2014直线的方程与位置关系专题练习

合集下载

专题27 直线的方程及两条直线的位置关系(纯答案)

专题27 直线的方程及两条直线的位置关系(纯答案)

专题27 直线的方程及两条直线的位置关系 答案题型一、直线方程与斜率 例1、解 (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 变式1、【答案】[)0,π 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3. 变式2、【答案】⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π 【解析】由x cos α+3y +2=0得直线斜率k =-33cos α. ∪-1≤cos α≤1,∪-33≤k ≤33. 设直线的倾斜角为θ,则-33≤tan θ≤33. 结合正切函数在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上的图象可知, 0≤θ≤π6或5π6≤θ<π.变式3、【答案】 [-1,1] [0,π4]∪[3π4,π)【解析】 如图所示,结合图形:为使l 与线段AB 总有公共点,则 k P A ≤k ≤k PB ,而k PB >0,k P A <0,故k <0时,倾斜角α为钝角,k =0时, α=0,k >0时,α为锐角. 又k P A =-2--11-0=-1,k PB =-1-10-2=1,∪-1≤k ≤1. 又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∪[0,π4]∪[3π4,π).题型二、直线的位置关系 例2、【答案】8【解析】由题意直线1l 的斜率存在.1214,,82a al l ∴=∴=.直线2l 的方程为4880x y -+=,即220x y ,∴直线12,l l的距离为5d==. 故答案为:8. 变式1、【答案】:12【解析】∪x ,y∪R ,直线(a ﹣1)x+y ﹣1=0与直线x+ay+2=0垂直,∪(a ﹣1)×1+1×a=0,解得a=12. ∪实数a 的值为12. 变式2、【答案】 充分必要【解析】直线 ax +y -1=0 与直线 x +ay +1=0的斜率都存在且相等时,a =±1,当 a =1时,两直线平行,当a =-1时,两直线重合,所以“a =1”是“直线 ax +y -1=0 与直线 x + ay +1=0平行”的充分必要条件. 变式3【答案】-1 ..【解析】直线12110l mx y l x my ---:=,:=, 若12l l //,则21010m m ⎧-+=⎨-+≠⎩,解得1m -=;直线11l mx y -:=过定点1(0)G ,, 化圆222240x x y ++-=为()22125x y ++=,可知圆心坐标为()10C -,,半径为5.如图,CG则min AB ==.故答案为:-1;. 变式4、【答案】 垂直【解析】 由a sin A =bsin B ,得b sin A -a sin B =0.∪两直线垂直. 题型三、直线的对称性 例3【答案】 y =6x -6【解析】由题意得反射光线经过点M (-3,4)关于直线l 的对称点Q (x ,y )与点N (2,6),由⎩⎪⎨⎪⎧y -4x +3=-1,x -32-y +42+3=0.解得⎩⎪⎨⎪⎧x =1,y =0.所以Q (1,0),所以反射光线所在直线的方程为y -0x -1=6-02-1,即y =6x -6.变式1、【答案】x -2y +3=0.【解析】设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0)…由00002022()x x y y x x y y ++⎧-+=⎪⎨⎪-=--⎩得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2, 由点P ′(x 0,y 0)在直线2x -y +3=0上. ∪2(y -2)-(x +2)+3=0,即x -2y +3=0.变式2、解 方法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2. ∪反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′∪l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝⎛⎭⎫x 0-52,y 02,Q 点在l 上,∪3·x 0-52-2·y 02+7=0.由⎩⎨⎧y 0x 0+5=-23,32x 0-5-y 0+7=0.得⎩⎨⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.方法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23,又PP ′的中点Q ⎝⎛⎭⎫x +x 02,y +y 02在l 上,∪3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x2-y +y+7=0.可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, ∪所求反射光线所在的直线方程为29x -2y +33=0.1、【答案】:x +y +1=0.【解析】直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 2、【答案】 35【解析】 由两直线垂直的条件得2a +3(a -1)=0, 解得a =35.3、【答案】:.52【解析】因为两直线平行,所以m 1=-4-2≠34,解得m =2.解法1(转化为点到直线的距离) 在直线l 1:x -2y +4=0上取一点P(0,2),P 到直线l 2:2x -4y +3=0的距离为d =|0-8+3|22+42=52. 解法2(平行线距离公式) 由l 1:x -2y +4=0和l 2:x -2y +32=0,根据平行线间的距离公式得d =|4-32|12+22=52.4、【答案】:(-6,-8)【解析】:设点关于直线的对称点为,由轴对称概念的中点在对称轴上,且与对称轴垂直,则有解得, 5、【答案】:()1,1-(4,0)P 54210x y ++=111(,)P x y 1PP 1140(,)22x y M ++54210x y ++=1PP 111145421022445x y y x +⋅+⋅+==-⎧⎪⎨⎪⎩116,8,x y =-=-∴1(6,8)P --【解析】已知直线进行变形,()()2120m x y n x y +-+-+=,若要让,m n “失去作用”,则21020x y x y +-=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,即定点为()1,1- 6、4π【解析】依题意,原点O 到直线l 的距离为d ,2|1|1m d m +==+要距离最大值,则0m >,2112(1)2(1)2(1)21m d m m m m +==+-++++-+12≤=,当且仅当1m =,等号成立, 所以原点O 到直线l; ()22110mx m y m +---=,平面内所有点(),x y 恒不在l 上,∴关于m 的方程2(12)10ym m x y +--+=无解,显然1(0,)2不是直线l 的点20,(12)4(1)0y x y y ∴≠∆=---+<,即22111()(),0224x y y -+-<≠和点1(0,)2, 为(,)x y 所围成的图形,面积为4π.故答案为:12;4π.。

直线方程与两条直线的位置关系

直线方程与两条直线的位置关系

同步训练——直线方程与两条直线的位置关系一、基础知识 (一)、两条直线的位置关系1、当直线方程为111:b x k y l +=、222:b x k y l +=时, 若1l ∥2l ,则2121b b k k ≠=且;若1l 、2l 重合,则2121b b k k ==且; 若1l ⊥2l ,则121-=⋅k k .2、当两直线方程为0:0:22221111=++=++C y B x A l C y B x A l 、时, 若1l ∥2l ,则12211221≠=C A C A B A B A 且;1221≠C B C B 或, 若1l 、2l 重合,则122112211221C B C B C A C A B A B A ===且且; 若1l ⊥2l ,则02121=+B B A A . (二)、点到直线的距离、直线到直线的距离 1、点P ()00,y x 到直线0=++C By Ax 的距离为:2200BA CBy Ax d +++=.2、当1l ∥2l ,且直线方程分别为0:0:2211=++=++C By Ax l C By Ax l 、时,两直线间的距离为:2221BA C C d +-=.(三)、两直线的交点两直线的交点的个数取决于由两直线组成的方程组的解的个数. (四)、对称问题 1、中心对称:设平面上两点()()111,,y x P y x P 和关于点()b a A ,对称,则点的坐标满足:b y y a x x =+=+2,211;若一个图形与另一个图形上任一对对应点满足这种关系,那么这两个图形关于点A 对称. 2、轴对称:(1)设平面上有直线0:=++C By Ax l 和两点()()111,,y x P y x P 、,若满足下列两个条件: ①PP 1⊥直线l ;②PP 1的中点在直线l 上,则点1P P 、关于直线l 对称;若一个图形与另一个图形上任意一对对应点满足这种关系,那么这两个图形关于直线l 对称. (2)对称轴是特殊直线的对称问题:对称轴是特殊直线的对称问题可直接通过代换求解: ①关于x 轴对称,以y -代y ; ②关于y 轴对称,以x -代x ; ③关于直线x y =对称,x 、y 互换;④关于直线0=+y x 对称,以x -代y ,同时以y -代x ; ⑤关于直线a x =对称,以x a -2代x ; ⑥关于直线b y =对称,以y b -2代y ;(3)对称轴是一般直线的对称问题,可根据对称的意义,由垂直平分列方程找到坐标之间的关系:设点()()2211,,y x Q y x P 、关于直线()00:≠=++AB C By Ax l 对称则⎪⎪⎩⎪⎪⎨⎧=++⋅++⋅=--022********C y y B x x A ABx x y y二、基本题型 (一)平行与垂直【例1—1】直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是 ( )A. 3x +2y -1=0B. 3x +2y +7=0C. 2x -3y +5=0D. 2x -3y +8=0【解析】由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,由点斜式可得直线l 的方程为y -2=-32(x +1),即3x +2y -1=0。

【高考领航】2014高考数学总复习 8-4 直线与圆、圆与圆的位置关系练习 苏教版

【高考领航】2014高考数学总复习 8-4 直线与圆、圆与圆的位置关系练习 苏教版

【高考领航】2014高考数学总复习 8-4 直线与圆、圆与圆的位置关系练习 苏教版【A 组】一、填空题1.若直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则点P (a ,b )与圆C 的位置关系是________.解析:由题意得圆心(0,0)到直线ax +by =1的距离小于1,即d =1a 2+b 2<1,所以有a 2+b 2>1,∴点P 在圆外.答案:在圆外2.(2011·高考某某卷)设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为________.解析:设圆心C (x ,y ),由题意得x -02+y -32=y +1(y >0),化简得x 2=8y -8.答案:x 2=8y -83.(2011·高考某某卷)在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC和BD ,则四边形ABCD 的面积为________.解析:由题意可知,圆的圆心坐标是(1,3)、半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-12+22=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.答案:10 24.(2011·高考某某卷)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值X 围是________.解析:整理曲线C 1方程得,(x -1)2+y 2=1,知曲线C 1为以点C 1(1,0)为圆心,以1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,知直线l 与x 轴相交,故有圆心C 1到直线l 的距离d =|m1+1-0|m 2+1<r =1,解得m ∈⎝ ⎛⎭⎪⎫-33,33,又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 答案:(-33,0)∪(0,33) 5.(2012·高考某某卷)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为________.解析:设过P 点的直线为l ,当OP ⊥l 时,过P 点的弦最短,所对的劣弧最短,此时,得到的两部分面积之差最大.易求得直线的方程为x +y -2=0. 答案:x +y -2=06.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的方程为________.解析:设所求直线的方程为x +y +m =0,圆心(a,0),由题意知:(|a -1|2)2+2=(a -1)2,解得a =3或a =-1,又因为圆心在x 轴的正半轴上,∴a =3,故圆心坐标为(3,0),而直线x +y +m =0过圆心(3,0),∴3+0+m =0, 即m =-3,故所求直线的方程为x +y -3=0. 答案:x +y -3=07.(2012·高考某某卷)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于________.解析:如图所示:解Rt △ACO ,|OC |为圆心到直线x +3y -2=0的距离, |OC |=|0+3×0-2|12+32=1, |OA |=r =2,|AC |=|OA |2-|OC |2=22-12=3, |AB |=2|AC |=2 3 答案:2 3 二、解答题8.圆经过点A (2,-3)和B (-2,-5).(1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程. 解:(1)要使圆的面积最小,则AB 为圆的直径, 圆心C (0,-4),半径r =12|AB |=5,所以所求圆的方程为:x 2+(y +4)2=5. (2)法一:因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x , 即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10, 因此,所求的圆的方程为(x +1)2+(y +2)2=10. 法二:设所求圆的方程为(x -a )2+(y -b )2=r 2, 根据已知条件得⎩⎪⎨⎪⎧2-a 2+-3-b 2=r 2-2-a 2+-5-b 2=r 2a -2b -3=0⇒⎩⎪⎨⎪⎧a =-1,b =-2,r 2=10.所以所求圆的方程为(x +1)2+(y +2)2=10.9.已知圆C 的方程为x 2+y 2=1,直线l 1过定点A (3,0),且与圆C 相切.(1)求直线l 1的方程;(2)设圆C 与x 轴交于P 、Q 两点,M 是圆C 上异于P 、Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P ′,直线QM 交直线l 2于点O ′.求证:以P ′Q ′为直径的圆C ′总过定点,并求出定点坐标.解:(1)∵直线l 1过点A (3,0),且与圆C :x 2+y 2=1相切,设直线l 1的方程为y =k (x -3),即kx -y -3k =0,则圆心O (0,0)到直线l 1的距离为d =|3k |k 2+1=1,解得k =±24,∴直线l 1的方程为y=±24(x -3). (2)证明:对于圆C 的方程x 2+y 2=1,令y =0,则x =±1,即P (-1,0),Q (1,0).又直线l 2过点A 且与x 轴垂直,∴直线l 2方程为x =3.设M (s ,t ),则直线PM 的方程为y=ts +1(x +1).解方程组⎩⎪⎨⎪⎧x =3,y =ts +1x +1得P ′(3,4ts +1). 同理可得Q ′(3,2ts -1). ∴以P ′Q ′为直径的圆C ′的方程为(x -3)(x -3)=(y -4t s +1)(y -2t s -1)=0, 又s 2+t 2=1,∴整理得(x 2+y 2-6x +1)+6s -2ty =0,若圆C ′经过定点,只需令y =0,从而有x 2-6x +1=0,解得x =3±22, ∴圆C ′总经过定点,定点坐标为(3±22,0).【B 组】一、填空题1.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________.解析:方程x 2+y 2+2ay -6=0与x 2+y 2=4. 相减得2ay =2,则y =1a.由已知条件22-32=1a,即a =1.答案:12.(2013·某某十校联考)已知圆C 的半径为1,圆心在第一象限,且与y 轴相切,与x 轴相交于点A 、B ,若AB =3,则该圆的标准方程是________.解析:根据AB =3,可得圆心到x 轴的距离为12,故圆心坐标为⎝ ⎛⎭⎪⎫1,12,故所求圆的标准方程为(x -1)2+⎝ ⎛⎭⎪⎫y -122=1.答案:(x -1)2+⎝ ⎛⎭⎪⎫y -122=13.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值X 围是________.解析:由题设得,若圆上有四个点到直线的距离为1,则需圆心(0,0)到直线的距离d 满足0≤d <1.∵d =|c |122+52=|c |13,∴0≤|c |<13,即c ∈(-13,13). 答案:(-13,13)4.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点C 为(-2,3),则直线l 的方程为________.解析:圆的方程可化为(x +1)2+(y -2)2=5-a .由圆的几何性质可知圆心(-1,2)与点C (-2,3)的连线必垂直于l ,∴k AB =--1+22-3=1,∴l 的方程为x -y +5=0. 答案:x -y +5=05.(2013·某某模拟)从圆x 2-2x +y 2-2y +1=0外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为________.解析:圆的方程整理为(x -1)2+(y -1)2=1,C (1,1), ∴sin ∠APC =15,则cos ∠APB =cos2∠APC=1-2×⎝ ⎛⎭⎪⎫152=35. 答案:356.直线2x -y +m =0与圆x 2+y 2=5交于A 、B 两点,O 为坐标原点,若OA ⊥OB ,则m 的值为________.解析:当OA ⊥OB 时,圆心(0,0)到直线2x -y +m =0的距离等于22r , ∴|m |5=22· 5. ∴m =±5210.答案:±51027.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为________.解析:如图所示,设直线上一点P ,切点为Q , 圆心为M ,则|PQ |即为切线长,MQ 为圆M 的 半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |的最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离,设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, ∴|PQ |=|PM |2-1≥222-1=7.答案:7 二、解答题8.(2013·某某模拟)已知圆C :(x +1)2+y 2=4和圆外一点A (1,23),(1)若直线m 经过原点O ,且圆C 上恰有三个点到直线m 的距离为1,求直线m 的方程; (2)若经过A 的直线l 与圆C 相切,切点分别为D ,E ,求切线l 的方程及D 、E 两切点所在的直线方程.解:(1)方法一:圆C 的圆心为(-1,0),半径r =2, 圆C 上恰有三个点到直线m 的距离为1, 则圆心到直线m 的距离恰为1,由于直线m 经过原点,圆心到直线m 的距离最大值为1.所以满足条件的直线就是经过原点且垂直于OC 的直线,即y 轴,所以直线方程为x =0.方法二:圆C 的圆心为(-1,0),半径r =2,圆C 上恰有三个点到直线m 的距离为1. 则圆心到直线m 的距离恰为1.设直线方程为y =kx ,d =|-k -0|1+k 2=1,k 无解. 直线斜率不存在时,直线方程为x =0显然成立. 所以所求直线为x =0.(2)设直线方程为y -23=k (x -1),d =|-2k +23|1+k 2=2,解得k =33, 所求直线为y -23=33(x -1), 即3x -3y +53=0,斜率不存在时,直线方程为x =1,∴切线l 的方程为x =1或3x -3y +53=0,过点C 、D 、E 、A 有一外接圆,x 2+(y -3)2=4,即x 2+y 2-23y -1=0, 过切点的直线方程为x +3y -1=0.9.已知圆M :(x -1)2+(y -1)2=4,直线l :x -y -6=0,A 为直线l 上一点.(1)若AM ⊥直线l ,过A 作圆M 的两条切线,切点分别为P ,Q ,求∠PAQ 的大小;(2)若圆M 上存在两点B ,C ,使得∠BAC =60°,求点A 横坐标的取值X 围. 解:(1)圆M 的圆心M (1,1),半径r =2,直线l 的斜率为-1,而AM ⊥l ,∴k AM =1. ′∴直线AM 的方程为y =x .由⎩⎪⎨⎪⎧ y =x ,x +y -6=0解得⎩⎪⎨⎪⎧x =3,y =3,即A (3,3). 如图,连结MP , ∵∠PAM =12∠PAQ ,sin ∠PAM =PM AM=23-12+3-12=22, ∴∠PAM =45°,∴∠PAQ =90°.(2)过A (a ,b )作AD ,AE ,分别与圆M 相切于D ,E 两点,因为∠DAE ≥∠BAC ,所以要使圆M 上存在两点B ,C ,使得∠BAC =60°,只要做∠DAE ≥60°. ∵AM 平分∠DAE , ∴只要30°≤DAM <90°.类似于第(1)题,只要12≤sin∠DAM <1,即2a -12+b -12≥12且a -12+b -12≥12<1. 又a +b -6=0,解得1≤a ≤5, 即a 的取值X 围是[1,5].。

两条直线的位置关系综合练习题及答案

两条直线的位置关系综合练习题及答案

两条直线的位置关系综合练习题及答案--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________两条直线的位置关系综合练习题及答案(一)知识梳理:1、两直线的位置关系 (1)平行的判断:①当21,l l 有斜截式(或点斜式)方程222111:,:b x k y l b x k y l +=+=, 则⇔21//l l 1212,k k b b =≠ .②当21,l l 有一般式方程:0:,0:22221111=++=++C y B x A l C y B x A l , 则⇔21//l l 122112210,0A B A B C B C B -=-≠ .(2)垂直的判断:①当21,l l 有斜截式(或点斜式)方程222111:,:b x k y l b x k y l +=+=, 则⇔⊥21l l 222111:,:b x k y l b x k y l +=+= .②当21,l l 有一般式方程:0:,0:22221111=++=++C y B x A l C y B x A l , 则⇔⊥21l l 12120A A B B += .2、两条直线的交点:若0:,0:22221111=++=++C y B x A l C y B x A l则21,l l 的交点为__方程11122200A x B y C A x B y C ++=⎧⎨++=⎩的解.3、点到直线的距离:(1)点到直线的距离公式:点),(00y x P 到直线0Ax By C ++=的距离为d = _.(2)两平行直线间的距离求法:两平行直线:1122:0,:0l Ax By C l Ax By C ++=++=,则距离d d ==(二)例题讲解:考点1:直线的平行与垂直关系例1、(1)已知直线l 的方程为34120x y +-=,求与l 平行且过点()1,3-的直线方程; (2)已知直线12:23100,:3420l x y l x y -+=+-=,求过直线1l 和2l 的交点,且与直线3:3240l x y -+=垂直的直线l 方程.易错笔记:解:(1)设与直线l 平行的直线1l 的方程为340x y C ++=,则点()1,3-在直线340x y C ++=上,将点()1,3-代入直线340x y C ++=的方程即可得:()31430C ⨯-+⨯+=,∴9C =-,∴所求直线方程为:3490x y +-=.(2)设与直线3:3240l x y -+=垂直的直线l 方程为:230x y C ++=,Q 方程231003420x y x y -+=⎧⎨+-=⎩的解为:22x y =-⎧⎨=⎩,∴直线12:23100,:3420l x y l x y -+=+-=的交点是()2,2-, ∴直线l 过直线12:23100,:3420l x y l x y -+=+-=的交点()2,2-, ∴()22320C ⨯-+⨯+=,∴2C =-,∴直线l 方程为:2320x y +-=.考点2:直线的交点问题例2、已知直线方程为()()212430m x m y m ++-+-=,(1)求证:无论m 取何值,此直线必过定点;(2)过这定点引一直线,使它夹在两坐标轴间的线段被这定点平分,求这条直线方程. 解:(1)设直线方程为()()212430m x m y m ++-+-=过定点(),A B ,∴2423A B A B +=-⎧⎨-=⎩,∴12A B =-⎧⎨=-⎩, ∴直线方程为()()212430m x m y m ++-+-=过定点()1,2--. (2) 由题意知,直线l 在x 轴上的截距0a ≠,在y 轴上的截距0b ≠,∴设直线l 的方程为:1x ya b+=,∴直线l 在x 轴上的交点坐标为(),0M a ,直线l 在y 轴上的交点坐标为()0,N b ,Q 直线l 夹在两坐标轴间的线段被点()1,2--平分,∴点()1,2--是线段MN 的中点,∴012022a b +⎧=-⎪⎪⎨+⎪=-⎪⎩,∴2,4a b =-=-, ∴直线l 的方程为:124x y+=--,即240x y ++=. 易错笔记:(三)练习巩固:一、选择题1、直线310x y ++=和直线6210x y ++=的位置关系是 ( B )A .重合B .平行C .垂直D .相交但不垂直 2、点()2,1到直线3420x y -+=的距离是 ( A )A .54B .45C .254 D .425 3、如果直线012=-+ay x 与直线01)13(=---ay x a 平行,则a 等于 ( A )A .0B .61 C .0或1 D .0或61 解: ()()12310a a a ⋅---=①,且()()210a a ---≠②,由①得:0a =或16a =,由②得:0a ≠,∴ 0a =.4、若三条直线2380,10x y x y ++=--=和0x ky +=相交于一点,则=k ( B )A .-2B .21- C .2 D .21解:Q 方程238010x y x y ++=⎧⎨--=⎩的解为:12x y =-⎧⎨=-⎩,∴直线2380,10x y x y ++=--=的交点是()1,2--,Q 三条直线2380,10x y x y ++=--=和0x ky +=相交于一点()1,2--,∴直线0x ky +=过点()1,2--,∴()120k -+-=,∴12k =-,故选B .5、已知点()4,2M 与()2,4M 关于直线l 对称,则直线l 的方程为 ( D )A .06=++y xB .06=-+y xC .0=+y xD .0=-y x6、已知直线3430x y +-=与直线6140x my ++=平行,则它们间的距离是 ( D )A .1710B . 175C .8D .2解:Q 直线3430x y +-=与直线6140x my ++=平行,∴()346041430m m -⨯=⎧⎪⎨⨯--≠⎪⎩,∴8m =,∴直线6140x my ++=的方程为68140x y ++=,即3470x y ++=,∴直线3430x y +-=与直线3470x y ++=之间的距离2d ===. Q 直线3430x y +-=与直线68140x y ++=的距离等于直线3430x y +-=与直线3470x y ++=之间的距离,∴直线3430x y +-=与直线6140x my ++=的距离2d ==,故选D.二、填空题7、如果三条直线123:30,:20,:220l mx y l x y l x y ++=--=-+=不能成为一个三角形三边所在的直线,那么m 的一个..值是_______. 8、过点()2,3且平行于直线250x y +-=的方程为______270x y +-=__________. 过点()2,3且垂直于直线3430x y +-=的方程为______4310x y -+=__________. 分析:设与直线250x y +-=平行的直线方程为:20x y C ++=,则点()2,3在直线20x y C ++=上,将点()2,3代入直线20x y C ++=的方程即可得:2230C ⨯++=,∴7C =-,∴所求直线方程为:270x y +-=.分析:设垂直于直线3430x y +-=的方程为:430x y C -+=,则点()2,3在直线430x y C -+=上,将点()2,3代入直线430x y C -+=的方程即可得:42330C ⨯-⨯+=,∴1C =,∴所求直线方程为:4310x y -+=.9、已知直线1l 的斜率为3,直线2l 经过点()1,2A ,()2,B a ,若直线21//l l ,=a _3_;若21l l ⊥,则=a __53__.当直线21//l l 时:Q 直线1l 的斜率:13k =,且直线21//l l ,∴直线2l 的斜率213k k ==,Q 直线2l 经过点()1,2A ,()2,B a ,∴直线2l 的斜率2122122321y y a k a x x --===-=--, ∴5a =.当直线21l l ⊥时,设直线1l 的斜率为1k ,直线2l 的斜率为2k ,则直线1l 的斜率:13k =,Q 直线21l l ⊥,∴121k k ⋅=-,∴直线2l 的斜率21113k k -==-, 又Q 直线2l 经过点()1,2A ,()2,B a ,∴直线2l 的斜率21221212213y y a k a x x --===-=---, ∴53a =.10、设直线123:3420,:220,:3420l x y l x y l x y +-=++=-+=,则直线1l 与2l 的交点到3l 的距离为__125__.解:Q 方程3420220x y x y +-=⎧⎨++=⎩的解为:22x y =-⎧⎨=⎩,∴直线2380,10x y x y ++=--=的交点是()2,2-,∴点()2,2-到直线3l 的距离为:125d ==.11、过点()1,2A -,且与原点距离等于22的直线方程为30x y -+=或790x y -+=.解:设所求直线的斜率为k ,则Q 直线过点()1,2A -,∴方程为()()211y k x k x -=--=+⎡⎤⎣⎦,即20kx y k -++=,∴直线到原点的距离为:d ====,()()22222121k k +==+-⎝⎭,∴2870k k ++=,∴1k =或7k =,∴所求直线的方程为:30x y -+=或790x y -+=.三、解答题12、已知直线()12:60,:2320l x my l m x y m ++=-++=,求m 的值,使得 (1) 1l 和2l 相交;(2)21l l ⊥垂直;(3) 21//l l ; (4) 1l 和2l 重合. 解:(1) Q 1l 和2l 相交,∴()2130m m --⨯≠,∴1m ≠-. (2)Q 21l l ⊥垂直,∴()1230m m ⋅-+⨯=,∴12m =.(3) Q 21//l l ,∴()()()2130123602m m m m --⨯=⎧⎪⎨⋅-⨯≠⎪⎩, 由(1)得:3m =或1m =-,由(2)得:3m ≠±,∴1m =-.(4)Q 1l 和2l 重合,∴()()()2130123602m m m m --⨯=⎧⎪⎨⋅-⨯=⎪⎩, 由(1)得:3m =或1m =-,由(2)得:3m =或3m =-,∴当3m =,或3m =-,或1m =-时,1l 和2l 重合.13、已知直线l 过点()1,2,且与x ,y 轴正半轴分别交于点A 、B(1)、求AOB ∆面积为4时直线l 的方程;(2)、在(1)的前提之下,求边AB 上的高所在的直线方程.解:(1)、由题意知,直线l 在x 轴上的截距0a >,在y 轴上的截距b >∴设直线l 的方程为:1x ya b+=,Q 直线l 过点()1,2, ∴121a b +=①,Q AOB ∆面积为4,∴11422a b ab ==②,由①、②得:2a =,4b =, ∴直线l 的方程为:124x y+=,即240x y +-=.(2)、设边AB 上的高所在的直线为1l ,斜率为1k ,直线1l 过原点()0,0O ,Q 直线l 的方程为: 240x y +-=,∴边AB 所在的直线方程为:240x y +-=,斜率为斜率2k =-,Q 1l l ⊥,∴11k k ⋅=-,∴111122k k --===-,Q 直线1l 过原点()0,0O , ∴直线1l 的方程为:()1002y x -=-,即20x y -=.综上所述:边AB 上的高所在的直线方程为:20x y -=.----------THE END, THERE IS NO TXT FOLLOWING.------------。

两直线的位置关系习题附答案

两直线的位置关系习题附答案

两直线的位置关系习题附答案1.已知直线l1:mx+y-1=0与直线l2:(m-2)x+my-2=0,则“m=1”是“l1⊥l2”的充分不必要条件。

2.当0<k<2时,直线l1:kx-y=k-1与直线l2:ky-x=2k的交点在第二象限。

3.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点(0,2)。

4.若直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则l1与l2之间的距离为3.5.光线沿着直线y=-3x+b射到直线x+y=0上,经反射后沿着直线y=ax+2射出,则有a=-1/3,b=-6.6.求关于直线x=1对称的直线方程已知直线x-2y+1=0与直线x=1的交点坐标为(1,1),直线上的点(-1,0)关于直线x=1的对称点为(3,0)。

因此,直线方程为y-x-3=0,即x+2y-3=0.答案:x+2y-3=07.求四边形ABCD的面积根据向量叉积的公式,四边形ABCD的面积为:S = 1/2 |AB × AD| = 1/2 |(4-1,1-5,0-2) × (1+3,5-2,-1-2)|S = 1/2 |(-3,-4,-2) × (4,3,-3)| = 1/2 |(-6,-6,-21)|S = 1/2 × 9√13 = 9/2√13答案:9/2√138.求直线l1的方程由于l1和l2是平行直线,所以它们的斜率相等。

设l1的方程为y=ax+b,则l2的方程为y=ax+c,其中b≠c。

由于l1过点A(1,1),所以1=a+b,即b=1-a。

同理,l2过点B(0,-1),所以-1=a+c,即c=-1-a。

两直线间的距离为|b-c|/√(1+a^2),要求它最大,就要求|b-c|最大。

因为b=1-a,c=-1-a,所以|b-c|=2+2a。

因此,要使距离最大,就要使2+2a/√(1+a^2)最大。

对其求导数,得到a=-1/√3.代入b=1-a=-1/√3+1,得到直线l1的方程为y=-x/√3+1/√3.答案:y=-x/√3+1/√39.求过点P(2,-1)的直线方程1) 过点P且与原点的距离为2的直线,可以看作以原点为圆心、以2为半径的圆与点P的交点所连成的直线。

点与直线的位置关系练习题

点与直线的位置关系练习题

点与直线的位置关系练习题一、选择题1. 已知直线方程为y = 3x + 2,点A(1, 5)是否在该直线上?A. 是B. 否2. 已知直线方程为2y - 4x = 8,点B(3, 6)是否在该直线上?A. 是B. 否3. 点C(0, -3)是否在直线x = 2上?A. 是B. 否4. 点D(4, 3)是否在直线2y = 3x + 2上?A. 是B. 否5. 直线L经过点E(-1, 2),其斜率为2/3,它的方程为?A. y = (2/3)x + (8/3)B. y = (2/3)x + (10/3)C. y = (2/3)x + (4/3)D. y = (2/3)x - (4/3)二、解答题1. 已知直线方程为y = 2x - 3,点F(4, 5)是否在该直线上?(5分)题目要求判断点F(4, 5)是否在直线y = 2x - 3上。

我们可以把点F的横坐标带入直线方程中,计算得到直线上对应的纵坐标,然后与点F 的纵坐标进行比较。

将横坐标x = 4代入直线方程y = 2x - 3中:y = 2 * 4 - 3 = 8 - 3 = 5计算结果与点F的纵坐标相等,所以点F(4, 5)在直线y = 2x - 3上。

2. 直线L经过点G(-2, 3)和点H(4, m),求直线L的方程及未知数m 的值。

(10分)题目要求找到满足直线经过点G(-2, 3)和点H(4, m)的直线方程,并求解未知数m的值。

首先,我们需要计算直线的斜率。

根据两点间的斜率公式:斜率 m = (纵坐标差) / (横坐标差)= (m - 3) / (4 - (-2)) (代入点G和点H的坐标)由于直线L经过点G(-2, 3),可以得到方程:3 = m * (-2) + b₁(其中b₁为直线的截距)化简得到:3 = -2m + b₁(公式1)同理,直线L经过点H(4, m),可以得到方程:m = m * 4 + b₂(其中b₂为直线的截距)化简得到:m = 4m + b₂(公式2)为了求解未知数m的值,我们需要将公式1和公式2联立求解。

高中数学《直线方程与两直线的位置关系》复习和习题课件PPT

高中数学《直线方程与两直线的位置关系》复习和习题课件PPT
间的距离 1 2 =
1 − 2
2
+ 1 − 2 2 .
2.点到直线的距离公式
点p 0 , 0 到直线Ax+By+C=0的距离 =
0 +B0 +C
2 +2
.
知识清单
知识点七 距离公式
3.平行线间的距离公式
若两条平行直线的方程分别为1 : 1
+ 1 + 1 = 0, 2 : 2 +
(1)方程组有唯一解⟺ 1 , 2 相交,交点坐标就是方程组的解.
(2)方程组无解⟺ 1 ∥ 2 .
(3)方程组有无数解⟺ 1 , 2 重合.
知识清单
知识点七 距离公式
1.两点间的距离公式
在平面直角坐标系中,若两点坐标分别为1 1 , 1 、2 2 , 2 则1 、2 两点
2 + 2 = 0 , 1 ≠ 2 ,则1 与2 的距离为 =
0ሻ
1 −2
2 +2
ሺ2 + 2 ≠
典例精析

典例精析

典例精析

典例精析

典例精析

典例精析

典精析

典例精析

典例精析

典例精析

典例精析

典例精析

巩固练习
过关练习
巩固练习
高中
数学
§第一节 直线方程与两直线的位置关系
(复习+习题练习)
解析几何
真题在线
(2019年·河南对口升学)直线2x+3y+6=0在y轴上的截距是
___.
【专家详解】令x=0,则3y+6=0,解得y=-2.

平面解析几何的直线方程与位置关系练习题

平面解析几何的直线方程与位置关系练习题

平面解析几何的直线方程与位置关系练习题在平面解析几何中,直线是研究的重要对象之一。

直线的方程和位置关系是解析几何的基础知识,掌握这些内容对于理解和应用解析几何技巧至关重要。

本文将针对平面解析几何中的直线方程与位置关系进行练习题的讨论。

1. 设直线L1的方程为2x - y + 3 = 0,直线L2平行于L1且过点(1,2),求直线L2的方程。

解析:由于直线L1的方程为2x - y + 3 = 0,可以转换为y = 2x + 3的斜截式方程。

由此可知直线L1的斜率为2。

由于直线L2与L1平行,所以直线L2的斜率也为2。

又因为直线L2过点(1, 2),代入点斜式公式y - y1 = k(x - x1),其中k为斜率,代入可得直线L2的方程为y - 2 = 2(x - 1)。

整理得到直线L2的方程为y = 2x。

2. 设直线L1的方程为3x + 4y - 5 = 0,直线L2垂直于L1且过点(2, -1),求直线L2的方程。

解析:首先将直线L1的方程转换为斜截式方程,得到y = -(3/4)x +5/4。

由此可知直线L1的斜率为-(3/4)。

由于直线L2与L1垂直,所以直线L2的斜率为直线L1斜率的负倒数,即4/3。

根据点斜式公式y - y1 = k(x - x1),将直线L2过点(2, -1)代入,可得直线L2的方程为y - (-1) = (4/3)(x - 2)。

整理得到直线L2的方程为y = (4/3)x - (5/3)。

3. 已知直线L1过点(-2, 3)和(-1, 5),直线L2过点(-1, 2)且与L1垂直,求直线L2的方程。

解析:首先计算直线L1的斜率,斜率公式为y2 - y1 / x2 - x1,代入得到斜率为2。

由于直线L2与L1垂直,所以直线L2的斜率为直线L1斜率的负倒数,即-1/2。

根据点斜式公式y - y1 = k(x - x1),将直线L2过点(-1, 2)代入,可得直线L2的方程为y - 2 = -1/2(x - (-1))。

高考数学一轮复习专题训练—两直线的位置关系

高考数学一轮复习专题训练—两直线的位置关系

两直线的位置关系考纲要求1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x2+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( ) A.235 B .2310C .7D .72答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72. 3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·银川联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( ) A .-2 B .-4 C .-6 D .-8答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1,∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12. ∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝⎛⎭⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号. 故所求最小值是4.法二 设P ⎝⎛⎭⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-a +1,解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧aa -1-1×2=0,a a 2-1-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-1≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23.法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2020·宁波期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A .6x -4y -3=0 B .3x -2y -3=0 C .2x +3y -2=0D .2x +3y -1=0(2)已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________. 答案 (1)A (2)1解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝⎛⎭⎫x -12,化为一般式,得6x -4y -3=0. (2)由题意知 m -4-2-m=1,所以m -4=-2-m ,所以m =1.考点二 两直线的交点与距离问题【例2】 (1)(2020·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝⎛⎭⎫-32,-1 B.⎝⎛⎭⎫-∞,-32∪(-1,+∞) C.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-13,12(2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.答案 (1)D (2)[0,10]解析 (1)联立⎩⎪⎨⎪⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k2+k(k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10,所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(2021·贵阳诊断)与直线2x +y -1=0的距离等于55的直线方程为( ) A .2x +y =0 B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)C (2)5x +3y -1=0解析 (1)设与直线2x +y -1=0的距离等于55的直线方程为2x +y +m =0(m ≠-1), ∴|-1-m |22+12=55,解得m =0或m =-2. ∴与直线2x +y -1=0的距离等于55的直线方程为2x +y =0或2x +y -2=0. (2)先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.考点三 对称问题角度1 点关于点对称【例3】 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】 一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎪⎨⎪⎧x ′=-2,y ′=-2, 即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3--22--2=54, ∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ).(2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). (3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). 角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( ) A .3x -4y +5=0 B .3x -4y -5=0 C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________.答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程. 解 (1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,即A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧ a =613,b =3013,即M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】 已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0. 法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】 已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】 已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a =4, b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0. 法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0. 三、垂直直线系方程【例4】 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2).A 级 基础巩固一、选择题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A. 2B .2- 2 C.2-1D .2+1答案 C解析 由题意得|a -2+3|1+1=1. 解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.2.(2021·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3 答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.3.已知直线l 过点(0,7),且与直线y =-4x +2平行,则直线l 的方程为( )A .y =-4x -7B .y =4x -7C .y =4x +7D .y =-4x +7 答案 D解析 过点(0,7)且与直线y =-4x +2平行的直线方程为y -7=-4x ,即直线l 的方程为y =-4x +7,故选D.4.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0垂直,则ab 的最小值为() A .1 B .2 C .2 2 D .2 3 答案 B解析 由已知两直线垂直可得(b 2+1)-ab 2=0,即ab 2=b 2+1,又b >0,所以ab =b +1b .由基本不等式得b +1b ≥2b ·1b =2,当且仅当b =1时等号成立,所以(ab )min =2.故选B.5.坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( )A.⎝⎛⎭⎫-45,85 B .⎝⎛⎭⎫-45,-85C.⎝⎛⎭⎫45,-85 D .⎝⎛⎭⎫45,85答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧ x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎨⎧ x 0=-45,y 0=85,即所求点的坐标是⎝⎛⎭⎫-45,85.6.(2020·上海浦东新区期末)直线x -2y +2=0关于直线x =1对称的直线方程是( )A .x +2y -4=0B .2x +y -1=0C .2x +y -3=0D .2x +y -4=0答案 A解析 设P (x ,y )为所求直线上的点,该点关于直线x =1的对称点为(2-x ,y ),且该对称点在直线x -2y +2=0上,代入可得x +2y -4=0.故选A.7.(2021·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2--11-3=-32, ∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.8.(2020·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6 B .a =-3,b =16 C .a =3,b =-16D .a =-13,b =-6 答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称,所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y =-3x +b 上, 所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13. 二、填空题 9.(2021·南昌联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0. 10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________.答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行, 将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 答案 25解析 因为k AB =5-11-4=-43,k DC =2--2-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S 四边形ABCD =|AB |·|AD |=1-42+5-12×0-42+-2-12=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52 答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3B .10C .14D .215 答案 B解析 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x +2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.故选B.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0, 此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0. 由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0. 综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|2+λ2+1-2λ2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,函数y =x 2-ln x 的导数y ′=2x -1x (x >0),令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2的最小距离为 2.。

高考数学一轮复习 第九篇 解析几何1(考点梳理+考点自测+失分警示+专题集训)理 新人教A版

高考数学一轮复习 第九篇 解析几何1(考点梳理+考点自测+失分警示+专题集训)理 新人教A版

第九篇 解析几何第1讲 直线方程和两直线的位置关系【2014年高考会这样考】1.考查倾斜角的概念、倾斜角与斜率的关系及直线方程的几种形式. 2.考查由两条直线的斜率判定两直线平行与垂直.3.考查点到直线的距离公式、两平行线间的距离公式及求解等.对应学生131考点梳理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0. ②倾斜角的范围是[0,π). (2)直线的斜率①定义:若直线的倾斜角θ不是90°,则斜率k =tan_θ;②计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1. 2.直线方程的五种形式对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1. 4.距离公式(1)平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离为|P 1P 2|=x 2-x 12+y 2-y 12.(2)平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为0)的距离为d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(其中A ,B 不同时为0,且C 1≠C 2)间的距离为d =|C 1-C 2|A 2+B 2.【助学·微博】 一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0. 两点提醒(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应先化为一般式.考点自测1.直线x sin α+y +2=0的倾斜角的取值范围是( ).A .[0,π) B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π解析 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1],又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.故选B.答案 B2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ).A.13 B .-13 C .-32 D.23解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13,选B.答案 B3.(2012·广州调研)直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ). A .1 B .-1C .-2或-1D .-2或1 解析 代入验证可得a =1或-2. 答案 D4.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ). A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0 D .2x -3y +8=0解析 与直线2x -3y +4=0垂直的直线方程可设为-3x -2y +c =0,将点(-1,2)代入-3x -2y +c =0,解得c =1,故直线方程为3x +2y -1=0. 答案 A5.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析 直线l 2的方程变为:3x +4y +12=0,则直线l 1与直线l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32.答案32对应学生132考向一 求直线的方程【例1】►(1)已知经过点P (3,2),且在两坐标轴上截距相等的直线l 的方程为________; (2)已知两点A (-1,-5),B (3,-2),直线l 过点(1,1)且倾斜角是直线AB 倾斜角的两倍,则直线l 的方程为________.[审题视点] (1)设截距均为a ,分a =0或a ≠0求解; (2)由两角和的正切公式求斜率,再由点斜式求解.解析 (1)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)k AB =-2+53+1=34.设直线AB 的倾斜角为θ,则tan θ=34,这时直线l 的倾斜角为2θ,其斜率为tan 2θ=2tan θ1-tan 2θ=247. 由点斜式得:y -1=247(x -1),即24x -7y -17=0.答案 (1)2x -3y =0或x +y -5=0 (2)24x -7y -17=0在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 【训练1】 (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0.当直线过原点时,斜率k =-25,直线方程为y =-25x ,即2x +5y =0,综上可知,所求直线方程为x +2y +1=0或2x +5y =0.考向二 两条直线的平行与垂直问题【例2】►(1)若直线l 1:ax +2y -6=0与l 2:x +(a -1)y +a 2-1=0平行,则a =________; (2)已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________. [审题视点] 由两直线平行或垂直的充要条件求解.解析 (1)若a =0或a =1,则两直线不平行,不符合题意,舍去.若a ≠0且a ≠1,则两直线的斜率分别是-a 2,11-a ,由两直线平行的充要条件可得-a 2=11-a且a +1≠-3,解得a =2或a =-1.经检验知符合题意. (2)若a =0,B =(1,0),Q (0,0),此时l 1⊥l 2; 若a ≠0,kl 1=3a -01+2=a ,kl 2=-2a +1a -0=1-2aa ,则l 1⊥l 2⇔kl 1·kl 2=a ×1-2aa=-1,解得a =1.综上,a =0或1.答案 (1)2或-1 (2)0或1由两直线平行或垂直的关系求直线的方程,或求方程中的参数,首先需要考虑两直线的斜率是否存在,若斜率都存在,则依据斜率相等或斜率乘积为-1求解;若斜率不存在,则需要注意特殊情形.【训练2】 (1)已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则实数a =________. (2)“ab =4”是直线2x +ay -1=0与直线bx +2y -2=0平行的( ). A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析 (1)由题意知(a +2)a =-1,所以a 2+2a +1=0,则a =-1.(2)由题意知两直线的斜率都存在,故直线2x +ay -1=0与直线bx +2y -2=0平行的充要条件是-2a =-b 2且-1a ≠-1,即ab =4且a ≠1,则“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的必要不充分条件. 答案 (1)-1 (2)C考向三 距离公式的应用问题【例3】►已知点A (2,-1),(1)求过点A 且与原点距离为2的直线l 的方程;(2)求过点A 且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点A 且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.[审题视点] (1)对直线l 的斜率分存在与不存在两种情况,再利用距离公式求解; (2)过点A 与原点O 距离最大的直线是过点A 且与AO 垂直的直线; (3)利用此距离与过点A 与原点的最大距离比较大小确定结论. 解 (1)过点A 的直线l 与原点距离为2,而点A 的坐标为(2,-1).当斜率不存在时,直线l 的方程为x =2,此时,原点到直线l 的距离为2,符合题意; 当斜率存在时,设直线l 的方程为y +1=k (x -2), 即kx -y -2k -1=0,由已知得|-2k -1|k 2+1=2,解得k =34,此时直线l 的方程为3x -4y -10=0,综上可知:直线l 的方程为x =2或3x -4y -10=0.(2)过点A 与原点O 距离最大的直线是过点A 与AO 垂直的直线,由l ⊥AO ,得k l k OA =-1,所以k l =-1k OA=2,由直线的点斜式得y +1=2(x -2),即2x -y -5=0,即直线2x -y -5=0是过点A 且与原点距离最大的直线l 的方程,最大距离是|-5|5= 5.(3)不存在.由(2)可知,过点A 不存在到原点距离超过5的直线,因此不存在过点A 且与原点距离为6的直线.若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.【训练3】 已知点P 1(2,3),P 2(-4,5)和A (-1,2),求过点A 且与点P 1,P 2距离相等的直线的方程. 解 法一设所求直线为l ,由于l 过点A 且与点P 1,P 2距离相等,所以有两种情况,如图所示. 当P 1,P 2在l 同侧时,有l ∥P 1P 2,此时可求得l 的方程为y -2=5-3-4-2(x +1),即x +3y -5=0;当P 1,P 2在l 异侧时,l 必过P 1P 2的中点(-1,4),此时l 的方程为x =-1. 综上,所求直线的方程为x +3y -5=0或x =-1. 法二 需要讨论过点A 的直线的斜率是否存在. 当过点A 的直线的斜率存在时, 设所求直线的方程为y -2=k (x +1),即kx -y +k +2=0,由点P 1,P 2到直线的距离相等得: |2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,解得k =-13.故所求直线的方程为y -2=-13(x +1),即x +3y -5=0.当过点A 的直线的斜率不存在时,由点A 的坐标为(-1,2)知,过点A 的直线为x =-1.易得P 1,P 2到直线x =-1的距离相等,故x =-1符合题意. 综上,所求直线的方程为x +3y -5=0或x =-1.对应学生133热点突破20——高考中两直线的平行与垂直问题【命题研究】 通过近三年的高考试题分析,对两直线位置关系的考查主要是给定直线方程,研究两条直线平行、垂直、交点、距离等问题,有时结合充分必要条件来考查,题型为选择题或填空题,难度不大.【真题探究】► (2012·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 [教你审题] 第1步 抓住两直线平行的条件; 第2步 根据充分必要定义解题.[解法] 当a =1时,直线l 1:x +2y -1=0与直线l 2:x +(a +1)y +4=0平行;反之由l 1∥l 2可得a =1或a =-2,故选A.[答案] A[反思] 对于求解两直线平行时所含参数的取值,必须首先判断直线的斜率是否存在,否则容易造成漏解;然后结合判断直线平行的充要条件求解,注意要对求得的结果进行验证,判断两直线的截距是否相等,防止增解.【试一试】 已知两直线l 1:ax +2y +6=0和l 2:x +(a +1)y +(a 2+1)=0.若l 1⊥l 2,则实数a 的值为________.解析 法一 由直线l 1的方程知其斜率为-a2,当a =-1时,直线l 2的斜率不存在,l 1与l 2不垂直; 当a ≠-1时,直线l 2的斜率为-1a +1. 由-a 2·⎝ ⎛⎭⎪⎫-1a +1=-1⇒a =-23.故所求实数a 的值为-23.法二 直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0垂直的等价条件是A 1A 2+B 1B 2=0. 由所给直线方程可得:a ·1+2·(a +1)=0⇒a =-23.故所求实数a 的值为-23.答案 -23对应学生307A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.直线2x -my +1-3m =0,当m 变化时,所有直线都过定点( ).A.⎝ ⎛⎭⎪⎫-12,3B.⎝ ⎛⎭⎪⎫12,3C.⎝ ⎛⎭⎪⎫12,-3D.⎝ ⎛⎭⎪⎫-12,-3 解析 原方程可化为(2x +1)-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,解得x =-12,y =-3,故所有直线都过定点⎝ ⎛⎭⎪⎫-12,-3.答案 D2.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ).A.⎣⎢⎡⎭⎪⎫π6,π3B.⎝ ⎛⎭⎪⎫π6,π2C.⎝ ⎛⎭⎪⎫π3,π2D.⎣⎢⎡⎦⎥⎤π6,π2解析 如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k PA =33,则直线PA 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.答案 B3.(2013·泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ). A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0解析 由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0. 答案 A4.(2013·江西八所重点高中联考)“a =0”是“直线l 1:(a +1)x +a 2y -3=0与直线l 2:2x +ay -2a -1=0平行”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 当a =0时,l 1:x -3=0,l 2:2x -1=0,此时l 1∥l 2, 所以“a =0”是“直线l 1与l 2平行”的充分条件; 当l 1∥l 2时,a (a +1)-2a 2=0,解得a =0或a =1. 当a =1时,l 1:2x +y -3=0,l 2:2x +y -3=0, 此时l 1与l 2重合,所以a =1不满足题意,即a =0. 所以“a =0”是“直线l 1∥l 2”的必要条件. 答案 C二、填空题(每小题5分,共10分)5.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析 设所求直线的方程为x a +y b =1, ∵A (-2,2)在直线上,∴-2a +2b=1.①又因直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.②由①②可得(1)⎩⎪⎨⎪⎧a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2.由(1)解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1, 即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案 x +2y -2=0或2x +y +2=06.(2012·东北三校二模)已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0,解得a =35.答案 35三、解答题(共25分)7.(12分)已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)∵l 1⊥l 2,∴a (a -1)-b =0.又∵直线l 1过点(-3,-1),∴-3a +b +4=0. 故a =2,b =2.(2)∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在. ∴k 1=k 2,即a b=1-a .又∵坐标原点到这两条直线的距离相等, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.8.(13分)已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解 (1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|+λ2+-2λ2=3.解得λ=2或λ=12. ∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). ∴d max =|PA |=10.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( ). A .4B .6C.345D.365解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.故m +n =345.答案 C2.(2013·长沙模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ).A .3 2B .2 2C .3 3D .4 2解析 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离,设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 答案 A二、填空题(每小题5分,共10分)3.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析 由题意得,36=-2a ≠-1c ,∴a =-4且c ≠-2,则6x +ay +c =0可化为3x -2y +c2=0,由两平行线间的距离,得21313=⎪⎪⎪⎪⎪⎪c 2+113,解得c =2或c =-6,所以c +2a=±1. 答案 ±14.(2013·盐城检测)已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.解析 直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12,由于0≤b ≤1,故当b =12时,ab 取得最大值12.答案 12三、解答题(共25分)5.(12分)已知直线l 过点P (2,3),且被两条平行直线l 1:3x +4y -7=0,l 2:3x +4y +8=0截得的线段长为d . (1)求d 的最小值;(2)当直线l 与x 轴平行,试求d 的值.解 (1)因为3×2+4×3-7>0,3×2+4×3+8>0,所以点P 在两条平行直线l 1,l 2外. 过P 点作直线l ,使l ⊥l 1,则l ⊥l 2,设垂足分别为G ,H ,则|GH |就是所求的d 的最小值.由两平行线间的距离公式,得d 的最小值为|GH |=|8--32+42=3.(2)当直线l 与x 轴平行时,l 的方程为y =3,设直线l 与直线l 1,l 2分别交于点A (x 1,3),B (x 2,3),则3x 1+12-7=0,3x 2+12+8=0,所以3(x 1-x 2)=15,即x 1-x 2=5,所以d =|AB |=|x 1-x 2|=5.6.(13分)已知直线l 1:x -y +3=0,直线l :x -y -1=0.若直线l 1关于直线l 的对称直线为l 2,求直线l 2的方程.解 法一 因为l 1∥l ,所以l 2∥l , 设直线l 2:x -y +m =0(m ≠3,m ≠-1). 直线l 1,l 2关于直线l 对称, 所以l 1与l ,l 2与l 间的距离相等. 由两平行直线间的距离公式得|3--2=|m --2,解得m =-5或m =3(舍去). 所以直线l 2的方程为x -y -5=0.法二 由题意知l 1∥l 2,设直线l 2:x -y +m =0(m ≠3,m ≠-1). 在直线l 1上取点M (0,3),设点M 关于直线l 的对称点为M ′(a ,b ),于是有⎩⎪⎨⎪⎧b -3a×1=-1,a +02-b +32-1=0,解得⎩⎪⎨⎪⎧a =4,b =-1,即M ′(4,-1).把点M ′(4,-1)代入l 2的方程,得m =-5, 所以直线l 2的方程为x -y -5=0.第2讲 圆的方程【2014年高考会这样考】1.考查圆的标准方程、一般方程及其应用.2.考查两圆的公共弦及与圆有关的交汇性问题等.对应学生134考点梳理1.圆的标准方程(1)确定一个圆最基本的要素是圆心和半径. (2)圆的标准方程①方程(x -a )2+(y -b )2=r 2(r >0)表示圆心为(a ,b ),半径为r 的圆的标准方程. ②特别地,以原点为圆心,半径为r (r >0)的圆的标准方程为x 2+y 2=r 2. 2.圆的一般方程方程x 2+y 2+Dx +Ey +F =0可变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4.故有:(1)当D 2+E 2-4F >0时,方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,以D 2+E 2-4F 2为半径的圆;(2)当D 2+E 2-4F =0时,方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2;(3)当D 2+E 2-4F <0时,方程不表示任何图形. 3.点与圆的位置关系 点和圆的位置关系有三种:圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0). (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 【助学·微博】 一种方法确定圆的方程主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. 两点提醒(1)求圆的方程需要三个独立条件,所以不论设哪一种圆的方程都要列出关于系数的三个独立方程.(2)过圆外一定点求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况.三个常用性质确定圆的方程时,常用到的圆的三个性质 (1)圆心在过切点且与切线垂直的直线上; (2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线.考点自测1.圆x 2+y 2-4x +6y =0的圆心坐标是( ). A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3)解析 圆方程可化为:(x -2)2+(y +3)2=13,故圆心为(2,-3). 答案 D2.(2012·大连模拟)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ). A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1 解析 设圆心坐标为(0,b ),则由题意知-2+b -2=1,解得b =2,故圆的方程为x 2+(y -2)2=1. 答案 A3.(2013·揭阳模拟)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( ). A .0 B .1 C .2 D .3解析 要使方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则应有:a 2+(2a )2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23,∴符合条件的a 只有一个,a =0,∴原方程只能表示一个圆. 答案 B4.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 解析 由题意得,AB 的中垂线方程为y =x ,由⎩⎪⎨⎪⎧y =x ,x +y -2=0得⎩⎪⎨⎪⎧x =1,y =1,∴圆心C 的坐标为(1,1),r 2=|AC |2=(1-1)2+(1+1)2=4,∴圆的方程为(x -1)2+(y -1)2=4.答案 C5.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________.解析 因为三角形AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9. 答案 (x +3)2+(y -3)2=9对应学生134考向一 求圆的方程【例1】►(1)已知圆心在x 轴上,半径为5的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.(2)已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被该圆所截得的弦长为22,则圆C 的标准方程为________. [审题视点] (1)设圆心坐标,由直线与圆相切可求; (2)设圆心坐标,由圆的性质可求.解析 (1)设圆心为(a,0)(a <0),则|a |2=5,∴a =-10,∴圆O 的方程为(x +10)2+y 2=5.(2)由题意,设圆心坐标为(a,0),则由直线l :y =x -1被该圆所截得的弦长为22,得⎝ ⎛⎭⎪⎫|a -1|22+2=(a -1)2,解得a =3或-1.又因为圆心在x 轴的正半轴上,所以a =3,故圆心坐标为(3,0),又已知圆C 过点(1,0),所以所求圆的半径为2,故圆C 的标准方程为(x -3)2+y 2=4.答案 (1)(x +10)2+y 2=5 (2)(x -3)2+y 2=4求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量;②代数法,即设出圆的方程,用待定系数法求解.【训练1】 (1)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________.(2)(2013·南昌质检)已知点P (2,1)在圆C :x 2+y 2+ax -2y +b =0上,点P 关于直线x+y -1=0的对称点也在圆C 上,则圆C 的圆心坐标为________. 解析 (1)设圆心C (a ,b )(a >0,b >0),由题意可得b =1. 又圆心C 到直线4x -3y =0的距离d =|4a -3|5=1,解得a =2或a =-12(舍).所以该圆的标准方程为(x -2)2+(y -1)2=1.(2)因为点P 关于直线x +y -1=0的对称点也在圆上,所以该直线过圆心,即圆心⎝ ⎛⎭⎪⎫-a2,1满足方程x +y -1=0,所以-a2+1-1=0,解得a =0,所以圆心坐标为(0,1).答案 (1)(x -2)2+(y -1)2=1 (2)(0,1)考向二 与圆有关的最值问题【例2】►已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.[审题视点] 根据代数式的几何意义(斜率、直线、圆),借助平面几何知识,数形结合求解.解 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如图①).所以y x的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图②). 所以y -x 的最大值为-2+6,最小值为-2- 6.(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图③). 又圆心到原点的距离为-2+-2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.与圆有关的最值问题,常见的有以下几种类型:①形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.【训练2】 已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). (1)求|MQ |的最大值和最小值; (2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=+2+-2=4 2.∴|MQ |max =42+22=62, |MQ |min =42-22=2 2. (2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤2 2. 可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3.考向三 与圆有关的轨迹问题【例3】►已知直角三角形ABC 的斜边为AB ,且A (-1,0),B (3,0),求:(1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程.[审题视点] 可以先画出草图,结合三角形有关知识寻找动点与定点之间的关系,然后列式化简即可,切记动点与定点之间的约束条件.解 (1)法一 设顶点C (x ,y ),因为AC ⊥BC ,且A ,B ,C 三点不共线,所以x ≠3且x ≠-1. 又k AC =y x +1,k BC =yx -3,且k AC ·k BC =-1, 所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0. 因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1).法二 设AB 中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知,|CD |=12|AB |=2,由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径长的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(x ≠3且x ≠-1).(2)设点M (x ,y ),点C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32(x ≠3且x ≠1),y =y 0+02,于是有x 0=2x -3,y 0=2y .由(1)知,点C 在圆(x -1)2+y 2=4(x ≠3且x ≠-1)上运动,将x 0,y 0代入该方程得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(x ≠3且x ≠1).与圆有关的轨迹问题主要是求动点的轨迹方程,其求解的一般步骤是:建系、设点、列式、化简、求解.要灵活运用图形的几何性质.对于“双动点”问题,即已知一动点在某条曲线上运动而求另一动点的轨迹方程,通常用代入法.【训练3】 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹. 解如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42. 从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上时的情况).对应学生136方法优化12——巧设坐标求圆的方程【命题研究】 通过近三年的高考试题分析,单独考查求圆的方程的题目较少,多数考查直线与圆的位置关系问题.题型多数是选择题、填空题,题目难度为中等.【真题探究】► (2011·辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________.[教你审题] 思路1 设圆的一般方程,列方程组求解; 思路2 设圆心坐标,利用|CA |=|CB |求解. [一般解法] 设圆的方程为:x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧-E2=0,52+12+5D +E +F =0,12+32+D +3E +F =0,解得D =-4,E =0,F =-6.故圆C 的方程为x 2+y 2-4x -6=0.[优美解法] 设圆心C (x,0),由|CA |=|CB |, 得x -2+1=x -2+9,解得:x =2,半径r =|CA |=10. 故圆C 的方程为(x -2)2+y 2=10. [答案] (x -2)2+y 2=10[反思] 分析题目中的条件,选择适当的方程形式,利用圆的有关性质解题,往往方便快捷.【试一试】 已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为________.解析 设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+-2=1,则R 2=d 2+⎝ ⎛⎭⎪⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10. 答案 x 2+(y -1)2=10对应学生309A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·济宁一中月考)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( ). A .-1B .1C .3D .-3解析 化圆为标准形式(x +1)2+(y -2)2=5,圆心为(-1,2).∵直线过圆心,∴3×(-1)+2+a =0,∴a =1. 答案 B2.(2013·太原质检)设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( ).A .原点在圆上B .原点在圆外C .原点在圆内D .不确定解析 将圆的一般方程化为标准方程(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,所以原点在圆外. 答案 B3.圆(x +2)2+y 2=5关于直线y =x 对称的圆的方程为 ( ).A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析 由题意知所求圆的圆心坐标为(0,-2),所以所求圆的方程为x 2+(y +2)2=5. 答案 D4.(2013·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( ).A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析 设P (x ,y ),则由题意可得:2x -2+y 2=x -2+y 2,化简整理得x2+y 2=16,故选B. 答案 B二、填空题(每小题5分,共10分)5.以A (1,3)和B (3,5)为直径两端点的圆的标准方程为________.解析 由中点坐标公式得AB 的中点即圆的圆心坐标为(2,4),再由两点间的距离公式得圆的半径为-2+-2=2,故圆的标准方程为(x -2)2+(y -4)2=2.答案 (x -2)2+(y -4)2=26.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析 由题意得C 上各点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去半径,即|1-1+4|2-2= 2.答案2三、解答题(共25分)7.(12分)求适合下列条件的圆的方程:(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).解 (1)法一 设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a ,-a 2+-2-b 2=r 2,|a +b -1|2=r ,解得a =1,b =-4,r =2 2. ∴圆的方程为(x -1)2+(y +4)2=8.法二 过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4). ∴半径r =-2+-4+2=22,∴所求圆的方程为(x -1)2+(y +4)2=8.(2)法一 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0. 法二 由A (1,12),B (7,10), 得AB 的中点坐标为(4,11),k AB =-13,则AB 的垂直平分线方程为3x -y -1=0. 同理得AC 的垂直平分线方程为x +y -3=0.联立⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0得⎩⎪⎨⎪⎧x =1,y =2,即圆心坐标为(1,2),半径r =-2+-2=10.∴所求圆的方程为(x -1)2+(y -2)2=100.8.(13分)已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0. ①又直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40,②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2),∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·东莞调研)已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( ).A .8B .-4C .6D .无法确定解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m2,0,即-m2+3=0,∴m =6.答案 C2.圆心为C ⎝ ⎛⎭⎪⎫-12,3的圆与直线l :x +2y -3=0交于P ,Q 两点,O 为坐标原点,且满足OP →·OQ→=0,则圆C 的方程为( ).A.⎝ ⎛⎭⎪⎫x -122+(y -3)2=52B.⎝ ⎛⎭⎪⎫x -122+(y +3)2=52C.⎝ ⎛⎭⎪⎫x +122+(y -3)2=254D.⎝ ⎛⎭⎪⎫x +122+(y +3)2=254解析 法一 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3, ∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2.设P (x 1,y 1),Q (x 2,y 2).由圆方程与直线l 的方程联立得:5x 2+10x +10-4r 2=0, ∴x 1+x 2=-2,x 1x 2=10-4r25.由OP →·OQ →=0,得x 1x 2+y 1y 2=0,即: 54x 1x 2-34(x 1+x 2)+94=10-4r 24+154=0, 解得r 2=254,经检验满足判别式Δ>0.故圆C 的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=254. 法二 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3, ∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2,在所给的四个选项中只有一个方程所写的圆心是正确的,即⎝ ⎛⎭⎪⎫x +122+(y -3)2=254,故选C. 答案 C二、填空题(每小题5分,共10分)3.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆,又△OPQ 为直角三角形,故其圆心为斜边PQ 的中点(2,1),半径为|PQ |2=5,∴圆C 的方程为(x -2)2+(y -1)2=5. 答案 (x -2)2+(y -1)2=54.已知圆C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上的动点,则d =|PA |2+|PB |2的最大值为________,最小值为________.解析 设点P (x 0,y 0),则d =(x 0+1)2+y 20+(x 0-1)2+y 20=2(x 20+y 20)+2,欲求d 的最值,只需求u =x 20+y 20的最值,即求圆C 上的点到原点的距离平方的最值.圆C 上的点到原点的距离的最大值为6,最小值为4,故d 的最大值为74,最小值为34. 答案 74 34 三、解答题(共25分)5.(12分)(2013·大连模拟)已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解 (1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0), 根据题意得:⎩⎪⎨⎪⎧-a 2+-1-b 2=r 2,-1-a 2+-b2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形PAMB 的面积S =S △PAM +S △PBM =12|AM |·|PA |+12|BM |·|PB |,又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |, 而|PA |=|PM |2-|AM |2=|PM |2-4, 即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可,。

直线方程及位置关系习题及答案

直线方程及位置关系习题及答案

1 直线的方程一、选择题(每小题7分,共35分)1.直线l 经过A (2,1)、B (1,m 2) (m ∈R )两点,那么直线l 的倾斜角的取值范围是( )A .[0,π)B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 2.直线x cos α+3y +2=0的倾斜角的范围是( )A.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,5π6B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,πC.⎣⎡⎦⎤0,5π6 D.⎝⎛⎭⎫π6,5π6 3.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( )A .1B .2C .-12D .2或-124.已知直线l 1的方向向量为a =(1,3),直线l 2的方向向量为b =(-1,k ).若直线l 2经过点(0,5)且l 1⊥l 2,则直线l 2的方程为( )A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=05.经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0二、填空题(每小题6分,共24分)6.已知两点A (0,1),B (1,0),若直线y =k (x +1)与线段AB 总有公共点,则k 的取值范围是________.7.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________.8.若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________.9.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.三、解答题(共41分)10.(13分)已知△ABC 中,A (1,-4),B (6,6),C (-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程;(2)BC 边的中线所在直线的一般式方程,并化为截距式方程.11.(14分)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16. 12.(14分)已知两点A (-1,2),B (m,3).(1)求直线AB 的方程;(2)已知实数m ∈⎣⎡⎦⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围. 答案1. D2. B3. D4. B5. B6. [0,1]7. x +2y -2=0或2x +y +2=08. 169. -1310. 解(1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12, 整理得,6x -8y -13=0,化为截距式方程为x 136-y 138=1. (2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y 11=1. 11. 解(1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.12. 解(1)当m =-1时,直线AB 的方程为x =-1,当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). (2)①当m =-1时,α=π2; ②当m ≠-1时,m +1∈⎣⎡⎭⎫-33,0∪(0,3], ∴k =1m +1∈(-∞,-3]∪⎣⎡⎭⎫33,+∞, ∴α∈⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3.综合①②知,直线AB 的倾斜角α∈⎣⎡⎦⎤π6,2π3. 易错分析 忽视对m 的分类讨论2 两条直线的位置关系一、选择题(每小题7分,共35分)1. “a =2”是“直线ax +2y =0与直线x +y =1平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .13.已知直线l 1:y =x ,若直线l 2⊥l 1,则直线l 2的倾斜角为( )A.π4 B .k π+π4(k ∈Z )C.3π4 D .k π+3π4(k ∈Z ) 4.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=05.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( )A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0二、填空题(每小题6分,共24分)6.经过点(2,-1),且与直线x +y -5=0垂直的直线方程是____________.7.已知a =(6,2),b =⎝⎛⎭⎫-4,12,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的一般式方程是______________.8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.9.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.三、解答题(共41分)10.(13分)已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合.11.(14分)已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0 (a ,b ∈R ).(1)若l 1∥l 2,求b 的取值范围;(2)若l 1⊥l 2,求|ab |的最小值.12.(14分)已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.。

高中数学高考总复习直线方程与两条直线的位置关系习题及详解

高中数学高考总复习直线方程与两条直线的位置关系习题及详解

高中数学高考总复习直线方程与两条直线的位置关系习题及详解一、选择题1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m (m +1)+2m +2=0,∴m =-1或-2,故选A.2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0[答案] A[解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0.解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A.(理)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12D .-1[答案] A[解析] y ′=2ax ,在(1,a )处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2)D .(2,-2)[答案] D[解析] 一般解法:设对称点为(x ,y ),则⎩⎪⎨⎪⎧x -12-y +12-1=0y -1x +1=-1,解之得⎩⎪⎨⎪⎧x =2y =-2,特殊解法:当直线l :Ax +By +C =0的系数满足|A |=|B |=1时,点A (x 0,y 0)关于l 的对称点B (x ,y )的坐标,x =-By 0-C A ,y =-Ax 0-CB.4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O (0,0),A (2,0),C (0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( )A .[0,1]B .[0,2]C .[-1,0]D .[-2,0][答案] D[解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题,∵k OD ≥k OB =12,∴k =-1k OD ≥-2,且k <0,又当折叠后O 与C 重合时,k =0,∴-2≤k ≤0.5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞)C.⎝⎛⎭⎫-∞,43∪(10,+∞) D.⎝⎛⎭⎫43,10 [答案] D[解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43<a <10,故选D.(理)如果点(5,a )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则整数a 的值为( )A .5B .-5C .4D .-4[答案] C[解析] 由题意知(30-8a +1)(15-4a +5)<0, ∴318<a <5,又a 为整数,∴a =4. 6.(2010·南充市)在直角坐标平面上,向量OA →=(1,3)、OB →=(-3,1)(O 为原点)在直线l 上的射影长度相等,且直线l 的倾斜角为锐角,则l 的斜率等于( )A .1 B.32 C.12D.33[答案] C[解析] 过原点作与直线l 平行的直线l ′,则OA →、OB →在l ′上的射影也相等,故A 、B 到直线l ′的距离相等,设l ′:y =kx ,则|k -3|1+k 2=|-3k -1|1+k 2,∴k =-2或12,∵l 的倾斜角为锐角,∴k =12.[点评] 设直线l 的斜率为k ,则直线l 的一个方向向量为a =(1,k ),由OA →,OB →在a 上射影的长度相等可得|a ·OA →||a |=|a ·OB →||a |,可解出k .7.设A (0,0),B (2,2),C (8,4),若直线AD 是△ABC 外接圆的直径,则点D 的坐标是( ) A .(16,-12) B .(8,-6) C .(4,-3)D .(-4,3)[答案] A[解析] 线段AB 的垂直平分线x +y -2=0与线段AC 的垂直平分线2x +y -10=0的交点即圆心(8,-6),而圆心为AD 的中点,所以得点D 的坐标为(16,-12).8.(文)(2010·福建莆田市质检)经过圆x 2+y 2+2x =0的圆心,且与直线x +y =0垂直的直线l 的方程是( )A .x +y +1=0B .x -y +1=0C .x +y -1=0D .x -y -1=0[答案] B[解析] 设与直线x +y =0垂直的直线方程为x -y +b =0,∵过圆心(-1,0),∴b =1,故选B.(理)(2010·山东潍坊)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2010x 1+log 2010x 2+…+log 2010x 2009的值为( )A .-log 20102009B .-1C .log 20102009-1D .1[答案] B[解析] 由y =x n +1得y ′=(n +1)x n ,则在点(1,1)处切线的斜率k =y ′|x =1=n +1,切线方程为y -1=(n +1)(x -1),令y =0得,x n =nn +1, ∴log 2010x 1+log 2010x 2+…+log 2010x 2009 =log 2010(x 1·x 2·…·x 2009)=log 2010⎝⎛⎭⎫12×23×34×…×20092010=log 201012010=-1,故选B. 9.(文)直线l 过点(-2,0),当l 与圆x 2+y 2=2x 有两个交点时,直线l 的斜率k 的取值范围是( ) A .(-22,22) B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 [答案] C[解析] 由题意得,圆的方程为(x -1)2+y 2=1,所以圆心为(1,0),半径为1.当过点(-2,0)的直线l 与圆相切时,可求得直线l 的斜率k =±24.所以直线l 的斜率k 的取值范围是⎝⎛⎭⎫-24,24.故选C.(理)(2010·汕头模拟)平行四边形ABCD 的一条对角线固定在A (3,-1),C (2,-3)两点,D 点在直线3x -y +1=0上移动,则B 点轨迹的方程为( )A .3x -y -20=0(x ≠13)B .3x -y -10=0(x ≠13)C .3x -y -9=0(x ≠-8)D .3x -y -12=0(x ≠-8)[答案] A[解析] 线段AC 的中点M ⎝⎛⎭⎫52,-2,设B (x ,y ),则B 关于点M 的对称点(5-x ,-4-y )在直线3x -y +1=0上,∴3(5-x )-(-4-y )+1=0,即3x -y -20=0.∵A 、B 、C 、D 不能共线,∴不能为它与直线AC 的交点,即x ≠13.10.已知一动直线l 与两坐标轴的正半轴围成的三角形的面积为p ,直线l 在两坐标轴上的截距之和为q ,且p 比q 大1,则这个三角形面积的最小值为( )A .4B .2+ 6C .4+3 3D .5+2 6[答案] D[解析] 设直线l 的方程为x a +y b =1(a >0,b >0),则12ab =a +b +1,∵a +b ≥2ab ,∴12ab ≥2ab +1,即(ab )2-4ab -2≥0,解得ab ≥2+6,∴12ab ≥12×(2+6)2=5+26,当a =b =2+6时,三角形面积的最小值为5+2 6. 二、填空题11.(2010·深圳中学)已知向量a =(6,2),b =⎝⎛⎭⎫-4,12,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的一般方程为________.[答案] 2x -3y -9=0[解析] a +2b =(-2,3),设l 上任一点P (x ,y ),则AP →=(x -3,y +1),由条件知,(x -3,y +1)·(-2,3)=0,∴2x -3y -9=0.12.(2010·浙江临安)设D 是不等式组⎩⎪⎨⎪⎧x +2y ≤102x +y ≥30≤x ≤4y ≥1所表示的平面区域,则区域D 中的点P (x ,y )到直线x +y =10的距离的最大值是________.[答案] 4 2[解析] 画出不等式组所表示的平面区域D 如图中阴影部分所示(包括边界),显然直线y =1与2x +y =3的交点(1,1)到直线x +y =10的距离最大,根据点到直线的距离公式可以求得最大值为4 2.13.(2010·安徽怀宁中学月考)“直线ax +2y +1=0和直线3x +(a -1)y +1=0平行”的充要条件是“a =____”.[答案] -2[解析] 由条件知a 3=2a -1,∴a 2-a -6=0,∴a =-2或3,当a =3时,两直线重合不合题意,∴a=-2.14.(文)实数x 、y 满足3x -2y -5=0 (1≤x ≤3),则yx 的最大值、最小值分别为________.[答案] 23,-1[解析] 设k =y x ,则yx 表示线段AB :3x -2y -5=0 (1≤x ≤3)上的点与原点的连线的斜率.∵A (1,-1),B (3,2).由图易知:k max =k OB =23,k min =k OA =-1.(理)(2010·河南许昌调研)如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,-3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是________.[答案] [0,π2)∪(2π3,π)[解析] 由题意f ′(x )=a (x -1)2-3,∵a >0,∴f ′(x )≥-3,因此曲线y =f (x )上任一点的切线斜率k =tan α≥-3, ∵倾斜角α∈[0,π),∴0≤α<π2或2π3<α<π.三、解答题15.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.[解析] 当0≤x ≤10时,直线过点O (0,0),A (10,20),∴k OA =2010=2,∴此时直线方程为y =2x ;当10<x ≤40时,直线过点A (10,20),B (40,30),此进k AB =30-2040-10=13,∴此时的直线方程为y -20=13(x -10),即y =13x +503;当x >40时,由题意知,直线的斜率就是相应放水的速度,设进水的速度为v 1,放水的速度为v 2,在OA 段时是进水过程,∴v 1AB 段是既进水又放水的过程,由物理知识可知,此时的速度为v 1+v 2=13,∴2+v 2=13.∴v 2=-53.∴当x >40时,k =-53.又过点B (40,30),∴此时的直线方程为y =-53x +2903.令y =0得,x =58,此时到C (58,0)放水完毕.综上所述:y =⎩⎨⎧y =2x ,0≤x ≤1013x +503,10<x ≤40-53x +2903,40<x ≤58.(理)已知矩形ABCD 的两条对角线交于点M ⎝⎛⎭⎫12,0,AB 边所在直线的方程为3x -4yN ⎝⎛⎭⎫-1,13在AD 所在直线上.(1)求AD 所在直线的方程及矩形ABCD 的外接圆C 1的方程;(2)已知点E ⎝⎛⎭⎫-12,0,点F 是圆C 1上的动点,线段EF 的垂直平分线交FM 于点P ,求动点P 的轨迹方程.[解析] (1)∵AB 所在直线的方程为3x -4y -4=0,且AD 与AB 垂直, ∴直线AD 的斜率为-43.又点N 在直线AD 上,∴直线AD 的方程为y -13=-43(x +1),即4x +3y +3=0.由⎩⎪⎨⎪⎧3x -4y -4=04x +3y +3=0,解得点A 的坐标为(0,-1). 又两条对角线交于点M ,∴M 为矩形ABCD 的外接圆的圆心. 而|MA |=⎝⎛⎭⎫0-122+(-1-0)2=52,∴外接圆的方程为⎝⎛⎭⎫x -122+y 2=54. (2)由题意得,|PE |+|PM |=|PF |+|PM |=|FM |=52,又|FM |>|EM |, ∴P 的轨迹是以E 、M 为焦点,长半轴长为54的椭圆,设方程为x 2a 2+y 2b 2=1(a >b >0),∵c =12,a =54,∴b 2=a 2-c 2=516-14=116.故动点P 的轨迹方程是x 2516+y 2116=1.16.已知直线l 1过点A (-1,0),且斜率为k ,直线l 2过点B (1,0),且斜率为-2k ,其中k ≠0,又直线l 1与l 2交于点M .(1)求动点M 的轨迹方程;(2)若过点N ⎝⎛⎭⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.[解析] (1)设M (x ,y ),∵点M 为l 1与l 2的交点,∴⎩⎪⎨⎪⎧yx +1=k y x -1=-2k(k ≠0),消去k 得,y 2x 2-1=-2,∴点M 的轨迹方程为2x 2+y 2=2(x ≠±1). (2)由(1)知M 的轨迹方程为 2x 2+y 2=2(x ≠±1),设C (x 1,y 1),D (x 2,y 2), 则2x 12+y 12=2① 2x 22+y 22=2②①-②得2(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0, 即y 1-y 2x 1-x 2=-2×x 1+x 2y 1+y 2, ∵N ⎝⎛⎭⎫12,1为CD 的中点, 有x 1+x 2=1,y 1+y 2=2, ∴直线l 的斜率k =-2×12=-1,∴直线l 的方程为y -1=-⎝⎛⎭⎫x -12, 整理得2x +2y -3=0.17.如图,在平面直角坐标系xOy 中,平行于x 轴且过点A (33,2)的入射光线l 1被直线l :y =33x 反射,反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1、l 2都相切,求l 2所在直线的方程和圆C 的方程.[解析] 直线l 1:y =2,设l 1交l 于点D ,则D (23,2). ∵l 的倾斜角为30°.∴l 2的倾斜角为60°.∴k 2= 3.∴反射光线l 2所在的直线方程为y -2=3(x -23),即3x -y -4=0. 已知圆C 与l 1切于点A ,设C (a ,b ). ∵⊙C 与l 1、l 2都相切,∴圆心C 在过点D 且与l 垂直的直线上, ∴b =-3a +8①圆心C 在过点A 且与l 1垂直的直线上, ∴a =33②由①②得⎩⎪⎨⎪⎧a =33b =-1,圆C 的半径r =3,故所求圆C 的方程为(x -33)2+(y +1)2=9.。

直线的方程及位置关系(习题及答案)

直线的方程及位置关系(习题及答案)

直线的方程及位置关系(习题)1.若三点A (4,3),B (5,m ),C (6,n )在一条直线上,则下列式子一定正确的是()A .2m -n =3B .n -m =1C .m =3,n =5D .m -2n =32.点M (x 0,y 0)是直线Ax +By +C =0上的点,则直线方程可表示为()A .00()()0A x xB y y -+-=B .00()()0A x xB y y ---=C .00()()0B x x A y y -+-=D .00()()0B x x A y y ---=3.若直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是45°,则m 的值为()A .2或3B .3C .-2D .-34.已知两点M (2,-3),N (-3,2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围为______________. 5.将直线323l y x =-+:绕点(2,0)按顺时针方向旋转60°得到直线l',则直线l'的方程为_________________.6.已知△ABC 三个顶点分别为A (1,2),B (3,6),C (5,2),M为AB 的中点,N 为AC 的中点,则中位线MN 所在直线方程用两点式可表示为___________________________,化成一般式为_______________________________.7.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程用点斜式可表示为__________________,化成一般式为____________________.8.直线ax+by+c=0(ab≠0)在两坐标轴上的截距相等,则a,b,c满足()A.a=b B.|a|=|b|C.a=b且c=0D.c=0或a=b9.(1)已知直线l1:(3+a)x+4y=5-4a与l2:2x+(5+a)y=9平行,则a=_________.(2)已知直线(a+2)x+(1-a)y-3=0与(a-1)x+(2a+3)y+2=0互相垂直,则a=_____________.10.(1)过点(-3,2)且与直线2x+3y-1=0平行的直线方程是_________________.(2)过点A(0,2)且与直线3x+2y-1=0垂直的直线方程为_________________.11.已知四边形ABCD的顶点分别为(2 222),,B(-2,2),A+,,D(4,2).求证:四边形ABCD为矩形.C-(0 222)12.已知直线l经过点E(1,2),且与坐标轴的正半轴围成的三角形的面积是4,求直线l的方程.【参考答案】1.A 2.A 3.B 4.1(4][)4-∞--+∞ ,,5.323y x =- 6.234223y x --=--;280x y +-=7.32(2)2y x -=-;5202x y --=8.D 9.(1)-7;(2)1或-110.(1)230x y +=;(2)2360x y -+=11.略12.240x y +-=。

直线的方程及位置关系(讲义及答案)

直线的方程及位置关系(讲义及答案)

直线的方程及位置关系(讲义)>知识点睛一、倾斜角Q与斜率k1.倾斜角(1)槪念:当直线/与X轴相交时,取A-轴作为基准,A-轴正向与直线/向上方向之间所成的角疚叫做直线/的倾斜角.当直线与X轴平行或重合时,规定倾斜角为0。

.(2)范Ifl: 0。

冬0<180。

.2.斜率(1)当c(H90°时,knana.当Ct为锐角时,tan( 180°-ct)=-tan a.(2)直线经过两点yi)» 卩2(兀2, yi)(.VI 7^X2)»则R =冬二匕4.直线斜率的变化:3.当直线绕定点山与工轴平行(或重合)的位置按逆时针方向旋转到与y轴平行或重合的位置时,斜率由0逐渐增大到+8 (斜率不存在);继续逆时针旋转到与X轴平行或重合时,斜率山Y (斜率不存在)逐渐增大到0.三点共线问题的处理方法:A, B, C三点共线O任意两点确定的直线的斜率相等或不存在.4.6三、两条直线的位置关系1.两条直线平行与垂直的判定(1) 设两条直线A ,厶的斜率分别为Z ,则① 4 〃厶0匕=/:2或4,厶斜率都不存在;② 人丄ki*灯=一1或一条直线斜率不存在,同时另一 条直线斜率为零.(2) :A-v + B.y + C, =0, /, Mu + B.y+C =0 ,则 ① 厶 〃/2。

0 且 B" 0 ;② 厶与厶重合o 4艮一A25=O 且B I G-B C L O ;③ 人丄厶O A/2+EB2=0 .2. 两条直线平行与垂直的应用(1)①与直线Ax+By+C=O 平行的直线方程可设为 Ax+By+m=Q. ②过点("?,")且与直线Ax+By+C=O 平行的直线方程为 A(A -/M )+B(\-/I )=O.⑵①与直线从丰By+C=O 垂直的直线方程可设为 Bx-Ay+tn=O. ②过点("?,")且与直线Ax+By+GO 垂直的直线方程为 B(x-m )-A (y-“)=O -精讲精练(1) 已知过点P(-2, /»), Q(w, 6)的直线的倾斜角为45。

直线方程位置关系距离基础题含详解

直线方程位置关系距离基础题含详解
A. B. C. D.
6.已知直线 , .若 ,则 的值为()
A. B.0C.2D.4
7.已知倾斜角为 的直线 与直线 垂直,则 的值为()
A. B. C. D.
8.在平面直角坐标系中,已知点 , ,那么 ()
A.2B. C. D.4
9.设 , ,直线 过点 且与线段 相交,则 的斜率 的取值范围是()
21.已知 的三个顶点的坐标分别为 , , .
(1)求 边上中线 所在直线的方程;
(2)求 边上高 所在直线的方程.
参考答案
1.D
【分析】
先求得直线的斜率,由此求得直线的方向向量.
【详解】
直线的斜率为2,故其方向向量可以为 .
故选:D.
2.A
【分析】
结合已知两直线平行的条件得到 ,解方程求出结果,注意检验两直线是否重合即可.
【详解】
由 ,解得 ,
∴直线 与 的交点坐标坐标为 .
由题意得点 在直线 上,
∴ ,解得 .
故答案为:-3.
【点睛】
本题考查直线的交点,考查计算能力和数形结合思想方法,解题时根据代数方法求解即可,注意解析法的运用,属于基础题.
16.(1) ;(2)8;(3)1.
【分析】
(1) 化为 ,由点到直线的距离公式可得答案;
(2)若直线m与l平行,且过点 ,求直线m的方程.
19.在平面直角坐标系内,已知 的三个顶点坐标分别为 .
(1)求 边的垂直平分线所在的直线 的方程;
(2)若 的面积为5,求点 的坐标.
20.已知直线 与直线 .
(1)若 ,求m的值;
(2)若点 在直线 上,直线 过点P,且在两坐标轴上的截距之和为0,求直线 的方程.

高考数学一轮复习专题10.1直线方程及位置关系练习(含解析)

高考数学一轮复习专题10.1直线方程及位置关系练习(含解析)

第一讲 直线方程与位置关系一.直线的倾斜角与斜率 1.直线的倾斜角①定义.当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴的正方向与直线l 向上的方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. ②范围:倾斜角的范围为. 2.直线的斜率①定义.一条直线的倾斜角的正切叫做这条直线的斜率,斜率常用小写字母k 表示,即,倾斜角是90°的直线没有斜率.当直线与x 轴平行或重合时, , . ②过两点的直线的斜率公式.经过两点的直线的斜率公式为.3.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率.倾斜角为90°的直线斜率不存在.4.直线的倾斜角、斜率k 之间的大小变化关系: (1)当时,越大,斜率越大;(2)当时,越大,斜率越大.二.直线的方程1.直线的点斜式方程:直线经过点,且斜率为,则直线的方程为:.这个方程就叫做直线点斜式方程.特别地,直线过点,则直线的方程为:.这个方程叫做直线 的斜截式方程.2.直线的两点式方程直线过两点其中,则直线的方程为:.这个方程叫做直线的两点式方程.αα0απ≤<(90)αα≠tan k α=l 0α=tan 00k ==11122212()()()P x y P x y x x ≠,,,2121y y k x x --=α[0,)2πα∈0,k α>(,)2παπ∈0,k α<l 000(,)P x y k l )(00x x k y y -=-l ),0(b l b kx y +=l ),(),,(222211y x P x x P ),(2121y y x x ≠≠l ),(2121121121y y x x x x x x y y y y ≠≠--=--当时,直线与轴垂直,所以直线方程为:;当时,直线与轴垂直,直线方程为:.特别地,若直线过两点,则直线的方程为:,这个方程叫做直线的截距式方程.3.直线的一般式方程 关于的二元一次方程(A ,B 不同时为0)叫做直线的一般式方程.由一般式方程可得,B 不为0时,斜率,截距三.两条直线平行与垂直 1.两直线的平行关系(1) 对于两条不重合的直线,其斜率为,有. (2)对于两条直线,有.2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有. 四.距离问题 1.两点间的距离公式设两点,则2.点到直线的距离公式设点,直线,则点到直线的距离.3.两平行线间的距离公式设两条平行直线,则这两条平行线之间的距离.五.两条直线的交点21x x =x 1x x =21y y =y 1y y =l 12(,0),(0,)(0)P a P b ab ≠l 1xya b+=y x ,0=++C By Ax A k B =-C b B =-12,l l 12,k k 1212//l l k k ⇔=11112222:0,:0l A x B y C l A x B y C ++=++=1212211221//0,0l l A B A B AC A C ⇔-=-≠12,l l 12,k k 12121l l k k ⊥⇔=-11112222:0,:0l A x B y C l A x B y C ++=++=1211220l l A B A B ⊥⇔+=111222(,),(,)P x y P x y 12PP =000(,)P x y :0l Ax By C ++=000(,)P x y :0l Ax By C ++=d =1122:0,:0l Ax By C l Ax By C ++=++=d =1.两条直线相交:对于两条直线,若,则方程组有唯一解,两条直线就相交,方程组的解就是交点的坐标.2.两条直线,联立方程组,若方程组有无数组解,则重合. 六.对称问题 1.中点坐标公式 2.两条直线的垂直关系(1) 对于两条直线,其斜率为,有.(2)对于两条直线,有.考向一 直线的斜率和倾斜角【例1】(1)已知点 , ,则直线 的倾斜角为 。

两条直线的位置关系专项练习解析版

两条直线的位置关系专项练习解析版

两条直线的位置关系一.两条直线的相交、平行、重合 1.代数方法判断两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的位置关系,可以用方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解进行判断(如下表所示) 方程组的解位置关系交点个数代数条件无解平行无交点A 1B 2-A 2B 1=0而B 1C 2-C 1B 2≠0或A 2C 1-A 1C 2≠0或A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0)有唯一解相交有一个交点 A 1B 2-A 2B 1≠0或A 1A 2≠B 1B 2(A 2B 2≠0)有无数个解 重合无数个交点A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)或A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0) 2.几何方法判断若两直线的斜率均存在,我们可以利用斜率和在y 轴上的截距判断两直线的位置关系,其方法如下:设l 1:y =k 1x +b 1,l 2:y =k 2x +b 2, ①l 1与l 2相交①k 1≠k 2; ①l 1①l 2①k 1=k 2且b 1≠b 2; ①l 1与l 2重合①k 1=k 2且b 1=b 2.二.两条直线垂直 两条直线垂直与斜率的关系对应关系l 1与l 2的斜率都存在,分别为l 1与l 2中的一条斜率不存在,另一条k 1,k 2,则l 1①l 2①k 1·k 2=-1 斜率为零,则l 1与l 2的位置关系是l 1①l 2图示题型一 判断两直线位置关系(平行、垂直、相交、重合)例1.已知直线方程1:2470l x y -+=,2:250l x y -+=,则1l 与2l 的关系( ) A .平行 B .重合C .相交D .以上答案都不对【解答】解:直线1l 方程:2470x y -+=,∴直线1l 的斜率112k = 同理可得直线2l 的斜率212k =12k k ∴=, 两条直线在y 轴上的截距分别为74和52,不相等1l ∴与2l 互相平行 故选:A .练习1.已知直线1:0l x y +=,2:2230l x y ++=,则直线1l 与2l 的位置关系是( ) A .垂直B .平行C .重合D .相交但不垂直【解答】解:由直线1:0l x y +=,2:2230l x y ++=,可得斜率都等于1-,截距不相等. 12//l l ∴.故选:B .例2.两条直线1:20l x y c ++=,2:210l x y -+=的位置关系是( ) A .平行B .垂直C .重合D .不能确定【解答】解:直线1l 的斜率是:2-,直线2l 的斜率是:12,由1212-⨯=-,得直线垂直, 故选:B .练习1.判断下列各小题中的每对直线是否垂直(1)1l 的斜率为23-,2l 经过点(1,1)A ,1(0,)2B -(2)1l 的倾斜角为45︒,2l 经过点(2,1)P --,(3,6)Q - (3)1l 经过点(1,0)M ,(4,5)N -,2l 经过点(6,0)R -,(1,3)S -【解答】解:(1)2l 经过点(1,1)A ,1(0,)2B -,2l ∴的斜率为1132102+=-, 又1l 的斜率为23-,且32()123⨯-=-,1l ∴与2l 垂直;(2)1l 的倾斜角为45︒,1l ∴2, 2l 经过点(2,1)P --,(3,6)Q -,2l ∴的斜率为16123-+=---,2(1)1-≠-, 1l ∴与2l 不垂直;(3)1l 经过点(1,0)M ,(4,5)N -,1l ∴的斜率为055143+=--, 2l 经过点(6,0)R -,(1,3)S -,2l ∴的斜率为033615-=-+,又53()135-⨯=-, 1l ∴与2l 垂直.例3.直线20x y m ++=和20x y n ++=的位置关系是( ) A .平行B .垂直C .相交但不垂直D .不能确定【解答】解:由方程组2020x y m x y n ++=⎧⎨++=⎩可得340x m n +-=,由于340x m n +-=有唯一解,故方程组有唯一解,故两直线相交.再由两直线的斜率分别为2-和12-,斜率之积不等于1-,故两直线不垂直.故选:C .练习1.直线20x y k -+=与4210x y -+=的位置关系是( )A .平行B .不平行C .平行或重合D .既不平行也不重合【解答】解:由方程组204210x y k x y -+=⎧⎨-+=⎩,得210k -=,当12k =时,方程组由无穷多个解,两条直线重合,当12k ≠时,方程组无解,两条直线平行,综上,两条直线平行或重合, 故选:C .练习2.直线1y x =+与直线1y ax =+的交点的个数为( ) A .0个 B .1个C .2个D .随a 值变化而变化【解答】解:直线1y x =+与直线1y ax =+两条直线的交点个数不确定, 当1a ≠时,两条直线有一个交点, 当1a =时,两条直线重合有无数个交点, 故两条直线的交点个数随a 的变化而变化, 故选:D .题型二 根据两直线位置关系求解参数问题例1.已知直线1:210l x my +-=与直线2:(2)20l m x my --+=平行,则实数m 的值是( ) A .32B .32或0 C .23D .23或0 【解答】解:直线1:210l x my +-=与直线2:(2)20l m x my --+=平行, 若0m =,则两直线为10x -=,220x -=,则重合舍去; 若2m =时,两直线为410x y +-=,220y -=,不平行,舍去;即有12122m m m -=≠--, 解得32m =, 故选:A .练习1.直线1:220l x ay a +--=,2:10l ax y +-=,若12//l l ,则(a = ) A .1B .1-C .1或1-D .2【解答】解:直线1:220l x ay a +--=,2:10l ax y +-=,若12//l l , 若0a =,则1:20l x -=,2:10l y -=,两直线垂直; 若0a ≠,则12211a a a --=≠-, 解得1a =或1-. 故选:C .例2.已知1:220l x my +-=,2:210l mx y +-=,且12l l ⊥,则m 的值为( ) A .2B .1C .0D .不存在【解答】解:因为12l l ⊥,所以220m m +=, 解得0m =. 故选:C .练习1.已知直线1:sin 10l x y α+-=,直线2:3cos 10l x y α-+=,若12l l ⊥,则sin 2(α=) A .23B .35±C .35-D .35【解答】解:因为12l l ⊥,所以sin 3cos 0αα-=, 所以tan 3α=,所以2222sin cos 2tan 3sin 22sin cos 15sin cos tan ααααααααα====++. 故选:D .例3.已知直线1:(2)(3)50l m x m y +++-=和2:6(21)50l x m y +--=,问实数m 为何值时,分别有:(1)1l 与2l 相交?(2)12//l l ?(3)1l 与2l 重合?【解答】解:(1)直线1:(2)(3)50l m x m y +++-=和2:6(21)50l x m y +--=, 1l 与2l 相交,∴23621m m m ++≠-, 解得52m ≠-,4m ≠.(2)直线1:(2)(3)50l m x m y +++-=和2:6(21)50l x m y +--=, 1l 与2l 平行,∴2356215m m m ++-=≠--, 解得52m =-.(3)直线1:(2)(3)50l m x m y +++-=和2:6(21)50l x m y +--=, 1l 与2l 重合,∴2356215m m m ++-==--, 解得4m =.练习1.已知直线1:(1)10l k x y +++=和2:(3)10l k x ky ---=,若1l 与2l 有公共点,则k 的取值范围为( ) A .1k ≠且3k ≠-B .3k ≠-C .1k =D .1k =且3k =-【解答】解:由(1)(3)0k k k -+--≠,解得3k ≠-,1. 当1k =时,两直线重合,有无数交点,1k ≠舍, 故选:B .练习2.设0a >,0b >.若关于x ,y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是(2,)+∞ .【解答】解:关于x ,y 的方程组11ax y x by +=⎧⎨+=⎩无解,∴直线10ax y +-=与直线10x by +-=平行,1a b ∴-=-,且11b≠.即1a b=且1b ≠. 0a >,0b >.12a b b b∴+=+>. 故答案为:(2,)+∞. 题型三 直线系方程的应用1. 过两条相交直线交点的直线系方程的应用例1.求过点(2,1)A 和两直线230x y --=与2320x y --=的交点的直线方程是( ) A .250x y +-=B .5730x y --=C .350x y -+=D .7240x y --=【解答】解:联立2302320x y x y --=⎧⎨--=⎩,得54x y =-⎧⎨=-⎩,∴两直线230x y --=与2320x y --=的交点坐标为(5,4)--, ∴过点(2,1)A 和点(5,4)--的直线方程为:124152y x --=----, 整理得:5730x y --=. 故选:B .练习1.求过点(1,1)D -和两直线1:23100l x y +-=和21:3260x y -+=的交点的直线方程. 【解答】解:设经过两直线1:23100l x y +-=和21:3260x y -+=的交点的直线方程为2310(326)0x y x y λ+-+-+=,又直线过点(1,1)D -,则213(1)10[312(1)6]0λ⨯+⨯--+⨯-⨯-+=,解得1λ=.∴所求直线方程为23103260x y x y +-+-+=,即540x y +-=.2. 平行直线系和垂直直线系方程的应用例1.(1)已知(3,2)A 和:210l x y -+=.求过点A 且与直线l 平行的直线方程; (2)求过点(3,0)A ,且与直线250x y +-=垂直的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.两直线x m -y n =1与x n -y m =1的图象可能是图中的哪一个
2.若直线ax +by +c =0,经过第一、二、三象限,则( )
A .ab >0且bc >0
B .ab >0且bc <0
C .ab <0且bc <0
D .ab <0
且bc >0
3.过点P (-2,m )和Q (m,4)的直线斜率等于1,那么m 的值等于(A .1或3 B .4C .1 D .1或4
4.过点M (1,-2)的直线与x 轴、y 轴分别交于P 、Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )
A .2x +y =0
B .2x -y -4=0
C .x +2y +3=0
D .x -2y -5=0
5.使三条直线4x +y =4,mx +y =0,2x -3my =4不能围成三角形的m 值最多有() 个A .1B .2C .3D .4
6.在下列关于斜率与倾斜角的说法中正确的是( )
A .一条直线与x 轴正方向所成的正角叫做这条直线的倾斜角
B .倾斜角是第一或第二象限的角
C .直线倾斜角的正切值就是这条直线的斜率
D .斜率为零的直线平行于x 轴或重合于x 轴
7.已知直线ax +by +c =0(ab ≠0)在两坐标轴上的截距相等,则a ,b ,c 满足的条件是( )
A .a =b
B .|a |=|b |
C .c =0或a =b
D .c =0且a =b
8.已知点A (-1,2),B (2,-2),C (0,3),若点M (a ,b )(a ≠0)是线段AB 上的一点,则直线CM 的斜率的取值
范围是( )A.⎝⎛⎦⎤-∞,-52 B .[1,+∞)C.⎝⎛⎦⎤-∞,-52∪[1,+∞) D.⎣⎡⎦
⎤-52,1 9.已知直线l 的倾斜角α满足条件sin α+cos α=15,则l 的斜率为( A.43 B.34 C .-43 D .-34
10.已知a >0、b <0、c >0,则直线ax +by +c =0必不经过(
A .第一象限
B .第二象限
C .第三象限
D .第四象限
11.若直线经过点(1,1),且与两坐标轴围成的三角形的面积为2,则这样的直线共有( )
A .4条
B .3条
C .2条
D .1条
12.直线l 1,l 2关于x 轴对称,l 1的斜率是-7,则l 2的斜率是( A.7 B .-77 C.77
D .-7 13.若直线l :y =kx -1与直线x +y -1=0的交点位于第一象限,则实数k 的取值范围是( )
A .(-∞,-1)
B .(-∞,-1]
C .(1,+∞)
D .[1,+∞)
14.若l 1:x +(1+m )y +(m -2)=0,l 2:mx +2y +6=0的图象是两条平行直线,则m 的值是( )
A .m =1或m =-2
B .m =1,
C .m =-2
D .m 的值不存在
15.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2 B .-7C .3 D .1
16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是: ①15°;②30°;③45°;④60°;⑤75°.
17.点A (1,1)到直线x cos θ+y sin θ-2=0的距离的最大值是( )A .2 B.2-2C.2+2 D .4
18.直线l :4x +3y -2=0关于点A (1,1)对称的直线方程为( )
A .4x +3y -4=0
B .4x +3y -12=0
C .4x -3y -4=0
D .4x -3y -12=0
19.对任意实数a ,直线y =ax -3a +2所经过的定点是( )A .(2,3) B .(3,2)C .(-2,3) D .(3,-2)
20.点P (m -n ,-m )到直线x m +y n
=1的距离等于( )A.m 2+n 2 B.m 2-n 2C.n 2-m 2 D.m 2±n 2 21.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则
使得这个四边形面积最小的k 值为( )A.18 B.14C.12
D .2 22.a =-2是两直线l 1:(a +4)x +y =0与l 2:x +ay -3=0互相垂直的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
23.下列命题中:①两条直线互相平行等价于它们的斜率相等而截距不等;②方程(2x +y -3)+λ(x -y +2)=0(λ为常数)表示经过两直线2x +y -3=0与x -y +2=0交点的所有直线;③过点M (x 0,y 0),且与直线ax +bx +c =0(ab ≠0)平行的直线的方程是a (x -x 0)+b (y -y 0)=0;④两条平行直线3x -2y +5=0与6x -4y +8=0间
的距离是d ( )A .0个 B .1个C .2个 D .3个
24.已知直线l 与过点M (6,-5),N (-5,6)的直线垂直,则直线l 的倾斜角是( )
A .60°
B .120°
C .45°
D .135°
25.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”,下列直线中是“切割型直线”的是( )①y =x +1;②y =2;③y =43
x ;④y =2x +1.A .①③ B .①②C .②③ D .③④ 26.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( A.1710 B.175
C .8
D .2 27.入射光线沿直线x +2y +c =0射向直线l :x +y =0,被直线l 反射后的光线所在的直线方程为( )
A .2x +y +c =0
B .2x +y -c =0
C .2x -y +c =0
D .2x -y -c =0
28.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( )
A .2x +y -1=0
B .2x +y -5=0
C .x +2y -5=0
D .x -2y +7=0 29.曲线123x
y
-=与直线y =2x +m 有两个交点,则m 的取值范围是( )
A .m >4或m <-4
B .-4<m <4
C .m >3或m <-3
D .-3<m <3 1.直线(2λ+1)x +(λ-1)y +1=0(λ∈R ),恒过定点________.若函数y =ax +8与y =-12x +b
的图象关于直线y =x 对称,则a +b =________
2、若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________.
3、若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角α为钝角,则实数a 的取值范围为________.
4.过点(1,3)作直线l ,若经过点(a,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的l 的条数为________.
5.直线x +a 2y -a =0(a >0),当此直线在x ,y 轴上的截距和最小时,a 的值为____
6.若实数x ,y 满足x +2y -3=0,则x 2+y 2的最小值是________
7.点A (2,3),点B 在x 轴上,点C 在y 轴上,则△ABC 周长的最小值是________.
8.已知点M (2,3),N (1,-2),直线y =4上一点P 使|PM |=|PN |,则P 点的坐标是________.
9.已知直线l 1的倾斜角α1=40°,直线l 1与l 2的交点为A (2,1),把直线l 2绕点A 按逆时针方向旋转到和直线l 1重合时所转的最小正角为70°,则直线l 2的方程是________.
10.若两平行直线3x -2y -1=0,6x +ay +c =0,则2c a
+的值为________. 11.(1)是否存在直线l 1:(m 2+4m -5)x +(4m 2-4m)y =8m 与直线l 2:x -y =1平行?若存在,求出直线l 1的方程,若不存在,说明理由.(2)若直线l 3:(a +2)x +(2-a)y =1与直线l 4:(a -2)x +(3a -4)y =2互相垂直,求出两直线l 3与l 4的方程.2014直线的方程与位置关系专题练习。

相关文档
最新文档