2013年成都七中中考数学一诊试题

合集下载

四川省成都七中2013-2014学年高一下学期期末考试数学试题 Word版含解析

四川省成都七中2013-2014学年高一下学期期末考试数学试题 Word版含解析
当 ,即 ,解为 ;4分
当 ,即 ,解为 ;8分
当 ,即 ,无解;11分
综上,不等式的解集为当 ,解为 ;当 ,解为 ;
当 ,无解12分
【思路点拨】对参数进行分类争辩即可.
19.已知向量 ,向量 .
(1)求 在 方向上的投影;
(2)求 的最大值;
(3)若 , , , ,求 .
【学问点】向量的数量积公式;向量的坐标表示;分类争辩的思想方法;等比数列求和.
【思路点拨】将 = 绕原点 逆时针方向旋转 得到 后可得 两点关于 轴对称,据此可得结果.
9.设 , ,则有()
A. B. C. D. 的大小关系不确定
【学问点】两角差的正弦公式;万能公式;正弦函数的单调性.
【答案解析】A解析:解:由于 ,
由正弦函数的单调性可知 ,故选A.
【思路点拨】先把两个三角式化简,再利用正弦函数的单调性即可.
【学问点】组合几何体的面积、体积问题.
【答案解析】2解析:解:设球半径为r,则由 可得 ,解得 .故答案为:2.
【思路点拨】设出球的半径,三个球的体积和水的体积之和,等于柱体的体积,求解即可.
14.在等比数列 中, ,则该数列的前9项的和等于ቤተ መጻሕፍቲ ባይዱ____.
【学问点】等比数列的性质.
【答案解析】13解析:解:由于 , 所以 ,而 ,所以该数列的前9项的和
10.如图,在直角梯形 中, 点 在阴影区域(含边界)中运动,则有 的取值范围是()
A. B. C. D.
【学问点】向量的坐标表示;简洁的线性规划.
【答案解析】C解析:解:以BC所在的直线为 轴,以BA所在的直线为 轴建立坐标系,如下图:
可得 , , , ,设 ,所以 ,令

2013年四川省成都市中考数学试卷-答案

2013年四川省成都市中考数学试卷-答案
第Ⅱ卷
2 / 16
二、填空题
11.【答案】 x 2
【解析】解:2x 1 3,移项得:2x 3 1,合并同类项得:2x 4 ,不等式的两边都除以 2 得: x 2 .
【提示】移项后合并同类项得出 2x 4 ,不等式的两边都除以 2 即可求出答案.
【考点】解一元一次不等式,不等式的性质.
变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值 1 ,n 是正数;当原 数的绝对值 1 时, n 是负数. 【考点】科学记数法—表示较大的数. 7.【答案】B 【解析】解:在矩形 ABCD 中,CD AB ,∵矩形 ABCD 沿对角线 BD 折叠后点 C 和点 C 重合,∴ CD CD , ∴ CD AB ,∵ AB 2 ,∴ CD 2 ,故选 B. 【提示】根据矩形的对边相等可得 CD AB ,再根据翻折变换的性质可得 CD CD ,代入数据即可得解. 【考点】矩形的性质,翻折变换(折叠问题). 8.【答案】C 【解析】解:A.当 x 0 时, y 3 ,不经过原点,故本选项错误; B.反比例函数,不经过原点,故本选项错误; C.当 x 0 时, y 0 ,经过原点,故本选项正确; D.当 x 0 时, y 7 ,不经过原点,故本选项错误;故选 C. 【提示】将 (0,0) 代入各选项进行判断即可. 【考点】二次函数图像上点的坐标特征,一次函数图像上点的坐标特征,反比例函数图像上点的坐标特征. 9.【答案】A 【解析】解: b2 4ac 12 41 (2) 9 ,∵ 9 0 ,∴原方程有两个不相等的实数根,故选 A.
四川省成都市二 O 一三年高中阶段教育学校统一招生考试
(含成都市初三毕业生会考)

[vip专享]2013年成都市中考数学试题与答案——求解答版

[vip专享]2013年成都市中考数学试题与答案——求解答版

成都市二零一三高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学注意事项:1.全卷分A 卷和B卷,A卷满分100分,B 卷满分50分;考试时间120分钟。

2.在作答前,考试务必将自己的姓名、准考证号涂在=写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并回收。

3.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔记清楚。

4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 2的相反数是( )A.2B.-2C.D.121-2答案:B2.如图所示的几何体的俯视图可能是( )答案:C3.要使分式有意义,则X的取值范围是( )5x 1-A.B.C.D.x 1≠x 1>1x <x 1≠-答案:A 4.如图,在△ABC中,,AB=5,则AC 的长为( )B C ∠=∠A.2 B.3 C.4 D.5答案:D5.下列运算正确的是( )A. B. C. D.1-=3⨯(3)15-8=-3-32=60-=0(2013)答案:B 6.参加成都市今年初三毕业会考的学生约为13万人,将13万用科学记数法表示应为( )A. B. C. D. 51.310⨯41.310⨯50.1310⨯40.1310⨯答案:A7.如图,将矩形ABCD 沿对角线BD 折叠,使点C 与点C’重合。

若AB=2,则C’D 的长为( )A.1 B.2 C.3 D.4答案:B8.在平面直角坐标系中,下列函数的图像经过原点的是( )A.y=-x+3B. C.y=2x D.5y x =2y 27x x =-+-答案:C 9.一元二次方程的根的情况是( )220x x +-=A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根答案:A 10.如图,点A,B,C 在上,,则的度数为( )O A A 50∠= BOC ∠A. B. C. D.40 50 80 100答案:D二、填空题(本大题4个小题,每个小题4分,共16分,答案写在答题卡上)11.不等式d 的解集为_________.2x 13->答案:x>2解析:2x-1>3 ⇒2x>4 ⇒x>212.今年4月20日在雅安芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额众数是_______元.答案:1013.如图,,若AB ∥CD ,CB 平分,则______度.B 30∠=ACD ∠ACD=∠答案:60°解析:∠ACD=2∠BCD=2∠ABC=60°14.如图,某山坡的坡面AB=200米,坡角,则该山坡的高BC 的长为_____米。

2013年四川省成都市中考数学一诊预测试卷

2013年四川省成都市中考数学一诊预测试卷

2013年四川省成都市中考数学一诊预测试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.D23).B C D4.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增5.(3分)(2008•衡阳)如图所示的几何体的主视图是().B C D7.(3分)把不等式组的解集表示在数轴上,下列选项正确的是().B C D)9.(3分)(2011•北海)如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()10.(3分)(2006•重庆)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()二、填空题(每小题3分,共15分)11.(3分)(2011•东营)分解因式:x2y﹣2xy+y=_________.10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是_________.(填“甲”、“乙”、“丙”中的一个)13.(3分)方程组的解是_________.14.(3分)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为_________.15.(3分)(2009•枣庄)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.三、解答题(本大题共8个小题,满分55分)16.(21分)(1)计算:;(2)解方程:;(3)先化简,再求值:,其中m=.17.(8分)(2008•济南)完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解)18.(8分)(2012•德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.19.(8分)(2011•绍兴)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)20.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).四、填空题(本大题共5个小题,每小题4分,共20分.)21.(4分)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为_________.22.(4分)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为_________(结果保留根号的形式).23.(4分)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是_________.24.(4分)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=_________.(用含m的代数式表示)25.(4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值和最大值分别为多少?五、解答题:(本大题共3个小题,共30分)26.(8分)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,20至40之间(20≤m≤40).试解决下列问题:(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.27.(10分)(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD(3)若FB=FE=2,求⊙O的半径r的长.28.(12分)(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y 轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.2013年四川省成都市中考数学一模预测试卷参考答案与试题解析一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.D23).B C D)在平面直角坐标系的第一象限内,可得4.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增5.(3分)(2008•衡阳)如图所示的几何体的主视图是().B C D7.(3分)把不等式组的解集表示在数轴上,下列选项正确的是().B C D)r=9.(3分)(2011•北海)如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()10.(3分)(2006•重庆)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()DCF=二、填空题(每小题3分,共15分)11.(3分)(2011•东营)分解因式:x2y﹣2xy+y=y(x﹣1)2.10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是乙.(填“甲”、“乙”、“丙”中的一个)13.(3分)方程组的解是.,.故答案为:14.(3分)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.﹣15.(3分)(2009•枣庄)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).x+4三、解答题(本大题共8个小题,满分55分)16.(21分)(1)计算:;(2)解方程:;(3)先化简,再求值:,其中m=.﹣﹣,方程变为﹣=或;÷•,.17.(8分)(2008•济南)完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解))不在第二象限的概率为18.(8分)(2012•德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.=y=2,××19.(8分)(2011•绍兴)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)=7520.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).aBE=CE=aAC=PQ==a四、填空题(本大题共5个小题,每小题4分,共20分.)21.(4分)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为6.22.(4分)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为4或(结果保留根号的形式).×=2因而面积是=4CEA==30××或或23.(4分)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.OM=TC=∠=××﹣故答案为:24.(4分)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)==,((﹣(ME FN(﹣(=.故答案为:25.(4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值和最大值分别为多少?的最大值等于矩形对角线的长度,即=12+4五、解答题:(本大题共3个小题,共30分)26.(8分)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,20至40之间(20≤m≤40).试解决下列问题:(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.27.(10分)(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.==,=4,28.(12分)(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y 轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.x x+2,∴x x+2=,,)x+6DGx+,∴),+,﹣2=(,)或,)。

2013年成都市中考数学试题答案

2013年成都市中考数学试题答案

成都市二〇一三年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案及评分意见A 卷(共100分)第Ⅰ卷(共30分)一、 选择题(每小题3分,共30分) 1.B ; 2.C ; 3.A ; 4.D ; 5.B ;6.A ;7.B ;8.C ;9.A ;10.D .第Ⅱ卷(共70分)二、 填空题(每小题4分,共16分) 11.2x >;12.10;13.60;14.100.三、 解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)解:原式=42+- ······4分=4.······6分(2)解:由①+②,得 36x =, ∴2x =.······3分把2x =代入①,得 21y +=,∴ 1y =-.······5分 ∴ 原方程组的解为 2,1.x y =⎧⎨=-⎩······6分16.(本小题满分6分)解:原式=2(1)(1)1a a a a --÷-······4分=(1)a a -21(1)a a -⋅-······5分 =a .······6分17.(本小题满分8分)解:(1)如图,△AB ′C ′为所求三角形.······4分(2)由图可知, 2AC =,∴线段AC 在旋转过程中所扫过的扇形的面积为:2902360S π⋅==π.······8分18.(本小题满分8分) 解:(1)4,0.7;(每空2分)······4分(2)由(1)知获得A 等级的学生共有4人,则另外两名学生为A 3和A 4.画如下树状图:所有可能出现的结果是:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 1),(A 2,A 3),(A 2,A 4),(A 3,A 1),(A 3,A 2),(A 3,A 4),(A 4,A 1),(A 4,A 2),(A 4,A 3).······7分 或列表如下:······7分由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A 1,A 2两名学生的结果有2种. ∴P (恰好抽到A 1,A 2两名学生)21126==. ·····8分19.(本小题满分10分)解:(1)∵ 一次函数11y x =+的图象经过点(A m ,2),∴ 21m =+. ······1分 解得 1m =.······2分 ∴ 点A 的坐标为(1A ,2).······3分∵ 反比例函数2ky x=的图象经过点(1A ,2), ∴ 21k =. 解得 2k =.∴ 反比例函数的表达式为22y x=.······5分(2)由图象,得当01x <<时,12y y <;······7分当1x =时,12y y =; ······8分当1x >时,12y y >.······10分20.(本小题满分10分)解:(1)证明:∵BD ⊥BE ,A ,B ,C 三点共线,∴∠ABD +∠CBE =90°.······1分∵∠C =90°, ∴∠CBE +∠E =90°. ∴∠ABD =∠E .又∵∠A =∠C ,AD =BC , ∴△DAB ≌△BCE (AAS).······3分∴AB=CE .∴AC=AB+BC=AD+CE .······4分(2)ⅰ)连接DQ ,设BD 与PQ 交于点F .∵∠DPF =∠QBF =90°,∠DFP =∠QFB , ∴△DFP ∽△QFB .······5分∴DF PFQF BF=. 又∵∠DFQ =∠PFB ,∴△DFQ ∽△PFB .······6分∴∠DQP =∠DBA . ∴tan tan DQP DBA ∠=∠.即在Rt △DPQ 和Rt △DAB 中,DP DAPQ AB=. ∵AD =3,AB =CE =5, ∴35DP PQ =. ·····8分ⅱ)线段DQ 的中点所经过的路径(线段)长为2334.······10分B 卷(共50分)一、填空题(每小题4分,共20分) 21.13-; 22.711; 23.0或1;24.③④;25.p c =+;p c =+(每空2分). 二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)解:(1)当37t <≤时,设v kt b =+,把(3,2),(7,10)代入得23,107.k b k b =+⎧⎨=+⎩ ······1分解得2,4.k b =⎧⎨=-⎩······2分∴2 4.v t =- ······3分(2)当03t ≤≤时,2.s t = ······4分当37t <≤时,[]1232(24)(3)2s t t =⨯++-- 249.t t =-+······6分∴总路程为:2747930-⨯+=,且73021 6.10⨯=> 令21s =,得24921t t -+=.解得16t =,22t =-(舍去).∴该物体从P 点运动到Q 点总路程的710时所用的时间是6秒. ······8分27.(本小题满分10分)解:(1)PD 与⊙O 相切.理由如下:······1分过点D 作直径DE ,连接AE . 则∠DAE =90°.∴∠AED + ∠ADE =90°.∵∠ABD =∠AED ,∠PDA =∠ABD , ∴∠PDA =∠AED .······2分∴∠PDA +∠ADE =90°. ∴PD 与⊙O 相切.······3分(2)连接BE ,设AH =3k ,∵3tan 4ADB ∠=,PA AH =,AC ⊥BD 于H .∴DH =4k ,AD =5k ,()3PA k =,PH PA AH =+=.∴tan DH P PH ==. ∴∠P =30°,8PD k =.······5分∵BD ⊥AC ,∴∠P +∠PDB =90°. ∵PD ⊥DE ,∴∠PDB +∠BDE =90°. ∴∠BDE =∠P =30°. ∵DE 为直径,∴∠DBE =90°,DE =2r =50.······6分∴cos 50cos30BD DE BDE =⋅∠=︒=······7分(3)连接CE .∵DE 为直径, ∴∠DCE =90°.∴4sin sin 50405CD DE CED DE CAD =⋅∠=⋅∠=⨯=. ······8分∵∠PDA =∠ABD =∠ACD ,∠P =∠P , ∴△PDA ∽△PCD .∴PD DA PAPC CD PD==.∴()385408k k kPC k==.解得:PC =64,3k =.∴()()26436437AC PC PA k =-=-=-=+ ∴S 四边形ABCD = S △ABD + S △CBD1122BD AH BD CH =⋅+⋅ 12BD AC =⋅900=+······10分28.(本小题满分12分)解:(1)由题意,得点B 的坐标为(4,–1).······1分∵抛物线过点A (0,–1),B (4,–1)两点,∴21,1144.2c b c -=⎧⎪⎨-=-⨯++⎪⎩解得2,1.b c =⎧⎨=-⎩ ∴抛物线的函数表达式为:21212y x x =-+-.······3分(2)ⅰ)∵A 的坐标为(0,–1),C 的坐标为(4,3).∴直线AC 的解析式为:y =x –1.设平移前的抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1),则平移后的抛物线的函数表达式为21()(1)2y x m m =--+-.解方程组21,1()(1).2y x y x m m =-⎧⎪⎨=--+-⎪⎩得{11,1,x m y m ==-{222,3.x m y m =-=- 即P (m ,m -1),Q (m -2,m -3).过点P 作PE ∥x 轴,过点Q 作QE ∥y 轴,则 PE =m -(m -2)=2,QE =(m -1)-(m -3)=2. ∴PQ=AP 0.······5分若△MPQ 为等腰直角三角形,则可分以下两种情况:①当PQ 为直角边时:M 到PQ 的距离为为22(即为PQ 的长).由A (0,-1),B (4,-1),P 0(2,1)可知: △ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.过点B 作直线l 1∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:1y x b =+.又∵点B 的坐标为(4,–1),∴114b -=+.解得15b =-. ∴直线l 1的解析式为:5y x =-.解方程组25,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩得:114,1,x y =⎧⎨=-⎩222,7.x y =-⎧⎨=-⎩ ∴1(4,1)M -,2(2,7)M --.······7分②当PQ 为斜边时:MP =MQ =2,可求得M 到PQ 的距离为为2.取AB 的中点F ,则点F 的坐标为(2,-1).由A(0,-1),F(2,-1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且F 到AC 的距离为2.∴过点F 作直线l 2∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 2的解析式为:2y x b =+. 又∵点F 的坐标为(2,–1), ∴212b -=+.解得23b =-. ∴直线l 2的解析式为:3y x =-.解方程组23,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩ 得:1112x y ⎧=+⎪⎨=-⎪⎩2212x y ⎧=⎪⎨=-⎪⎩∴3(12M +-,4(12M -.······9分综上所述:所有符合条件的点M 的坐标为:1(4,1)M -,2(2,7)M --,3(12M -+,4(12M -.ⅱ)PQNP BQ +存在最大值,理由如下:由ⅰ)知PQ =22,当NP +BQ 取最小值时,PQNP BQ+有最大值.取点B 关于AC 的对称点B ′,易得B ′ 的坐标为(0,3),BQ = B ′Q . 连接QF ,FN ,QB ′,易得FNPQ . ∴四边形PQFN 为平行四边形.∴NP=FQ .∴NP +BQ =F Q + B ′P ≥F B ′当B ′,Q ,F 三点共线时,NP +BQ 最小,最小值为.∴PQ NP BQ +的最大值 .······12分。

2013年成都七中中考数学一诊试题

2013年成都七中中考数学一诊试题

2013年成都七中中考数学一诊试题A 卷(共100分)一、单项选择题(每题3分,共30分) 1、-8的相反数是A 、81 B 、-81C 、-8D 、8 2、如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是A 、两个相交的圆B 、两个内切的圆C 、两个外切的圆D 、两个外离的圆2题图3题图ADC3、如图,已知在□ABCD 中,AD=3cm ,AB=2cm ,则□ABCD 的周长等于A 、10cmB 、6cmC 、5cmD 、4cm 4、下列运算正确的是A 、3322=-a a B 、963a a a =⋅ C 、532)(a a = D 、2224)2(a a = 5、南海资源丰富,其面积约为350万平方米,相当于我国的渤海、黄海和东海总面积的3倍,其350万用科学记数法表示为A 、3.5×108B 、3.5×107C 、3.5×106D 、3.5×1056、线段MN 在平面直角坐标系中的位置如图,若线段M 1N 1与MN 关于y 轴对称,则点M 的对应点M 1的坐标为A 、(4,2)B 、(-4,2)C 、(-4,-2)D 、B 、(4,2)6题图7题图7、如图,点A 、B 、C 是⊙O 上三点,∠AOC=130°,则∠ABC 等于A 、65°B 、60°C 、50°D 、70°8、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:尺码(厘米) 25 25.5 26 26.5 27 购买量(双)12332则这10双鞋尺码的众数和中位数分别是 A 、25.5厘米,26厘米 B 、26厘米,25.5厘米 C 、25.5厘米,25.5厘米 D、26厘米,26厘米 9、用圆心角为120°,半径为6cm 的扇形纸片,卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是 cmA 、2B 、32C 、42D 、410题图10、若二次函数y =ax 2+bx +a 2-2(a 、b 为常数)的图像如图,则a 的值为A 、±2B 、-2C 、2D 、-2二、填空题(每题4分,共16分)11、分解因式:4x 2-6= 12、如图,△ABC 中,DE ∥BC ,21=BD AD ,DE=2cm ,则BC 边的长是13、若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是14、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB=26,CD=24,那么sin ∠OCE=12题图ADECB三、解答题(共6个小题,共54分) 15、(本小题满分12分,每题6分) (1)计算:3tan30°+(π-2013)0-121(12--(2)解不等式组⎪⎩⎪⎨⎧+≤-+<+23531)2(213x x x x ,并写出该不等式组的自然数解16、(本小题满分6分)如图,一架飞机以每小时900千米的速度水平飞行。

2013年成都七中外地生招生考试数学试题

2013年成都七中外地生招生考试数学试题

C2013年成都七中外地生招生考试数学试题(考试时间120分钟满分150分)一、选择题(本大题10小题,每小题6分,共60分,每小题只有一个正确的选项)1、有一个角为的菱形,边长为,则其内切圆的面积为()A、 B、 C、 D、2、若方程组的解为,,,则()A、 B、 C、D、3、圆与圆半径分别为和,圆心距为,作圆切线,被圆所截的最短弦长为()A、 B、 C、 D、4、如图,梯形中,∥,与交于,记、、的面积分别为、A、4题8题5、关于的分式方程仅有一个实数根,则实数的取值共()A、个B、个C、个D、个60︒243π23π43π23π⎪⎩⎪⎨⎧=-+-=-+=-+54321412865zyxzyxzyx(a b)c a b c++=1-012 1O2O4122O1O10815252ABCD AD BC AC BD O AOD∆ABO∆BOC∆1S2S2S232SS<+2312SSS>+x25142+-=++-xkxkk k1234左视图6、两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种类为( )A 、B 、C 、D 、7、若,则的值得整数部分为( )A 、B 、C 、D 、8、如图,圆内接四边形中,、的角平分线交于点,过作直线平行于,与、交于、。

则总有( )A 、B 、C 、D 、的小正方形组成一个空间几何体(小正方体可以悬空),其三视图如, )个 B 、个C 、个 D 、10、正方形的边长为,点在边上,点在边上,,,动点从出 发沿直线向运动,每当碰到正方形的边时反弹,反弹时反射角入射角,而当碰到正方行顶点时沿入射角路径反弹,当点第一次返回时,所经过的路程为( )A 、B 、C 、D 、3236404443=a 279993331)1(1)1(1)1(a a a a a a a a a -++-++-+1234ABCD A ∠D ∠E E MN BC AB CD M N MN =BM DN +AM CN +BM CN +AM DN +181012ABCD 1E AB F BC 14BE =17BF =P E E P E P 6526536522655AB EE9题12题14题16题二、填空题(本大题8小题,每小题6分,共48分)11、对任意实数,直线恒过一定点,该定点的坐标为 。

[vip专享]2013四川成都市中考数学试卷含答案

[vip专享]2013四川成都市中考数学试卷含答案

成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是( )(A)2 (B)-2 (C)(D)2121-2.如图所示的几何体的俯视图可能是( )3.要使分式有意义,则x 的取值范围是( )15-x (A )x≠1 (B )x>1 (C )x<1 (D )x≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )×(-3)=1 (B )5-8=-331(C )=6 (D )=032-0)2013(-6.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3× (B )13× 510410(C )0.13× (D )0.13×5106107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点重合,若AB=2,则'CD 的长为( )'C (A )1 (B )2 (C )3 (D )48.在平面直角坐标系中,下列函数的图像经过原点的是( )(A )y=-+3 (B )y=x x5(C )y= (D )y=x 2722-+-x x 9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( )(A )40°(B )50°(C )80°(D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式的解集为_______________.312>-x 12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB∥CD,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米.三.解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算(2)解方程组1260sin 2|3|)2(2-+-+- ⎩⎨⎧=-=+521y x y x 16.(本小题满分6分)化简112)(22-+-÷-a a a a a 17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB (2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用表示)s 频数频率A 90≤≤100s x0.08B 80≤<90s 35y C <80s 110.22合 计501请根据上表提供的信息,解答下列问题:(1)表中的的值为_______,的值为________x y (2)将本次参赛作品获得等级的学生一次用,,,…表示,现该校A 1A 2A 3A 决定从本次参赛作品中获得等级学生中,随机抽取两名学生谈谈他们的参赛A 体会,请用树状图或列表法求恰好抽到学生和的概率.1A 2A 19.(本小题满分10分)如图,一次函数的图像与反比例函数(为常数,且)的11y x =+2ky x=k 0≠k 图像都经过点)2,(m A(1)求点的坐标及反比例函数的表达式;A (2)结合图像直接比较:当时,和0>x 1y 的大小.2y 20.(本小题满分10分)如图,点在线段上,点,在同B AC D E AC 侧,,,.90A C ∠=∠=o BD BE ⊥AD BC =(1)求证:;CE AD AC +=(2)若,,点为线段上3AD =5CE =P AB的动点,连接,作,交直线与点;DP DP PQ ⊥BE Q i )当点与,两点不重合时,求的值;P A B DPPQii )当点从点运动到的中点时,求线段的中点所经过的路径(线段)P A AC DQ 长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点在直线(为常数,且)上,则的值为(3,5)y ax b =+,a b 0a ≠5ab -_____.22. 若正整数使得在计算的过程中,各数位均不产生进位现n (1)(2)n n n ++++象,则称为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现n 从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______. 23.若关于的不等式组,恰有三个整数解,则关于的一次函数t 0214t a t -≥⎧⎨+≤⎩x 的图像与反比例函数的图像的公共点的个数为_________.14y x a =-32a y x+=24. 在平面直角坐标系中,直线(为常数)与抛物线交xOy y kx =k 2123y x =-于,两点,且点在轴左侧,点的坐标为,连接.有以下A B A y P (0,4)-,PA PB 说法:;当时,的值随的增大而○12PO PA PB =⋅○20k >()()PA AO PB BO +-k增大;当时,;面积的最小值为.○3k =2BP BO BA =⋅○4PAB ∆其中正确的是_______.(写出所有正确说法的序号)25.如图,,为⊙上相邻的三个等分点,,点在弧A B C 、、O n AB BC =E 上,为⊙的直径,将⊙沿折叠,使点与重合,连接,BC EF O O EF A 'A 'EB ,.设,,.先探究EC 'EA 'EB b =EC c ='EA p =三者的数量关系:发现当时,.请,,b c p 3n =p b c =+继续探究三者的数量关系:,,b c p 当时,_______;当时,_______.4n =p =12n =p =(参考数据:,sin15cos 75==o o)cos15sin 75==o o 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从点运动到点所用时间为7秒,其运动速度(米每秒)关于P Q v 时间(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒t 运动的路程在数值上等于矩形的面积.由物理学知识还可知:该物体前AODB ()秒运动的路程在数值上等于矩形的面积与梯形的n 37n <≤AODB BDNM 面积之和.根据以上信息,完成下列问题:(1)当时,用含的式子表示;37n <≤t v (2)分别求该物体在和03t ≤≤时,运动的路程(米)关于时间37n <≤s (秒)的函数关系式;并求该物体从点运t P 动到总路程的时所用的时间.Q 71027.(本小题满分10分)如图,⊙的半径,四边形内接圆⊙,于点,为O 25r =ABCD O AC BD ⊥H P 延长线上的一点,且.CA PDA ABD ∠=∠(1)试判断与⊙的位置关系,并说明理由:PD O(2)若,,求的长;3tan 4ADB ∠=PA AH =BD (3)在(2)的条件下,求四边形的面积.ABCD 28.(本小题满分12分)在平面直角坐标系中,已知抛物线(为常数)的顶点为,212y x bx c =-++,b c P 等腰直角三角形的定点的坐标为,的坐标为,直角顶点ABC A (0,1)-C (4,3)在第四象限.B (1)如图,若该抛物线过 ,两点,求该抛物线的函数表达式;A B (2)平移(1)中的抛物线,使顶点在直线上滑动,且与交于另一点P AC AC .Q i )若点在直线下方,且为平移前(1)中的抛物线上的点,当以M AC M P Q、、三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点的坐标;M ii )取的中点,连接.试探究是否存在最大值?若存在,BC N ,NP BQ PQNP BQ+求出该最大值;若不存在,请说明理由.成都市二O一三年高中阶段教育学校统一招生考试数学答案A 卷1~5:BCADB 6~10: ABCAD 11、 x >2 12、10 13、60°14、10015.(1)4; (2) 16. a⎩⎨⎧-==12y x 17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122=19.(1)A(1,2) , xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =;当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P∽△HPQ ,△BHQ ∽△BCE ,∴,; QH AP PH AD =ECQHBC BH =设AP= ,QH=,则有x y 53yBH =∴BH=,PH=+553y 53yx -∴,即yxx y=-+55330)53)(5(=--x y x 又∵P 不与A 、B 重合,∴即, ,5≠x 05≠-x ∴即053=-x y xy 53=∴53==y x PQ DP (3)3342B 卷21. 22. 23.3 24.③④31-11725.,或c b ±2 c b 21322-+c b --22626. (1);42-=t v (2)S=, 6秒⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k)334(-∴PH=k34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E·cos30°=325(3)由(2)知,BH=-4k ,∴HC=(-4k)32534325又∵PCPA PD ⨯=2∴)]4325(3434[)334()8(2k k k k -+⨯-=解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD28.(1) 12212-+-=x x y (2)M 的坐标是(1-,--2)、(1+,-2)、(4,-1)、(2,-3)、(-2,-55557)(3)的最大值是PQ NP BQ +510。

2013成都中考数学试题(含答案)

2013成都中考数学试题(含答案)

成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21- 2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3×510 (B )13×410 (C )0.13×510 (D )0.13×6107.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x-x+22-9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3-x的解集为_______________.12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ; i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x +=的图像的公共点的个数为_________.24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 75==o o 二、解答题(本小题共三个小题,共30分.答案写在答题卡上) 26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t an 4A D B ∠=,33PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标; ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、10015.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122=19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP (3)3342 B 卷21.31-22.11723.3 24.③④ 25.c b ±2,c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

2013-2014学年四川省成都七中七年级(上)期中数学试卷(附答案)

2013-2014学年四川省成都七中七年级(上)期中数学试卷(附答案)

2013-2014学年四川省成都七中七年级(上)期中数学试卷(附答案)一、选择题(每小题3分,共30分)1.(3分)(2013•重庆)在﹣2,0,1,﹣4.这四个数中,最大的数是( )A . ﹣4B . ﹣2C . 0D . 12.(3分)(2013•云南)2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )A . 1.505×109元B . 1.505×1010元C . 0.1505×1011元D . 15.05×109元3.(3分)(2014•毕节地区)计算﹣32的结果是( )A . 9B . ﹣9C . 6D . ﹣64.(3分)下面说法准确的有( )(1)正整数和负整数统称整数;(2)0既不是正数,又不是负数;(3)有绝对值最小的有理数;(4)正数和负数统称有理数.A . 4个B . 3个C . 2个D . 1个5.(3分)数轴上到2的距离是5的点表示的数是( )A . 3B . 7C . ﹣3D . ﹣3或76.(3分)若m 、n 满足|2m+1|+(n ﹣2)2=0,则m n 的值等于( )A . ﹣1B . 1C . ﹣2D .7.(3分)(1999•山西)用语言叙述代数式a 2﹣b 2,准确的是( )A . a ,b 两数的平方差B . a 与b 差的平方C . a 与b 的平方的差D . b ,a 两数的平方差8.(3分)如图所示,A 、B 、C 、D 在同一条直线上,则图中共有线段的条数为( )A . 3B . 4C . 5D . 6 9.(3分)(2013•济宁)如果整式x n ﹣2﹣5x+2是关于x 的三次三项式,那么n 等于( )A . 3B . 4C . 5D . 610.(3分)(2013•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A . 8B . 9C . 10D . 11二、填空题(每小题4分,共20分)11.(4分)计算﹣(﹣3)= _________ ,|﹣3|= _________ ,(﹣3)2= _________ .12.(4分)单项式﹣的系数是_________ ,次数是_________ .13.(4分)若3a m b5与4a2b n+1是同类项,则m+n= _________ .14.(4分)(2009•孝感)若|m﹣n|=n﹣m,且|m|=4,|n|=3,则(m+n)2= _________ .15.(4分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_________ .三、解答题(共50分)16.(6分)在数轴上表示下列各数,并用“<”号连接起来.﹣(﹣2),﹣|2|,﹣1,0.5,﹣(﹣3),﹣|﹣4|,3.5.17.(8分)计算:(1)2×(﹣5)+22﹣3÷;(2)﹣(﹣3)2﹣3+0.4×[(﹣1)]÷(﹣2).18.(10分)化简(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.19.(6分)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|20.(6分)已知多项式x2+ax﹣y+b和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,求代数式3(a2﹣2ab﹣b2)﹣(4a2+ab+b2)的值.21.(6分)小虫从A点出发,在一条直线上来回地爬行,假定向右爬行的路程记作正数,向左爬行记作负数,爬行的各段路程(单位:cm),依次记为:+6,﹣4,+10,﹣8,﹣7,+13,﹣9.解答下列问题:(1)小虫在爬行过程中离A点最远有多少距离?(2)小虫爬行到最后时距离A点有多远?(3)小虫一共爬行了多少厘米?22.(8分)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为_________ 元,乙旅行社的费用为_________ 元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为_________ .(用含a的代数式表示,并化简.)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)一、填空:(其中23、24小题每题2分,25小题3分,共7分)23.(2分)计算:(﹣3)2016+(﹣3)2015= _________ .24.(2分)已知当x=﹣3时,代数式ax3+bx+1的值为8,那么当x=3时,代数式ax3+bx+1的值为_________ .25.(2分)小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是_________ ;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是_________ ;(3)从中取出除0以外的4张卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可)_________ .二、探究题26.(7分)根据给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:_________ ,B:_________ .(2)观察数轴,与点A的距离为4的点表示的数是:_________ .(3)若将数轴折叠,使得A点与﹣2表示的点重合,则:①B点与哪个数表示的点重合?②若数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,求M、N两点表示的数分别是多少?27.(6分)一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数a和﹣2的两点之间的距离是3,那么a= _________ ;(2)若数轴上表示数的点位于﹣4与2之间,那么|a+4|+|a﹣2|的值是_________ ;当a取_________ 时,|a+5|+|a ﹣1|+|a﹣4|的值最小,最小值是_________ .(3)依照上述方法,|a+6|+|a﹣2|+|a﹣4|+|a+4|的最小值是_________ .。

成都市2007-2013年中考数学试题及答案

成都市2007-2013年中考数学试题及答案

成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷第Ⅰ卷(选择题)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃ D.16-℃ 2.下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( ) A.2x -≥且0x ≠B.2x ≤且0x ≠A .B .C .D .C.0x ≠D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A.40° B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( )A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B. C .8cmD.第Ⅱ卷(非选择题)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上.112(5)0b +=,那么a b +的值为 .D12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.14.如图,已知AB 是O 的直径,弦CD AB ⊥,AC =1BC =,那么sin ABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 . 三、16.解答下列各题: (11223sin 30--°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+. 四、17.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的AB ECDFGC 'D 'AB仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)18.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.20.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;(2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.B 卷一、填空题: 将答案直接写在该题目中的横线上.21.如图,如果要使ABCD成为一个菱形, 需要添加一个条件,那么你添加的条件是.22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿CB 向右平移,使点B ' 刚好落在斜边AB 上,那么此三角板向右平移的 距离是cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 二、D AE FCHGBD C B A '()C C '26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线; (3)若FG BF =,且O的半径长为求BD 和FG 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.C成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷 第Ⅰ卷一、选择题 1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.B ;9.C ;10.B .A 卷 第Ⅱ卷二、填空题:11.3-; 12.216;13.64;14.3; 15.1-三、16.(1)解:原式112322=+-⨯13222=+= (2)解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤. ∴原不等式组的整数解是101-,,.(3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解. ∴原方程的解是5x =-. 四、17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°=(米).CD BE ==∴。

【初中数学】四川省成都市2013年中考数学试卷(解析版1) 通用

【初中数学】四川省成都市2013年中考数学试卷(解析版1) 通用

四川省成都市2013年中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)D2.(3分)(2013•成都)如图所示的几何体的俯视图可能是()D2013•成都)要使分式有意义,则x的取值范围是()3.(3分)(4.(3分)(2013•成都)如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()×(﹣3)=1、,运算错误,故本选项错误;6.(3分)(2013•成都)参加成都市今年初三毕业会考的学生约有13万人,将13万用科学记7.(3分)(2013•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()210.(3分)(2013•成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2013•成都)不等式2x﹣1>3的解集是x>2.12.(4分)(2013•成都)今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是10元.13.(4分)(2013•成都)如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=60度.14.(4分)(2013•成都)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为100米.AB=100三、解答题(本大题共6个小题,共54分)15.(12分)(2013•成都)(1)计算:(2)解方程组:.+2×)故方程组的解为16.(6分)(2013•成都)化简.×=a17.(8分)(2013•成都)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A 顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.18.(8分)(2013•成都)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参请根据上表提供的信息,解答下列问题:(1)表中的x的值为4,y的值为0.7(2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.y=19.(10分)(2013•成都)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.的坐标代入:,;20.(10分)(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)相似可得=,然后求出BF相似可得=,最后利用相似三角形对应边成比例可得=,=,=,BF=,=,BF得,,=;QF=×=4= MN=BQ=的中点所经过的路径(线段)长为四、填空题(本大题共5个小题,每小题4分,共20分,)21.(4分)(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为﹣.==.故答案为:﹣22.(4分)(2013•成都)若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为.故答案为:.23.(4分)(2013•成都)若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为1或0.根据不等式组≤联立方程组得:a+﹣﹣24.(4分)(2013•成都)在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△PAB面积的最小值为.其中正确的是③④.(写出所有正确说法的序号)=2,当值为x得:,解得a=)x=轴的交点坐标为(),+==,易知:=,OA,﹣PA﹣(﹣OA((k=•m mn+16=×+16=﹣﹣•﹣×k=时,联立方程组:(=OP OP=2=2,面积有最小值,最小值为25.(4分)(2013•成都)如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=c+b;当n=12时,p=c+b.(参考数据:,)得到,得到p=c+2cosACB=×=ACB=2cos =2cos.,∠,∠,DA=•EA=ED+DA=EC+2cos•p=c+2cos•bb=c+c+c+•四、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(8分)(2013•成都)某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前n(3<n≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<n≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<n≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.然后将其,解得:S=××点总路程的27.(10分)(2013•成都)如图,⊙O的半径r=25,四边形ABCD内接圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.,可设PA==HC=(4 [4k+(25ADB=﹣PH=4P=,﹣HC=(4[4k+﹣AC=3k+(﹣=24BD AC=2524=900+28.(12分)(2013•成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.的距离为的距离为.此时,将直线PQ=有最大值.x(解方程组:,解得=AP的距离为.y=解方程组,得:,的距离为的距离为x解方程组,得:,)﹣1+2+,﹣﹣PQ=取最小值时,有最大值.=.最小,最小值为的最大值为=。

四川省成都市2013届九年级数学一诊模拟考试试题

四川省成都市2013届九年级数学一诊模拟考试试题

四川省成都铁中2013届九年级一诊模拟考试数学试题(满分:150分,考试时间:120分钟) A 卷 一:选择题:(每小题3分,共30分)1.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠-2. 在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( )A.45B.5C.15D.1453.如图,110,70,AB CD DBF ECD ∠=∠=∥则E ∠等于 ( )A.30B.40C.50D.604.下列说法错误的是( )A .有一组对边平行但不相等的四边形是梯形B .有一个角是直角的梯形是直角梯形C .等腰梯形的两底角相等D .直角梯形的两条对角线不相等5.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后, 指针都落在奇数上的概率是( ) A 、25 B 、310 C 、320 D 、156.如图是由相同的小正方体组成的几何体,它的主视图为( )7.如果a 是一元二次方程032=+-m x x 的一个根,-a 是方程032=-+m x x 的一个根,那么a 的值为( ) A.0 B.3 C.0或3 D.无法确定8.反比例函数xky =与正比例函数kx y =的一个交点为(2,3),则它们的另一个交点为( ) A. (3,2) B. (-2,3)C. (-2,-3)D. (-3,-2)9. 如图,AB 与⊙O 相切于点AO B ,的延长线交⊙O 于点,C连结.BC 若,36 =∠A 则∠C 等于( ) A .36B .54C .60D .2710.把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( ) A .()1232+-=x y ; B 。

()1232-+=x y ;C .()1232--=x y D 。

成都七中初2013级中考数学热身试题

成都七中初2013级中考数学热身试题

二、解答题(共 3 个小题,共 30 分) 26、 (本题满分 8 分)一家化工厂原来每月利润为 120 万元。从今年一月起安装使 用回收净化设备(安装时间不计) ,一方面改善了环境,另一方面大大降低原料成 本。据测算,使用回收净化设备后的 1 至 x 月(1≤x≤12)的利润的月平均值 w (万元)满足 w=10x+90,第二年的月利润稳定在第 1 年的第 12 个月的水平。 (1)设使用回收净化设备后的 1 至 x 月(1≤x≤12)的利润和为 y,写出 y 关 于 x 的函数关系式,并求前几个月的利润和等于 700 万元; (2)当 x 为何值时,使用回收净化设备后的 1 至 x 月的利润和与不安装回收净 化设备时 x 个月的利润和相等; (3)求使用回收净化设备后两年的利润总和.
17、 (本小题满分 8 分)如图,塔 AB 和楼 CD 的水平距离为 80m,从楼顶 C 处及 楼底 D 处测得塔顶 A 的仰角分别为 45°和 60°,试求塔高和楼高。
A
决定采取抛掷一枚各面分别标有 1,2,3,4 的正四面体骰子的方法来确定, 具体规则是: “每人各抛掷一次,若小王掷得着地一面的 数字比小李掷得着地一面的数字小,车票给
C、y=3(x-2)2 -1
5、为了比较甲乙两种水稻秧苗是否出苗整齐,每种秧苗各取 10 株分别量出每株 长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是 3.9、15.8,则下列说 法正确的是( ) B、乙秧苗出苗更整齐 D、无法确定 ) 二、填空题(每题 4 分,共 16 分) 11、因式分解:2a2-2ab= 12、不等式 2x-7<5-2x 的正整数解的和是 13、如图所示,在平行四边形 ABCD 中,EF 过对 角线的交点 O,若 AD=6cm,AB=5cm,OE=2cm, 则梯形 ABEF 的周长为 A、 B C、 D、 14、已知反比例函数 y 三象限内。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在 AB 的同侧以 M 为旋转中心,且∠PMQ=45°,MP 与 y 轴交于点 C, MQ 交 x 轴于点 D。 设 AD 的长为 m (m>0) , BC 的长为 n, 求 n 和 m 之间的函数关系式;
1 2 x +bx+4 上有一点 F(-k-1, 2
y B
-k2+1) ,当 m、n 为何值时,∠PMQ 的边过点 F?
D
1 2 x +bx+4 与 x 轴和 y 轴的正半轴 2
分别交于点 A 和 B,已知 A 点坐标为(4,0) (1)求抛物线的解析式; (2)如图,连接 AB,M 为 AB 的中点,∠PMQ
宁 w 静 w 姐 w 姐 .c dn 家 in 长 gj 论 in 坛 g. co m
(3)若抛物线 y=-
式组的自然数解
(2)当 x 取何值时,y1>y2.
y A B O C
x
16、 (本小题满分 6 分)
如图,一架飞机以每小时 900 千米的速度水平飞 行。某个时刻,从地面控制塔 O(塔高 300m)观测到
飞机在 A 处的仰角为 30°,5 分钟后测得飞机在 B 处
的仰角为 45°,试确定飞机的飞行高度( 3 =1.732, 结果精确到 1km)
二、解答题(共 3 个小题,共 30 分) 26、 (本题满分 8 分) 随着近几年城市建设的快速发展,对花木的需求
B
A
E O
C
量逐年提高, 某园林专业户计划投资 15 万元种植花卉 和树木。 根据市场调查与预测, 种植树木的利润 y1 (万 元)与投资量 x(万元)成正比例关系:y1=2x;种植 花卉的利润 y2(万元)与投资量 x(万元)的函数关 系如图所示(其中 OA 是抛物线的一部分,A 为抛物 线的顶点;AB∥x 轴) 。 (1)写出种植花卉的利润 y2 关于投资量 x 的函数 关系式; (2)求此专业户种植花卉和树木获取的总利润 W (万元)关于投入种植花卉的资金 t(万元)之间的函 数关系式; (3) 此专业户投入种植花卉的资金为多少万元时, 才能使获取的利润最大,最大利润是多少? 28、 (本题满分 12 分) 已知抛物线 y=-
B A O
45° 30°
大部分南方人家在春节早晨都有合家聚座,共进
汤圆的传统习俗。我市某食品厂为了了解市民对去年 销量较好的豆沙馅、肉馅、蔬菜馅、水果馅(以下分 别用 A、B、C、D 表示)这四种不同口味汤圆的喜爱
情况,在节前对某居民区市民进行了抽样调查,并将 调查情况绘制成如下两幅统计图(尚不完整) .
B
x
25、 如图, 在矩形 ABCD 中, AB=3, BC=4, 把△BCD 沿对角线 BD 折叠,使点 C 落在 C’处,BC’交 AD 于 点 G;E、F 分别是 C’D 和 BD 上的点,线段 EF 交 AD 于点 H, 把△FDE 沿 EF 折叠, 使点 D 落在 D’处, 点 D’恰好与点 A 重合,则 EF=
C
请根据以上信息回答: (1) 本次参加抽样调查的居民有多少人?并将两幅不 完整的图补充完整; (2)若居民区有 8000 人,请估计爱吃 D 馅的人数; (4)若有外型完全相同的 A、B、C、D 馅各一个, 煮熟后,小王吃了两个,用列表或画树状图的方法, 求他第二个吃到的恰好是 C 馅的概率。
20、 (本小题满分 10 分) 如图 (1) , 已知正方形 ABCD 在直线 MN 的上方, B、C 在直线 MN 上,E 是 BC 上一点,以 AE 为边在 直线 MN 的上方作正方形 AEFG。 (1)连接 GD,求证△ADG≌△ABE; (2)如图(2) ,将图(1)中正方形 ABCD 改为 矩形 ABCD,AB=a,BC=b(a、b 为常数) ,E 是线段 BC 上一动点(不含端点 B、C) ,以 AE 为边在直线 MN 的上方作矩形 AEFG, 使顶点 G 恰好落在射线 CD 上。判断当 E 由 B 向 C 运动时,∠FCN 的大小是否 保持不变?若∠FCN 的大小不变,请用含 a、b 的代 数式表示 sin∠FCN 的值; 若∠FCN 的大小发生改变, 请举例说明。
17、 (本小题满分 8 分)
3 a 2 2a 1 先化简代数式 ,再从-2, 1 a2 4 a 2
2,0 三个数中选一个恰当的数作为 a 的值代入求值
宁 w 静 w 姐 w 姐 .c dn 家 in 长 gj 论 in 坛 g. co m
19、 (本小题满分 10 分)
M C A E O D x
P
Q
27、 (本题满分 10 分) 如图所示,已知 BC 是⊙O 的直径,A、D 是⊙O 上的两点。 (1)若∠ACB=58°,求∠ADC 的度数;

( 2 )当 CD
1 AC 时,连接 CD 、 AD ,其中 2
AD 与直径 BC 相交于点 E,求证:2CD2=CE·BC; (3) 在 (2) 的条件下, 若∠COD=DE∥BC, 则 BC 边的长是
AD 1 , DE=2cm, BD 2
B、 (-4,2) D、B、 (4,2)
B
13、若一元二次方程 x2+2x+m=0 有实数解,则 m 的取 值范围是 14、 如图, AB 是⊙O 的直径, 弦 CD⊥AB, 垂足为 E, 如果 AB=26,CD=24,那么 sin∠OCE=
BE CE 的值。 AB
9题图
10题图
B、 a 3 a 6 a 9
D、 ( 2 a 2 ) 2 4 a 2
10、若二次函数 y=ax2+bx+a2-2(a、b 为常数)的图 像如图,则 a 的值为 A、± 2
5、南海资源丰富,其面积约为 350 万平方米,相当于
我国的渤海、黄海和东海总面积的 3 倍,其 350 万用 科学记数法表示为 A、3.5×108 C、3.5×106
2、 如图所示的物体由两个紧靠在一起的圆柱组成, 小 刚准备画出它的三视图,那么他所画的三视图中的俯 视图应该是 A、两个相交的圆 C、两个外切的圆 B、两个内切的圆 D、两个外离的圆
A D
则这 10 双鞋尺码的众数和中位数分别是 A、25.5 厘米,26 厘米 B、26 厘米,25.5 厘米
C、25.5 厘米,25.5 厘米 D、26 厘米,26 厘米 9、用圆心角为 120°,半径为 6cm 的扇形纸片,卷成 一个圆锥形无底纸帽(如图所示),则这个纸帽的高是 cm
B 卷(共 50 分)
一、填空题(每题 4 分,共 20 分) 21、已知 m 和 n 是方程 2x2-5x-3=0,则
1 1 = m n
22、王老师将本班的“校园安全知识竞赛”成绩(成 绩用 x 表示,满分为 100 分)分为 5 组,第 1 组:50 ≤x<60,共 2 人;第 2 组:60≤x<70,共 8 人;…, 第 5 组:90≤x<100,共 3 人。设从第 1 组和第 5 组 中随机一共抽到两名同学的成绩分别为 m、 n, 则事件 “|m-n|≤10”的概率为 23、如图,以 AB 为直径的⊙O 是△ADC 的外接圆, 过点 O 作 PO⊥AB,交 AC 于点 E,PC 的延长线交 AB 于点 F,∠PEC=∠PCE。若△ADC 是边长为 1 的 等边三角形,则 PC 的长为
2013 年成都七中中考数学一诊试题
A 卷(共 100 分)
一、单项选择题(每题 3 分,共 30 分) 1、-8 的相反数是 A、 8、 为了参加市中学生篮球运动会, 一支校篮球队准备
1 8
B、-
1 8
C、-8
D、8
购买 10 双运动鞋,各种尺码统计如下表所示: 尺码(厘米) 购买量(双) 25 1 25.5 2 26 3 26.5 3 27 2
B、- 2
C、 2
D、-2
B、3.5×107
D、3.5×105
二、填空题(每题 4 分,共 16 分) 11、分解因式:4x2-6=
6、线段 MN 在平面直角坐标系中的位置如图,若线
段 M1N1 与 MN 关于 y 轴对称,则点 M 的对应点 M1 的坐标为 A、 (4,2) C、 (-4,-2)
y x M N A O C
A A E O C E B D 14题图 B 12题图 C
6题图
7题图
7、如图,点 A、B、C 是⊙O 上三点,∠AOC=130°, 则∠ABC 等于 A、65° B、60° C、50° D、70°
D
三、解答题(共 6 个小题,共 54 分) 15、 (本小题满分 12 分,每题 6 分) (1)计算:3tan30°+(π-2013)0- 12 ( ) 1
宁 w 静 w 姐 w 姐 .c dn 家 in 长 gj 论 in 坛 g. co m
y C A D O
k (k>1)在第一象限图 x 1 象上的两个点,C、D 是函数 y= (x>0)上两点, x AC AC∥BD∥x 轴,若 =m,则△COD 的面积是 BD
24、如图,A、B 是函数 y= (用含 m 的代数式表示)
18、 (本小题满分 8 分) 如图,一次函数 y1=kx+b 的图象与反比例函数
1 2
y2=
m 的图象相交于点 A(2,3)和点 B,与 x 轴相 x
(1)求这两个函数的解析式;
交于点 C(8,0)
3 x 1 2( x 2) (2)解不等式组 1 ,并写出该不等 5 x x2 3 3
3、如图,已知在□ABCD 中,AD=3cm,AB=2cm, 则□ABCD 的周长等于 A、10cm
宁 w 静 w 姐 w 姐 .c dn 家 in 长 gj 论 in 坛 g. co m
C、5cm D、4cm
主视方向 2题图
B 3题图
C
A、 2
B、3 2
相关文档
最新文档