悬臂与连续体系梁桥
悬臂梁桥与连续梁桥[荟萃知识]
行业知识
图6-1 恒载产生的弯矩图
2
(3)优缺点及适用范围
1)悬臂梁桥和简支梁桥一样,都属于静定体系,它 们的内力不受基础不均匀沉降的影响。
2)从桥的立面上看,在桥墩上只需布置一排沿墩 中心布置的支座,从而可减小桥墩的尺寸。
3)从运营条件来看:悬臂梁桥与简支梁桥均不甚理 想。
61悬臂体系梁桥62连续体系梁桥6悬臂体系梁桥与连续体系梁桥1行业知识1结构类型611悬臂梁桥61悬臂体系梁桥2力学特点悬臂梁桥由于跨内支点负弯矩的存在使跨中正弯矩值显著减小
6 悬臂体系梁桥与连续体系梁桥
6.1 悬臂体系梁桥 6.2 连续体系梁桥
行业知识
1
6.1 悬臂体系梁桥
6.1.1 悬臂梁桥
(1)结构类型 (2)力学特点
行业知识
12
图6-6 变截面连续梁桥
1)力学特点
连续梁的支点截面负弯矩大于跨中截面正弯矩 , 可通过改变支点梁高和各跨的刚度来满足设计要求。
行业知识
13
图6-6 变截面连续梁桥
2)跨径布置
主梁采用变截面形式的大跨径预应力混凝土连续 梁桥,立面一般采用不等跨布置。
3)构造特点
①连续梁在每个中间墩上只需设置一排支座,而 在相邻两联连续梁的桥墩上仍需设置两排支座。
4)钢筋混凝土的悬臂梁桥在支点附近负弯矩区段 内,不可避免要出现裂缝,雨水易于浸入梁体,而且 其构造也较简支梁为复杂。
6.1.2 T型刚构桥
行业知识
3
(1)带挂梁的T构桥型
图6-5 带挂梁的T型刚构
(2)带铰的T构桥型
图6-6 行带业铰知的识 T型刚构
4
悬臂与连续体系梁桥基本概念
1、 悬臂梁桥:将简支梁梁体加长,并越过支点就成为悬臂梁桥。
悬臂梁桥的结构类型:悬臂梁桥有单悬臂梁和双悬臂梁两种。
单悬臂梁是简支梁的一端从支点伸出以支承一孔吊梁的体系。
双悬臂梁是简支梁的两端从支点伸出形成两个悬臂的体系。
悬臂梁桥的构造特点:(1)立面布置:单悬臂梁桥一般做成三跨,中间带挂梁边孔成为锚孔。
双悬臂梁桥有单孔悬臂梁桥和多孔悬臂梁桥。
单孔悬臂梁桥桥头两端不设桥台,仅设搭板完成主桥与路堤的衔接,多用于人行天桥;多孔悬臂梁桥需每隔一孔设挂梁。
(2)横截面形式:与等截面简支梁不同,悬臂梁桥锚跨跨中承受正弯矩,支点附近承受较大负弯矩,故支点截面底部受压区需大面积加强,通常采用的横截面形式为T 形截面和箱形截面。
悬臂梁桥的优缺点:悬臂梁桥一般为静定结构,结构内力不受地基变形影响,对基础要求较低。
悬臂梁桥虽然在力学性能上优于简支梁桥,可适用于更大跨径的桥梁方案,但由于悬臂梁桥的某些区段同时存在正、负弯矩,无论采用何种主梁截面形式,其构造较为复杂;而且跨径增大以后,梁体重量快速增加,不易采用装配式施工,往往要在费用昂贵、速度缓慢的支架上现浇。
悬臂梁桥的计算: (1)恒载内力计算:恒载包括主梁自重内力1G S 和二期恒载(栏杆、灯柱等)引起的内力2G S 。
1()()G LS g x y x dx =∙⎰, 式中1G S 为主梁自重内力(弯矩或剪力),()g x 为主梁自重集度,()y x 为相应主梁内力影响线坐标。
(2)活载内力计算:(1()c k i k i S m q m P y =+μ)ξΩ+式中m 为悬臂梁桥的荷载横向分布系数,y 为内力影响线竖标,其他分别为冲击系数、荷载折减系数、车道荷载等。
悬臂梁桥的配筋特点:(1)在悬臂部分与支点附近是负弯矩区段,主钢筋布置在梁的顶部;(2)跨中部分承受正弯矩,主筋应布置在梁的底部;(3)在正、负弯矩过渡区域,两个方向的弯矩都可能发生,顶部和底部均要布置适量钢筋。
悬臂和连续梁桥施工
第二篇 混凝土梁桥和刚架桥 第八章 第三节 悬臂体系和连续体系梁桥的施工 16
箱梁合拢后外景
《桥梁工程》第二版,邵旭东主编
人民交通出版社
第二篇 混凝土梁桥和刚架桥 第八章 第三节 悬臂体系和连续体系梁桥的施工 17
2. 悬臂拼装法
①悬臂拼装法是将预制好的梁段,用驳船运到桥墩的两侧,然后通过悬臂 梁上的一对起吊机械,对称吊装梁段,待就位后再施加预应力,如此下去, 逐渐接长。 ②悬拼节段接缝处理
《桥梁工程》第二版,邵旭东主编
人民交通出版社
Hale Waihona Puke 第二篇 混凝土梁桥和刚架桥 第八章 第三节 悬臂体系和连续体系梁桥的施工 18
(a) (b)
(c)
提升卷扬机 卷扬机横梁
牵引倒链
人民交通出版社
第二篇 混凝土梁桥和刚架桥 第八章 第三节 悬臂体系和连续体系梁桥的施工 14
箱梁边跨在支架现浇先合拢施工
《桥梁工程》第二版,邵旭东主编
人民交通出版社
第二篇 混凝土梁桥和刚架桥 第八章 第三节 悬臂体系和连续体系梁桥的施工 15
箱梁中跨合拢施工
《桥梁工程》第二版,邵旭东主编
人民交通出版社
② 施工流程: (1)浇筑混凝土,混凝土达到规定强度后施加预应力; (2)脱模卸架,由台车将承重梁和模架运送至下一桥孔; (3)承重梁就位后,再将导梁向前移动,准备下一循环的 浇 筑工作。
《桥梁工程》第二版,邵旭东主编
人民交通出版社
第二篇 混凝土梁桥和刚架桥
5
a
5
(a)
6
4
1
2
3
a b
(b)
7 b
(c)
移动模架法的特点
7
3.4 悬臂梁桥3.5连续梁桥
– – – – – – – 单悬臂、双悬臂 卸载弯矩使跨中弯矩大大减小 静定体系对地基要求不高 跨中有接缝,行车条件不好 跨中的牛腿、伸缩缝,易损坏 适合于中等以上跨径桥梁 施工不方便
双悬臂梁桥
均布荷载q
单悬臂梁桥
均布荷载q
多跨悬臂梁桥
多跨连续梁桥
• 梗腋的作用:
– – – – 1、提高箱梁截面的抗弯和抗扭刚度; 2、减小扭转剪应力和畸变应力; 3、使力线过渡平缓,减小次内力; 4、可以提供布置纵向预应力筋和横向与预 应力筋的空间; – 5、为减薄底板和顶板提供了构造上的保证。
• 体系转换
– 悬臂浇注时:墩梁临时固结 – 边跨或主跨合拢后:拆除临时固结,设置永 久支座
• 二次内力(结构附加内力、结构次内力):
简支梁在预应力作用下会造成内力重分布吗? 简支梁在预应力作用下会引起二次内力吗? 连续梁在预应力作用下会引起二次内力吗?
• 3.6T形刚构桥
– – – – – – 卸载弯矩类似于悬臂梁 适合于悬臂施工、节省支座 静定体系对地基要求不高 跨中的牛腿、伸缩缝,易损坏 行车条件不好 适合于中等以上跨径桥梁
• 3.5连续梁桥
– – – – 恒载、活载均有卸载弯矩 行车条件好 超静定体系对地基要求高 适合于中等以上跨径桥梁
连续梁桥
均布荷载q
多跨悬臂梁桥
多跨连续梁桥
• 为什么大跨度连续梁桥多采用变高度截 面?
– 1、加大支点附近的梁高做成变截面时,可 以有效降低跨中的设计弯矩; – 2、能适应抵抗支点剪力很大的要求。 – 3、对恒载引起的截面内力和桥下通航的净 空要求影响不大。 – 4、采用悬臂施工方法时,与其施工阶段的 内力变化规律一致相吻合。
桥梁工程第7章 悬臂梁桥、连续梁桥和连续刚构桥
悬臂梁桥还需在跨间增加悬臂和挂梁间的牛腿及伸缩装臵, 行车 条本港大桥( 主跨 510 m)
6
目前, 国内采用箱形截面的钢筋混凝土悬臂梁桥最大跨径为 55 m, 常用跨径在30 m以内, 国外一般在 70 ~80 m。 预应力混凝土悬臂 梁桥国内常用跨径为 30 ~50 m, 国外最大跨径为 150 m。 三孔预应 力混凝土悬臂梁桥, 在采用平衡悬臂法装配施工时, 中孔也可不用 挂梁而仅在跨中用剪力铰相连, 这种带剪力铰的悬臂体系为一次 超静定结构。 苏联曾建造过一座中跨跨径为 128 m 的悬臂梁桥。 除钢筋混凝土和预应力混凝土悬臂梁桥外, 还有钢悬臂梁桥, 如重庆嘉陵江大桥, 日本港大桥 ( 图 7. 2 ) , 美 国的康摩多 巴雷桥
底板和顶板厚度提供了构造上的保证。 腹板与顶、底板连接处的
梗腋常用布臵形式参见本章第二节连续梁桥有关内容。 宽桥宜采用单箱双室截面, 其顶板、底板、腹板厚度可参照单 箱单室截面的规定取用, 但中间腹板厚度可以比两侧腹板厚度小 5 cm。
桥梁工程第三篇悬臂及连续体系梁桥
力学特点及适用范围 (1)由于支点负弯矩的卸载作用,跨中正弯矩显著减小。 (2)通常支点截面负弯矩比跨中截面正弯矩大,但当跨径
不大时,差别不太大。 (3)属超静定结构,墩台基础的不均匀沉降会使梁内产生
不利的附加内力(由于混凝上的塑性性质,这种内力会随 着时间逐渐减小)考虑次内力影响。 适用:一般跨径不超过25~30m。
对三跨双悬臂梁桥 主梁为T形截面时,悬臂长度一股为中跨长度0.3~0.4倍。 箱形截面时,最好使跨中最大和最小弯距绝对值般不超过中跨长度的 0.5倍。 当采用普通钢筋混凝土时,边跨一般为中跨的0.3~0.4;当采用预应 力钢筋混凝土时,边跨一般为中跨的0.3~0.5。 对三跨单悬臂带挂梁结构 边跨为中跨的0.6~0.8,挂孔的长度为中跨的0.4~0.6(钢筋砼) 和0.2~0.4(预应力砼)。
对多跨双悬臂带挂梁结构
边跨为中跨的0.75~0.8,挂孔的长度为中跨的0.5~0.6(钢筋砼) 和0.5~0.7(预应力砼)。
2)高跨比h/L
T形梁的跨中梁高为跨径的1/12~1/20,支点处梁高通常加大到跨 中梁高的1~1.5倍。
大跨径箱形截面时,跨中梁高可减小至(1/20~1/30)l,在此情况 下支点梁高一般为跨中梁高的2~2.5倍。
第二章 立面和横断面布置
一、立面设计的内容 桥梁体系的选择、桥梁总长及分跨布置,桥面高程确定,梁高选择,
桥梁下部结构和基础形式的选择。 1、混凝土悬臂梁桥 1)跨径布置
各跨跨径比 悬臂长与跨径比 具体考虑因素 • 材料 • 施工方法 • 特殊使用要求
– 城市桥梁可能要求较小的锚孔,但必须保证稳定性
• 由于弯矩图面积的减小,跨越能力增大,减小跨内主梁高 度和降低材料用量,经济;
第二篇悬臂梁与连续梁
箱梁—专门分析 多梁式—横向分布系数计算,等刚度法
三、超静定次内力计算
1、产生原因—结构因各种原因产生变形,在多余约束处将
产生约束力,引起结构附加内力(或称二次力)
2、连续梁产生次内力的外界原因
预应力 墩台基础沉降 温度变形 徐变与收缩
05:37
2/114
第一节 连续梁桥的体系与构造特点
一、体系特点
由于支点负弯矩的卸载作用,跨中正弯矩大大减小,恒载、 活载均有卸载作用
由于弯矩图面积的减小,跨越能力增大 超静定结构,对基础变形及温差荷载较敏感 行车条件好
均布荷载q 连续梁桥 均布荷载q
05:37
3/114
第一节 连续梁桥的体系与构造特点
05:37
15/114
第二节 连续梁桥常用施工方法
一、满堂支架现浇 二、简支变连续 三、逐跨施工—现浇、拼装 四、顶推施工—单点:单向单点、双向单点
多点:每个墩台布置千斤顶 五、悬臂施工(节段施工)—现浇、拼装
05:37
16/114
满堂支架现浇
05:37
17/114
满堂支架现浇
05:37
18/114
05:37
4/114
第一节 连续梁桥的体系与构造特点
二、构造特点 (跨径、截面、梁高、板厚、配筋) 1、跨径布置
布置原则:减小弯矩、增加刚度、方便施工、 美观要求
不等跨布置—大部分大跨度连续梁; 边跨为0.5~0.8中跨
等跨布置—中小跨度连续梁 短边跨布置—特殊使用要求
05:37
5/114
瞬时应变—单位长度的弹性变形量 徐变系数—徐变应变与瞬时应变的比值
悬臂与连续体系梁桥PPT课件
43
44
45
V形墩刚构桥: 荷兰布里尔斯马斯桥
46
日本:茨城县十王川桥 V形墩刚构桥
47
桂林漓江桥 1987年 95m 国内第一次采用V形桥墩
48
带拉杆形式刚构桥
49
带铰的T形刚构桥
50
带挂孔的T形刚构桥
51
(5)连续刚构:如果在跨中采用预应力钢筋和现浇混凝 土联成整体,则为连续刚构,亦称为连续一刚构连续体系 ,简称为连续刚构桥。
8
悬臂梁桥的构造特点
悬臂梁桥的立面布置
9
10
11
1213悬臂梁桥的横截面 Nhomakorabea14
15
16
17
悬臂梁桥的计算要点
一般特点 1、跨径布置
各跨跨径比 悬臂长与跨径比 2、具体考虑因素 (1)材料 钢筋混凝土:悬臂较短,减小负弯矩 预应力混凝土:悬臂可适当加长 (2)施工方法 纵向分缝:必须考虑锚孔的吊装重量 横向分缝:可适当加长悬臂长度
刚构桥的概念
一、定义:
1、定义:桥跨结构(梁或板)和墩台整体相连的桥梁称为刚 构桥。
2、受力特点:
(1)梁墩柱刚性连接,梁因墩柱的抗弯而卸载,整个体系 是压弯结构,也是有推力结构。
(2)刚 构 桥的桥下净空比拱桥大,在同样净空要求下可修
建
较
小
的
跨
径。
(3)刚构桥施工较复杂,一般用于跨度不大的城
市或公路的跨线桥和立交桥。
18
3、特殊使用要求 城市桥梁可能要求较小的锚孔,但必须保证稳定性。
4、截面形式 悬臂部分:吊装时采用肋梁,悬臂施工时采用箱梁 挂孔:一般采用肋梁
19
5、梁高 一般采用变高度梁 支点梁高/跨中梁高=2~2.5
悬臂和连续体系梁桥
LOGO
5. 悬臂梁桥优缺点及应用:
优点:悬臂梁桥在施工阶段和成桥运营阶段两者受力状态是一致的, 非常适宜于悬臂施工方法。 缺点:(1)裂缝→雨水侵入梁体;
(2)挂梁与悬臂端衔接处产生不利行车的折点。
应用范围:国内箱形薄壁钢筋混凝土悬臂梁桥最大跨径为55m,国外一 般在70~80m以下;预应力混凝土悬臂梁桥一般在100m以下,世界最大的 跨径为150m。
LOGO
4.1.3 连续梁桥
1. 连续体系特点:
由于支点负弯矩的卸载作用,跨中正弯矩大大减小,跨越 能力增大; 超静定结构,对基础变形及温差荷载较敏感; 伸缩缝少,行车平稳; 结构整体刚度大,变形小。
LOGO
均布荷载q 连续梁桥 均布荷载q
LOGO
LOGO
2. 连续板桥
中间跨 l =8 ~14m 边跨=( 0.5~0.8)l 跨中截面高 h= (1/18~1/30)l 支点截面高 H =(1.2~1.4)h
LOGO
4.1.2 T形刚构桥
1. 分类及力学特点:
(1)带挂梁的T构桥型
静定结构; 施工无需体系转换; 省掉设置大吨位支座装置、更换支座的麻烦; 当挂梁与两岸引桥的简支跨尺寸和构造相同时,更能加快全桥施工进度, 以获得良好经济效益。
(2)带铰的T构桥型静定结构; 超静定结构; 竖向荷载时,相邻的T形刚构结构通过剪力铰而共同受力。
LOGO
2.T形刚构的若干布置形式:
LOGO
3.T形刚构的构造:
T形刚构的布置应尽可能对称,以避免T形刚构的桥墩承受不平衡弯矩; 全桥的T形单元尺寸尽可能相同, 以简化设计与施工; 钢筋混凝土T构桥,挂梁的经济长度一般在跨径的0.5~0.7范围内; 预应力混凝土T构,挂梁经济长度一般在跨径的0.22~0.5范围内; 主孔跨径大时,取较小比值,并应使挂梁跨径不超过35~40m,以利安装;
工学第七章悬臂和连续梁桥简介
4)多箱多室截面(e)
5)分离式箱形截面(g、h)
说明:悬臂部分(锚孔)——吊装时采用肋梁,悬臂施工时
采用箱梁;挂孔——一般采用肋梁,便于吊装
3、配筋特点:
纵向钢筋——悬臂上只承担负弯矩,配置负弯矩钢筋
——锚孔可能承担正或负弯矩需双向配筋
腹板——下弯的纵向钢筋,需要时布置竖向预应力钢筋
2 cos
tg 2
2h( R N y sin )
3 Re H ( 2h 3 ) N y cos ( 2h 3m )
(4)、专门空间分析
对于重要的牛腿应作为
专门课题来验算
返回
90
90
30.4
Lg
35
40
33
25
30
25
29
.2
悬臂主梁尺寸(m)
底缘曲线
H2
H1
三次曲线
11.0 3.2
10.0 2.5
8.5
7.5
2.0
2.0
ቤተ መጻሕፍቲ ባይዱ
园弧线
园弧线
10.1
9.2
园弧线
5.0
1.9
半立方抛
物线
5、牛腿构造特点
牛腿的高度不到悬臂梁高和挂梁梁高的一半,但要
传递较大的力——成为上部结构的薄弱部位,凹角处应
(3)双悬臂梁(或单悬臂梁)与简支挂梁联合组成多孔悬臂梁桥
多跨悬臂梁桥
(4)带挂梁的T形悬臂梁桥
多跨连续梁桥
T形刚构桥
其它特点:
(1)悬臂端容易下挠,行车舒适性较差。
(2)一般为静定结构,结构内力不受温度、混凝土收缩徐变
连续刚构桥
悬臂浇筑连续梁、连续刚构(高速铁路桥梁施工)
三、梁段悬浇施工
(五)梁段混凝土的浇筑
2、若能全断面一次灌注最好,否则应按以下顺序灌注。 (1)二次灌注:第一次由底板至腹板下承托;第二次为剩余部分。 (2)三次灌注:第一次由底板至腹板下承托;第二次是腹板下承托至腹板上承 托预应力管道密集处以上,第三次由腹板上承托至顶板。 3、混凝土的灌注宜先从挂篮前端开始,以使挂篮的微小变形大部分实现,从 而避免新、旧混凝土间产生裂缝。
四、合龙段施工及体系转换
(一)合龙程序
不同的悬灌和合龙程序,其引起的结构恒载内力不同,体系转换时由徐变引起 的内力重分布也不相同,对此应在设计和施工中予以充分考虑。 1、从一岸顺序悬灌、合龙。
这种方法可使施工机具、设备及材料从一岸通过已成结构直接运输到作用面 或附近;另外,在施工期间,单T构悬灌完成后很快合龙,形成整体,故未成 桥前结构的稳定性和刚度较强。当作业面较少,对工期较紧者不适用。
三、梁段悬浇施工
(一) 挂篮简介
2、挂篮的分类与构造
平行桁架式挂篮
三、梁段悬浇施工
(一) 挂篮简介
2、挂篮的分类与构造
平弦无平衡重挂篮
三、梁段悬浇施工
(一) 挂篮简介
2、挂篮的分类与构造
菱形桁架式挂篮
三、梁段悬浇施工
(一) 挂篮简介
2、挂篮的分类与构造
菱形桁架式挂篮
三、梁段悬浇施工
(一) 挂篮简介
广泛用于预应力混凝土T形刚构桥、悬臂梁桥、连续梁桥、斜腿刚构桥、桁架
桥、拱桥及斜拉桥的主梁施工中。
预备知识——悬臂施工法
东海大桥辅通航孔T构双悬臂施工
预备知识——悬臂施工法
红河大桥T构悬臂施工
预备知识——悬臂施工法
东海大桥辅通航孔T构双悬臂施工
桥梁基本结构体系
第三节 混凝土刚构桥立面布置
T型刚构(带铰、带挂梁)、连续刚构 一、带挂梁结构
二、带剪力铰结构 三、连续刚构
第四节 横断面布置
板式截面、肋式截面、箱形截面。 一、板式截面 优点:构造、施工简便,建筑高度小。 缺点:材料不能充分发挥性能,自重大 二、肋式截面 优点:挖空率大,减轻自重,受力好 副弯矩区段的构造特点:加大马蹄
第一节 有支架施工法
优点: 整体性好、施工平稳、可靠、不需要大型起吊运输设备; 施工中无体系转换; 预应力布置方便。 缺点: 影响通航与排洪;工期长;模板多;质量较难控制等。 一、支架和模板 支架分类:木支架、钢支架、钢木混合支架、万能杆件拼装支
架。 模板分类:木模板、钢模板
第三节 刚构桥
分类: 带剪力铰刚构、带挂梁刚构、连续刚构。 各类刚构桥的受力与构造特征 构造特征 受力特征
第二章 立面与横断面设计
混凝土悬臂梁立面布置 混凝土连续梁立面布置 混凝土刚构桥立面布置 横断面布置
第一节 混凝土悬臂梁立面布置
立面设计内容:
桥梁体系的选择 桥梁总长及分跨布置 桥面高程的确定 梁高的选择 桥梁下部结构和基础形式的选择
混凝土悬臂梁分类: 三跨双悬臂结构、三跨单悬臂带挂梁结构、多跨双
悬臂带挂梁结构
第二节 混凝土连续梁立面布置
一般采用不等跨设计,边中跨比0.5~0.8。 一、等高度连续梁 优点:构造、施工简便 缺点:支点抵抗副弯矩不利 等高度连续梁梁高与跨径之比:1/16~1/26 二、变高度连续梁 优点:受力好、省材料、增大桥下净空 截面变化曲线:二次抛物线、圆弧线、折线
二、就地浇注施工法 分层、分段浇注 三、养护和落架
第二节 平衡悬臂施工
悬臂和连续梁桥简介
◆ 板式和肋梁式截面
实体板:用于中小跨径连续梁桥, 有支架现浇;
空心板:用于15~30m连续梁桥有支 架现浇,板厚可取0.8~ 1.5m;
肋梁式:用于跨径25~50m,梁高一 般取1.3~2.6m,预制架 设,并在梁段安装后经体 系转换为连续梁桥。
◆ 箱形截面
用于跨径超过40~60m(等截面)或以上(变截面),有支架现浇、 逐孔施工及悬臂施工等多种方法。
(a)
S J S /Jm =1
6.6 16.8
27.0
(b)
MS 270kN·m 300kN·m 410kN·m
m Jm
40.0
1670kN·m 1540kN·m 1200kN·m
Mm /MS =0.20
0.30 0.67 Mm
330kN·m 460kN·m 800kN·m
g =10kN/m 27.0
④ 为了降低材料用量指标,对于较大跨径的桥梁,宜采用能 减小跨中弯矩值的其他体系桥梁,例如悬臂体系、连续体 系的梁桥等。
7.1悬臂和连续体系梁桥一般特点
7.1.1 悬臂体系梁桥特点 1、悬臂梁桥 1)、结构类型 (1)、双悬臂梁桥
搭板
悬臂端伸入路堤、省桥台,需 设置搭板、易损。
(2)带挂梁的单悬臂梁桥
单箱单室:顶板宽度小于20m; 单箱双室:顶板宽度25m左右;
b 1 : 1 a 2.5 3
圆空式单箱双室:顶板宽度15 m左右;
b 5m b 5m, 宜配预应力筋
双箱单室:顶板宽度可达40m左右;
单箱多室:宽度可不受限制 斜腹板箱梁:施工稍困难,使用较少
2、连续刚构桥构造特点
①主梁 主梁在纵桥向大都采用不等跨变截面的结构布置形式 ; 边跨和主跨的跨径比值在0.5~0.692之间,大部分比值在
悬臂和连续梁桥简介
b
b
固结 宜用于高墩场合,(墩高25m()a) ,并采用抗推刚度小的双薄壁墩。
(b)
7.2 悬臂和连续体系梁桥的构造
7.2.1 悬臂体系梁桥 1、悬臂梁桥
1).截面形式
锚跨跨中承受正弯矩、支点附近承受较大负弯矩,故支点截面底部受压区需加
强。
截面形式:T形截面、箱形截面
跨中截面
支点截面
带马蹄形T形截面:
④ 为了降低材料用量指标,对于较大跨径的桥梁,宜采用能 减小跨中弯矩值的其他体系桥梁,例如悬臂体系、连续体 系的梁桥等。
7.1悬臂和连续体系梁桥一般特点
7.1.1 悬臂体系梁桥特点 1、悬臂梁桥 1)、结构类型 (1)、双悬臂梁桥
搭板
悬臂端伸入路堤、省桥台,需 设置搭板、易损。
(2)带挂梁的单悬臂梁桥
单悬臂梁桥 均布荷载q
• 恒载:因简支挂梁的跨径缩短减小 • 车道荷载:只按支承跨径较小的简支挂梁产生的正弯矩
计算,因此比简支梁小得多。
(3)双悬臂梁(或单悬臂梁)与简支挂梁联合组成多孔悬臂梁桥
多跨悬臂梁桥 多跨连续梁桥
简支梁桥
l1
l
l1
(a)
lg
lx
l
(b)
lx
lg
双悬臂锚跨和挂梁的三 跨悬臂梁桥
前言
① 对悬臂梁桥、连续梁桥、连续刚构桥的构造、参数取值、 力学及特点作了简单的介绍;
② 普通钢筋混凝土和预应力混凝土简支梁桥的经济跨径分别 为20m和40m左右;
③ 跨径超出此范围时,跨中恒载弯矩和活载弯矩将会迅速增 大,从而导致梁的截面尺寸和自重显著地增加,不但材料 耗用量大而不经济,并且也由于很大的安装重量给装配式 施工造成很大的困难;
第四章 混凝土悬臂体系和连续体系梁桥的计算
5、平衡悬臂施工 – 分清荷载作用的结构 – 体现约束条件的转换 – 主梁自重内力图,应由各施工阶段时 的自重内力图迭加而成
6、顶推施工 – 顶推过程中,梁体内力不断发生改变, 梁段各截面在经过支点时要承受负弯 矩,在经过跨中区段时产生正弯矩 – 施工阶段的内力状态与使用阶段的内 力状态不一致 – 配筋必须满足施工阶段内力包络图
t x, y dy
c 0
be1
t m a x
规范折减方法
• 1.简支梁和连续 梁各跨中部梁段, 悬臂梁中间跨的 中部梁段:
bmi f bi
• 2.简支梁及连续 梁支点,悬臂梁 悬臂段:
其中 s 和 f 为计算系数,可查图
bmi 高 时,翼缘 有效宽度取实际宽度. • 4.预应力混凝土梁计算 预加力引起的应力时, 其轴向力部分按全宽计 算,偏心部分按有效宽 度计算。 • 5.对超静定结构进行作 用效应分析时,可取实 际宽度计算。
荷载增大系数: n mmax
式中n为腹板数
C的计算公式
1.悬臂体系梁桥悬臂跨
C 2m
m 1 1 1 1 I I 2 I I Tc 1 Tc Ti T0
C的计算公式
n 1 1 1 1 I I 2 I n i 1 Ti Tn T0 C n 1 2 I Tc n 1 2 1 1 1 1 1 1 2 2 I Tn I n i 1 I Ti I Tc I T 0 I Tc i 1 Ti 2
• 主梁最大正弯矩发生在导梁刚顶出支点 外时
• 最大负弯矩(1)——与导梁刚度及重量 有关
– ①导梁刚接近前方支点
最大负弯矩(2)
• ②前支点支撑在导梁约一半长度处
连续梁桥计算
代入式(1-3)~式(1-5)得3#支点总弯矩为
(注:Md用正值代入是因为表1-1中的系数 均是按负值端弯矩求得的)
根据已知端弯矩M3,M4和均布荷载 值,参看图1-8b(下)不难算出距4#结点0.4L=16m处的弯矩值为
(计算过程略)
此值与近似公式的计算值较接近,并且按此方法可以求算全梁各个截面的内力值。
图1-6导梁支承在前支点上的计算图式
4)一般梁截面的内力计算
对于导梁完全处在悬臂状态的情况,多跨连续梁可以分解为图1-7b,c所示的两种情况,然后应用表1-1和表1-2的弯矩系数表分别计算后再进行叠加求得。
图1-7荷载的分解
等截面等跨径连续梁在端弯矩作用下支点弯矩系数表1-1
跨数
各支点截面弯矩系数η1
3、对于在成桥以后不需要布置正或负弯矩的钢束区,则根据顶推过程中的受力需要,配置适量的临时预应力钢束。
2.施工中恒载内力计算
1)计算假定
顶推连续梁通常是在岸边专门搭设的台座上逐段地预制、逐段向对岸推进的,它的形成是先由悬臂梁到简支梁再到连续梁,先由双跨连续梁再到多跨连续梁直至达到设计要求的跨数。为了简化计算,一般作了以下的假定:
-0.000370
0.001381
-0.005155
0.019238
-0.071797
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬臂梁桥的结构类型及构造措施
1、悬臂梁桥的结构类型 悬臂梁桥的结构类型按照悬出的个数,可分为单悬臂梁桥和 双悬臂梁桥。 (1)单悬臂梁桥:将简支梁的一端加长至支点外形成; (2)双悬臂梁桥:将简支梁的两端均加长至支点外形成。
悬臂梁桥的构造特点
悬臂梁桥的立面布置
悬臂梁桥的横截面
悬臂梁桥的计算要点
挂孔:一般采用肋梁
5、梁高 一般采用变高度梁 支点梁高/跨中梁高=2~2.5
优点:增加支点抗弯能力
不增加很多的弯矩 底缘曲线:抛物线、正弦曲线、圆弧、折线
6、腹板及顶底板厚度 顶板:满足横向抗弯及纵向抗压要求 一般采用等厚度,主要由横向抗弯控制
腹板:主要承担剪应力和主拉应力
一般采用变厚度腹板,靠近悬臂端处受构造要求控 制,靠近支点处受主拉应力控制,需加厚 底板:满足纵向抗压要求 一般采用变厚度,悬臂端主要受构造要求控制,支 点主要受纵向压应力控制,需加厚
1、杠杆原理法
该法适用于初步设计阶段。是近似假定被简支在两箱中线处 的支点上,绘出梁一个支点的反力影响线,在影响线上布置 最不利车辆荷载确定反力,该反力即为荷载横向分布系数。
2、弹性支承梁法
该法的基本原理为:将悬臂梁两端沿纵向截取 1m长的梁段, 每片悬臂梁对该梁段的弹性抵抗力各用一根弹簧支撑来模拟, 最后按照最不利工况布置车辆荷载后,计算得到支点处两个 弹簧支撑反力即为求得的悬臂梁的竖向荷载横向分布系数 m 。 弹簧的刚度: 竖向
3、缺点:带铰的T形刚构桥由于温度变化,混凝土收缩徐变 和基础不均匀沉陷等因素的作用会使结构内产生很难准确计 算的附加内力,而且悬臂端因塑性变形产生挠度不易调整以 致带来行车不平顺以及有时施工中还要强迫合拢等许多不足。
其次,剪力铰不仅结构复杂、用钢量多,造成费用增加, 而且铰和梁的刚度差异引起结构变形不协调,致使桥面不平 顺,导致行车不舒适。上述种种缺点限制了带铰 T 形刚构桥 的应用范围。
H- 汽车制动力或因温度变化引起的制作摩阻力,取较大者, 当不计附加荷载时,H =0;
h h M R(e tan ) H ( ) 2 2
-支座垫板高出牛腿底面的高度。
-斜截面对垂直截面的倾斜角,竖直截面ab倾斜角 =0;
三、验算截面内力
1、竖直截面(按抗弯构件验算)( 0)
4、适用
钢筋混凝土:中、பைடு நூலகம்跨径 预应力钢筋混凝土:大跨度
直腿刚架(门式)和斜腿刚架:中、小跨径
T形刚构、连续刚构:大跨度
T形刚构桥的结构类型及构造
一、T形刚构桥的主要特点
T 形刚构桥是一种具有悬臂受力特点的梁式桥,最早采 用钢筋混凝土结构。由于钢筋混凝土梁式结构承受负弯矩, 顶面裂缝不可避免,因此钢筋混凝土 T形刚构不可能做成很 大的跨径。而预应力混凝土 T形刚均可直接采用悬臂施工法, 从 20 世纪 50 年代产生以来,预应力混凝土 T 形刚构得难了迅 速发展。
3、形式:
(1)刚构构造分为直腿刚构(门式)和斜腿刚构。 (2)V形墩刚构桥:为减少支柱肩部的负弯矩峰值,将支柱 做成V形墩形式。 ( 3 )带拉杆形式:为方便采用悬臂施工,并且减少跨中正 弯矩和挠度值,做成两端带拉杆的结构形式,施工时可在端 部临时压重。 (4)T形刚构:桥跨结构的上部梁在墩上采用两边平衡悬臂 施工,首先形成一个T字形的悬臂结构.然后相邻的两个T形 悬臂在跨中可用剪力铰或跨径较小的挂梁联成一体,称为带 铰或带挂孔的T形刚构.
恒载包括包括主梁自重内力 SG 1 和二期恒载(栏杆、灯柱 等) S G 2 引起的内力。
SG1 g( x) y( x)dx
L
式中 SG 1 为主梁自重内力(弯矩或剪力), S G 2 为主梁自重 集度,为相应主梁内力影响线坐标。
悬臂梁桥的设计计算
(二)活载内力 1、纵向--某些截面可能出现正负最不利弯矩
N H Q R h M Re H ( ) 2
2、45°斜截面的抗拉验算(按轴心受拉构件)
3、最弱斜截面验算(按偏心受拉构件)
4、专门空间分析 对于重要的牛腿应作专门课题来验算
3.2 T形刚构桥
刚构桥的概念
一、定义: 1 、定义:桥跨结构 (梁或板 ) 和墩台整体相连的桥梁称为刚 构桥。 2、受力特点: ( 1 )梁墩柱刚性连接,梁因墩柱的抗弯而卸载,整个体系 是压弯结构,也是有推力结构。 ( 2 )刚构桥的桥下净空比拱桥大,在同样净空要求下可修 建 较 小 的 跨 径 。 (3)刚构桥施工较复杂,一般用于跨度不大的城 市或公路的跨线桥和立交桥。 (4)现在采用预应力混凝土和悬臂施工的刚构 桥,己成为大跨度桥梁竞争方案之一。
二、T形刚构桥的分类
预应力混凝土 T 形刚构桥,分为跨中带剪力铰的和跨内 设挂梁的两种基本类型。
(1)带铰的T形刚构桥
1、带铰的T形刚构是一种超静定结构,它的上部结构全部是 悬臂部分,相邻两悬臂通过剪力铰相连接。 2 、优点:剪力铰是一种只传递竖向剪力而不传递纵向水平 力和弯矩的连接构造。当在一个 T 构结构单元上作用有竖向 荷载时,相邻的 T 构单元通过剪力铰共同参与受力。从结构 整体受力和牵制悬臂端的变形分析,剪力铰对 T 形刚构桥的 内力起到有利作用。
xi -i 号节点的 x轴坐标;
b -沿顺桥向单位长桥面板,按图3-30(b)计算在单位力作 用下的垂直位移;
一般特点
1、跨径布置 各跨跨径比 悬臂长与跨径比 2、具体考虑因素 (1)材料
钢筋混凝土:悬臂较短,减小负弯矩
预应力混凝土:悬臂可适当加长 (2)施工方法
纵向分缝:必须考虑锚孔的吊装重量
横向分缝:可适当加长悬臂长度
3、特殊使用要求 城市桥梁可能要求较小的锚孔,但必须保证稳定性。 4、截面形式
悬臂部分:吊装时采用肋梁,悬臂施工时采用箱梁
CW , C
1、 CW 的计算 T 形刚构桥上的悬臂端与固定端同属静定结构体系。当两者 截面尺寸完全相同、自由端同时施加单位力 P=1时,在根部 截面产生的内力完全相同,但前者在自由端产生的垂直挠度 却大于后者。所以计算 CW 时可以按照固端悬臂梁图进行计 算,对于变高度悬臂梁则应用有限元程序计算。如图所示。
计算假定和计算模型
悬臂梁自由端的弹簧支承刚度 K1为:
桥面板范围内弹簧反力由该节点处集中弹簧支撑所在长度 范围内的固端反力构成,由此计算某节点处的弹簧支承刚 度 K1 为:
1 K1 2 B L 2 b n
2CITb
2CITb i 1 i K1 B2 ( Lx1) 2 b
第三章 悬臂与连续体系梁桥
悬臂与连续体系梁桥内容
悬臂与连 续体系梁 桥
悬臂梁桥
T形刚构桥
连续梁桥
连续刚构 桥
3.1 悬臂梁桥
悬臂梁桥的概念 悬臂梁桥的结构类型和构造特点 悬臂梁桥的一般构造和适用场合
悬臂梁桥牛腿的构造特点和计算
悬臂梁桥的基本概念
将简支梁梁体加长,并越过支点就成为悬臂梁桥。
悬臂梁桥的等刚度法
出发点
1、横向分布体现肋主梁抗弯与抗扭能力的比例关系; 2 、不同体系的梁桥抗扭性能基本相同,抗扭刚度只与抗扭 惯矩有关; 3、体系不同体现在总体抗弯刚度上; 4、采用挠度相等的办法计算等代刚度。
等代刚度的原理示意
边跨
边跨
等代简支梁法原理示意
中跨--锚梁与挂孔刚度相差悬殊时,悬臂等代为跨度l 22
2、横向:
箱梁--专门分析 多梁式--横向分布系数,必须考虑横向分布系数沿桥纵向的 变化 支点:杠杆原理
挂孔、悬臂:采用等刚度原则简化为等代简支梁,采用刚性 横梁法或比拟正交异性板法计算。
活载内力计算
S (1 (mcqk miPkyi )
式中 m 为悬臂梁桥的荷载横向分布系数,y 为内力影响线竖 标,其他分别为冲击系数、荷载折减系数、车道荷载等。
4 、主要缺点除桥面伸缩缝多,对高速行车不利外,在施工 中还增加预制与安装挂梁的机具设备。
T形刚构桥的计算
主要内容:
1、荷载横向分布计算 2、并联两箱梁桥面板横向内力计算
3、悬臂梁因徐变和温差产生的变形
4、牛腿计算 本书仅对前两项内容进行详解。
一、T形刚构桥荷载横向分布计算
主要计算两个参数
的简支梁,挂孔等代为相同跨度的简支梁
中跨--锚梁与挂孔刚度相近时,悬臂与挂孔联合等代为跨 度 2l 2 l 3 的简支梁
牛腿的计算
一、计算截面宽度
二、计算截面内力
计算截面内力方程
N R sin H cos
Q R cos H sin
R-恒载和汽车荷载下支点反力(汽车荷载计入冲击力);
2、 C 的计算
1 Si Sm Si Si 1 ( ) G IT 0 ITm ITi
(1)当单元长度 Si 不完全相等时,
C
(2)当单元长度 Si 相等时,悬臂梁均划分为m个单元,
S 1 1 1 C 2 2G IT 0 ITm ITi
V形墩刚构桥: 荷兰布里尔斯马斯桥
日本:茨城县十王川桥 V形墩刚构桥
桂林漓江桥 1987年 95m 国内第一次采用V形桥墩
带拉杆形式刚构桥
带铰的T形刚构桥
带挂孔的T形刚构桥
( 5 )连续刚构:如果在跨中采用预应力钢筋和现浇混凝 土联成整体,则为连续刚构,亦称为连续一刚构连续体系 ,简称为连续刚构桥。 (6)分离式连续刚构桥:对于主梁连续时的多跨刚架桥, 当强烈全长太大时,或者做成数座相互分离的主梁连续式 刚构桥,主要用于城市高架桥。