可知,斜率为负的那条直线对应的是V 2的图线,斜率为正的是V 1的图线,V 2图线与纵轴的交点即为电动势,斜率的大小为内阻,得到 3.00V E =, 2.0r =Ω,两条线的交点为金属丝的工作电压和电流,所以金属丝的电阻为 1.8 3.00.6
U R I ==Ω=Ω。

(4)
根据电阻定律可得
2
6
()
2 1.610?
d
R
m
L
π
ρ-
==⨯Ω
18.在“测定金属的电阻率”的实验中,小强同学先用多用电表粗测了一段粗细均匀的电阻丝的阻值(约为5Ω),随后将其固定在带有刻度尺的木板上,准备进一步精确测量其电阻.
(1)用螺旋测微器测量金属丝的直径,其中某一次测量结果如图所示,其读数应为
___________mm.
(2)现有电源(电动势E为3. 0V,内阻不计)、开关和导线若干,以及下列器材:
A.电流表(量程0~3A,内阻约0. 025Ω

B.电流表(量程0~0. 6A,内阻约0. 125Ω)
C.电压表(量程0~3V,内阻约3kΩ)
D.滑动变阻器(0~20Ω,额定电流2A)
E. 滑动变阻器(0~100Ω,额定电流1A)
①为减小误差,且便于操作,在实验中电流表应选___________,滑动变阻器应选
___________(选填器材前的字母).
②如图甲所示,是测量该电阻丝实验器材的实物图,图中已连接了部分导线,还有两根导线没有连接,请补充完整___________.
③在甲图中,在开关闭合前,滑动变阻器的滑片应当调到最_________(选填“左”或“右”
端),闭合开关后,在实验中电压表读数的最小值___________(选填“大于零”或“等于零”).
④按照上述步骤②正确连接电路的前提下,若不计实验中的偶然误差,则下列说法正确的是___________.
A .电阻测量值偏大,产生系统误差的主要原因是电流表分压
B .电阻测量值偏小,产生系统误差的主要原因是电压表分流
C .若已知电压表的内阻,可计算出待测电阻的真实值
D .若已知电流表的内阻,可计算出待测电阻的真实值
⑤小鹏同学仍用上述电源也设计了一个实验,电路如图乙所示,R 为保护电阻,已测出电阻丝的横截面积为S ,用一个带有接线柱的小金属夹沿电阻丝滑动,可改变接入电路中电阻丝的长度L ,实验中记录了几组不同长度L 对应的电流I . 他准备利用图象法处理数据来计算该电阻丝的电阻率.
请分析说明小鹏同学应该做出怎样的线性函数图象,并定性画出该图象,请进一步指出在本实验中电流表的内阻对该电阻丝电阻率的测量结果有无影响__________.
【答案】0.212 B D 左 大于零 BC 小鹏同学应该做出测量作出1l I —的图象,斜率k ES
ρ=,即kES ρ=,所以电流表的内阻对该电阻丝电阻率的测量结果没有影响。

【解析】
【详解】
(1)[1] 螺旋测微器测得测量金属丝的直径为0mm 21.20.01mm 0.212mm =+⨯=d (2)[2] 电阻丝的阻值约为5Ω, 电源电动势E 为3. 0V ,电路中最大电流
3A 0.6A 5
x E I R ===,为读数准确,电流表应选择B 电流表(量程0~0. 6A ,内阻约0. 125Ω)。

[3]为调节方便滑动变阻器的阻值与待测电阻相差不易过大,故滑动变阻器应选择D 滑动变阻器(0~20Ω,额定电流2A )。

[4]电压表与电阻丝并联,测量电阻丝两端的电压;电流表串联在电路中,测量通过电阻丝的电流。

连接电路如图:。

相关文档
最新文档