移动机器人路径规划研究现状及展望
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移动机器人路径规划研究现状及展望
摘要:移动机器人路径规划技术是机器人研究领域中的核心技术之一。通过对全局路径规划和局部路径规划中各种方法的分析,指出了各种方法的优点和不足以及改进的办法,并对移动机器人路径规划技术的发展趋势进行了展望。移动机器人按照某一性能指标搜索一条从起始状态到目标状态的最优或次最优的无碰路径。全局路径规划,局部路径规划.其中全局路径规划:离线全局路径规划,环境信息完全已知。可视图法(V-Graph)、栅格法(Grids)等。可视图法的核心思想是将机器人应该到达的点作为顶点,点的连线作为备选的路径,于是问题就变成了图搜索问题。由于连线(又叫弧)的选取方法不同,也就有了连接各个障碍物顶点的直线、用障碍物的切线表示弧和做出障碍物顶点的voronoi图的边作为弧的方法,用voronoi方法可以使得路径尽可能的远离障碍物。栅格法是用累积值表明该栅格存在障碍物的可能性。局部路径规划:在线局部路径规划,环境信息部分或者完全未知。人工势场法(Artificial Potential Field):目标对被规划对象存在吸引力,而障碍物对其有排斥力,引力与斥力的合力作为机器人运动的加速力,从而计算机器人的位置和控制机器人的运动方向。其缺陷是:存在陷阱区域、在相近的障碍物群中不能识别路径、在障碍物前震荡、在狭窄通道中摆动。模糊逻辑算法( Fuzzy Logic Algorithm):类似人的避障,经验化的方法。基于传感器的信息,采用模糊逻辑算法通过查表得到规划出的信息,完成局部路径规划。
关键词:移动机器人;全局路径规划;局部路径规划;遗传算法
移动机器人是装备了机械腿、轮子、关节、抓握器等执行器以及控制器来完成特定任务的一种实体智能体。近年来,随着科学技术的飞快发展,移动机器人在工业、农业、医疗、服务、航空和军事等领域得到了广泛的应用,已成为学术研究的重点。在移动机器人的研究中,导航研究是核心,而路径规划是机器人导航研究的重要环节之一。在机器人执行任务时,要求机器人在工作环境中(有障碍物或无障碍物)能根据一定的评价标准搜索一条从起始地点到目标地点的最优或次优路径[1]。移动机器人的路径规划根据环境是否已知可分为基于地图的全局路径规划和基于传感器的局部路径规划。
1全局路径规划
1.1惩罚函数法
在机器人运行环境中因为有障碍物,使得机器人的路径规划成为一个有约束的问题,惩罚函数法将这个有约束的问题转化为一系列无约束极小化问题,再通过解决这些无约束问题获得原约束问题的最优解[7]。柳在鑫、王进戈等在2009年将机器人的路径规划问题转化为一类带有不等式约束条件的非线性极小化问题,并采用惩罚函数法来求解此类问题,该方法原理简单,算法易行,使用范围广[8]。
1.2栅格分解法
栅格分解法是目前广泛研究的路径规划方法之一。该方法把移动机器人的运动环境分解为多个简单的栅格并根据它们是否被障碍物占据来进行状态描述,障碍物栅格和非障碍物栅格具有不同的标识值,它能快速直观地融合传感器信息。但是为了得到比较精确的规划结果,必须将环境划分为较小的栅格,这就导致存储空间增大,在大规模环境下路径规划的计算复杂程度将加大。为了克服栅格表示的存储空间问题,邰宜斌提了一种四叉树分割方法[2],该算法递归地把环境分解为大小不一的矩形区域,这些矩形区域或者完全被障碍物占据,或者是完全自由可行的。每次递归都将一个较大的栅格划分为4个较小的栅格,取得了较好的计算效果。另外栅格分解法随着机器人自由度的增加会出现“维数灾难”问题,不适用于解决多
自由度机器人在复杂环境中的路径规划。Frank在2004年提出了概率栅格分解算法,在该算法中引入随机采样,可使多自由度机器人在复杂环境中快速找到一条可行路径。2006年吕太之等在概率栅格分解算法的基础上引入了Anytime算法,将随机采样应用到栅格分解算法中,使算法效率得到了提高,但是受环境信息和随机采样的影响比较大[3]。
1.3拓扑法
拓扑法主要包括三部分:划分状态空间、构建特征网、在特征网上搜索路径。拓扑法的基本要素是节点和边,用节点表示某个特定的位置,用边表示这些位置之间的联系,可以用
G=(V,E)描述空间的特征,其中V表示顶点集合,E表示连接顶点的边集合[4]。利用该方法可缩小搜索空间,使得存储需求小,适合于大规模环境的路径规划,但是构建特征网的过程比较复杂,而且当障碍物增加时如何将增加的节点与已有节点进行节点匹配是一个难点。2005年,王力虎等提出了一种适用于清扫机器人的区域充满拓扑算法,用传感器感知环境信息以建立环境的拓扑地图,机器人可以利用搜索图的方法搜索环境,可达到环境的有效覆盖,但在搜索时没有具体体现节点间的距离、清扫覆盖率等信息,使得搜索效率不是很高[5]。2006年,种琤等提出了一种基于扫描法的构造环境拓扑图方法,利用启发式函数法实现对所构建拓扑图的扩展,采用了逐步构建环境拓扑图的方式,实现了在线构建,可应用于任意工作环境,且计算复杂度低,但此算法不能保证搜索到最优路径[6]。
2 局部路径规划
2.1遗传算法
遗传算法(GA)的概念最初是由Bagley和Rosengerg于1967年在其博士论文中首先提出了的。在1975年美国Michigan大学的J. Holland教授把它写到了专著《Adaptation in Natural and Artificial Systems》中,此后GA才逐渐为人所知,并且广泛应用到控制、规划、优化设计等方面。利用GA算法对移动机器人进行路径规划的基本步骤为:
(1)选择编码方式,并将路径用编码表示;
(2)产生初始群体;
(3)确定适应度函数并根据适应度函数计算初始群体的适应度值;
(4)如果不满足条件,{选择、交换、变异、计算新一代群体的适应性值};
(5)输出结果。
遗传算法直接对移动机器人的路径进行操作,采用概率化的寻优方法,自适应地调整搜索方向,不采用确定性搜索规则,易于并行化,但对于未知复杂环境,利用遗传算法进行路径规划时运算速度慢,而且需要占据大量的存储空间。近几年许多研究学者提出了一些改进后的遗传算法,例如王洲等提出了移动机器人在静态障碍物环境中路径规划的新方法,该方法设计了5个遗传算子(选择、交叉、变异、删除、插入),并且提出了新的变异算子、插入算子和删除算子,加快了较好个体在群体中的传播,提高了路径搜索速度和解的精度[12]。对于遗传算法的改进,王新杰等将其与图搜索法相结合,用Dijkstra算法王求得初始路径,再利用遗传算法的一系列选择、交叉、变异操作来优化路径,这种方法减少了搜索的盲目性,不会产生无效路径[13]。当机器人处于静动态障碍物同时存在的环境中时,卢瑾等在机器人路径规划时引入了双重遗传算法机制,第一重算法针对静态障碍物环境,第二重算法针对动态障碍物环境,两重算法采用不同的适应度函数作为评价标准,通过改进操作算子、引入优化算子,可快速有效地找到同时能避开静动态障碍物的最优路径,仿真结果验证了该方法的有效性。但对于动态的、未知复杂环境下的路径规划没有进行验证[14]。
2.2模拟退火算法
模拟退火算法(SA)依据固体退火原理,固体在加温时,内部粒子运动随温升增强,变