高等数学课件1.1 函数
高数高等数学1.1映射与函数
说明 (1) 分段函数对应不同的区间,函数有不同的表达式. (2) 分段函数表示一个函数,不是几个函数. (3) 分段函数的定义域是各分区间的定义域的并集.
1 例6 设 f ( x ) 2 1 解 f ( x) 2
0 x1
求 f ( x 2) .
解
2( x 2) 1, 0 x 2 1 f ( x 2) 4 ( x 2), 1 x 2 2
2 x 5, 2 x,
2 x 1 1 x 0
.
几个特殊的函数举例 (1)常函数
开区间
( a , b ) { x a x b}
o
闭区间
a
b
x
[a , b ] { x a x b }
o
a
b
x
半开区间
[a , b ) { x a x b}
( a , b] { x a x b }
无限区间
有限区间
称a, b为区间的端点, 称b-a为这些区间的长度.
1, 当 x > 0 0, 当x = 0
1 ,
1
当x<0
y4
3 2 1
o
-1
x
x sgn x x
(4)取整函数 y x
[x]表示不超过x 的最大整数
-4 -3 -2 -1 o -1 1 -2 -3 -4
2 3 4
x
(5)狄利克雷函数
y
1 1 当x是有理数时 • y D( x ) o• 0 当x是无理数时 无理数点
f (sin x ) (sin x )3 1
大学高数第一章函数和极限ppt课件
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )
高等数学上册1.1 映射与函数
一、映 射
二、函 数
第一章 函数与极限
一、映射
1. 映射的概念
定义1
设 X 、Y 是两个非空集合, 若存在一个法则 , 使得对X中
每个元素, 按法则 , 在Y中有唯一确定的与之对应, 则称
为从 X 到 Y 的映射. 记作 : X→Y.
X
定义域
D =X
第一节 映射与函数
()
()=
若既是满射又是单射, 则称为双射或一一映射.
第一节 映射与函数
第一章 函数与极限
注 映射又称为算子, 在不同数学分支中有不同的名称.
Y
非空集X
上的泛函
数集Y
非空集X
上的变换
非空集Y
实数集X
上的函数
实数集Y
第一节 映射与函数
第一章 函数与极限
2. 逆映射与复合映射
注 分段函数是一个函数,不是多个函数.
第一节 映射与函数
第一章 函数与极限
2. 函数的几种特性
设函数 = () 的定义域为D , 且数集 ⊂ D 或区间 I ⊂ D .
(1) 有界性
∀ ∈ , ∃ > 0, 使 () ≤, 称 () 在上有界.否则称无界.
∀ > 0, ∃0 ∈ , 使|( 0)|≥M, 称() 在I上无界.
<0
第一章 函数与极限
例8 设为任一实数,不超过的最大整数称为的整数部分,记作[].
例如:
5
= 0,
7
阶梯曲线
2 = 1, [π] = 3, [−1] = −1, [−3.5] = −4.
求函数 = [] 的定义域和值域并画图.
高教社2024高等数学第五版教学课件-1.1 函数
对数函数 = ( > 0, ≠ 1)的定义域为(0, +∞),值域为(−∞, +∞).
⑸ 三角函数
函数 = , = , = , = , = , = 依次叫做
正切函数 = 在区间
− ,
2 2
上的反函数称为反正切函数,记作 = .
余切函数 = 在区间 0, 上的反函数称为反余切函数,记作 = .
2.复合函数
函数 = ( 1 + 2 )是基本初等函数吗?
定义
设函数 = (), = (), ∈ . 存在的某个非空子集1 ,对于每
偶函数的图象关于轴对称,奇函数的图象关于原点对称.
例如,函数 = () = 0, ∈ 就是一个既是奇函数又是偶函数的函数;
= 2 和 = 都是偶函数; = 3 和 = 都是奇函数; = 既
不是奇函数也不是偶函数.
2.函数的周期性
定义4
2 )是复合函数.
根据定义我们知道Y = [()]是由函数 = ()与 = ()复合而成,
那[()]和 是否相同?
显然是不相同的,例如() = 与() = 2 复合,如若将()看成外
值,记作|=0 = (0 ). 当取遍定义域内的所有值,对应的函数值
的集合 = {| = (), ∈ }称为函数 = ()的值域.
函数 = ()中的符号“”表示与之间的对应法则,它也可以
用其它字母表示,如 = (), = ℎ(), = (), = ()等.
2
5
有意义,必有5 2 + 2 ≠ 0,解得 ≠ 0且 ≠ − .
大学高等数学 1_1 映射与函数
Page 13
2. 逆映射与复合映射 (1) 逆映射的定义 定义5 定义 若映射 使 称此映射 f −1为 f 的逆映射 . 习惯上 , y = f (x), x ∈D 的逆映射记成
D
f
f −1
为单射, 为单射 则存在一新映射 其中
f (D)
y = f (x) , x ∈ f (D)
例如, 例如 映射 其逆映射为
Page 10
对映射 为满射; 引例2, 若 f ( X ) = Y, 则称 f 为满射 引例 3
X
若
f
Y = f (X )
有
X
Y
为单射; 引例2 则称 f 为单射 引例 既是满射又是单射, 若 f 既是满射又是单射 则称 f 为双射 或一一映射 或一一映射. 引例2 引例
Page 11
例1. 海伦公式 (满射 满射) 满射 如图所示, 例2. 如图所示 对应阴影部分的面积 则在数集 满射) 满射 自身之间定义了一种映射 (满射 如图所示, 例3. 如图所示 则有
为奇函数 .
Page 23
(4) 周期性
∀x ∈D, ∃l > 0, 且 x ± l ∈D, 若
一般指最小正周期 则称 f (x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
y
π −2π −
o π 2π x
周期为 周期函数不一定 不一定存在最小正周期 注: 周期函数不一定存在最小正周期 . 例如, 例如 常量函数 f (x) = C 狄里克雷函数
Page 4
半开区间 [ a , b ) = { x a ≤ x < b } ( a , b ] = {x a < x ≤ b} 无限区间 [ a , + ∞ ) = { x a ≤ x } (−∞ , b ] = { x x ≤ b }
1.1 函数医学高等数学课件
高等数学教研室
尹玲
课程介绍
33学时,考查课 授课内容:前三章 考试内容:前三章 成绩计算:30%平时成绩(作业、 出勤)70%卷面成绩
参考资料
医用高等数学学习指导与习题全解 (第二版) 马建忠主编 科学出版 社出版 高等数学(第五版)上册 同济大学 应用数学系主编 高等教育出版社出 版
1. y u , u sin( x 2)
3 2
3 2
2. u sin v , v x 2
y u , u sin v , v x 2
解二:
3 2
y u , u v , v sin s , s x 2
3
1 2
1 x 例12 解: y tan u , u 1 x
反三角函数 y=arcsinx,y=arccosx,
y=arctanx,y=arccotx
常数函数
y=C (C为常数)
幂函数
(1,1)
(1,1)
指数函数
a >1 0< a <1
(0,1)
(0,1)
y
对数函数
a >1
y ln x y lg x
(1,0)
O
0< a <1
x
y log0.2 x y log0.4 x
函数 y=tan x , x n ± /2 是一个 T = 的周期函数。
三、 初等函数
基本初等函数 复合函数
初等函数
1.六类基本初等函数
幂函数
指数函数
y= x
(为常数)
y= ax (a > 0 , a 1 )
高等数学课件第1章 函数与极限
W {y y f (x), x D}
为函数的值域。
说明:函数值
f (x0 )
f (x) xx0
y xx0
y(x0 )
1.1.2 函数概念(续二)
【说明】
(1) 对应法则是函数概念的一个重要因素。变量用什 么字母无关紧要。
(2) 定义域是函数概念的另一个重要因素。自然定义 域 实际定义域
A r 2
y x2
(3) 表示函数的方法有多种。解析法(也称公式法)、 图像法、表格法
1.1.2 函数概念(续三)
一元函数 多元函数
A 1 absin
2
实例4:说明由方程 x2 y2 r 2确定的两个变量x和y之 间的相依关系。
多值函数 单值函数
例1-1 某汽车公司规定从甲地运货至乙地的收费标 准是:如果货物重量不超过30千克,则每千克 收费1.5元;如果货物重量超过30千克,则超出 部分每千克收费增至2.5元;试写出货物运费F与 货物重量m之间的函数关系。
1.2 初等函数
1.2.1 常值函数 1.2.2 幂函数 1.2.3 指数函数与对数函数 1.2.4 三角函数 1.2.5 反三角函数 1.2.6 复合函数 初等函数
1.2 初等函数(续)
➢ 常值函数、幂函数、指数函数、对数函数、三角函 数和反三角函数6类是最常见最基本的,这些函数 称为基本初等函数。
➢ 表示集合最常用的方法是描述法:
A {x | p(x)}
➢ 其中x表示A的元素,p(x)代表x满足的条件。
1.1.1 常量与变量 数集(续二)
例如 A {x x t 2 1,t R}
通常省略说明属于实数集R的部分,即
A {x x t 2 1}
➢ 区间是R的一个连续子集。 ➢ 区间分为有限区间和无穷区间两大类,这两类区间
高等数学A1教学PPT课件1:01-函数概念与基本性质
x D~g Dg
称之为函数 y f (u) 与 u g(x) 复合而成的复合函数。
其中,u 称为中间变量。
复合函数
u g(x)
·x
D g D~ g
Rg Df
Rg
y f (u)
u
· · D f
··y R f
? 如何
描述
例13
由函数 y u
u [0, ) ,
u 1 x2 可构成复合函数
22
画画图就一目了然.
我们以后将运用微积分的方法研究函数的单调性。
2. 有界性 有界性
有界 有上界 有下界
函数有界性的定义
设函数 y = f ( x ) 在区间 I 上有定义。 若存在实数 A , B , 使对一切 x I 恒有
A f(x)B 则称函数 y = f ( x ) 在区间 I 上有界。
x0 I , 使得 | f ( x0 ) | > M 成立。
例8 讨论函数函数的有界性 :y x2。
解 函数的定义域为: Df (, ) 。
因为 M 0,取 x0 M 1(, ),有 | f (x0 ) | ( M 1)2 M 1 M,
故函数 y x2 在其定义域内是无界的。
2. 函数的表示法
解析法 表格法 图示法
3. 求函数定义域举例
数学分析的主要研究对象是函数,确定函数的 定义域是一件十分重要的事情。
通常依据:分式的分母不能为零;负数不能开 偶次方;已知的一些函数的定义域;物理意义;几 何意义等来确定函数的定义域。
例1
求函数 y 4 x2 1 的定义域. ln(x 1)
x A, 存在唯一的y R,按照规则 f 与 x 对应,
则称 f 为定义在 A 上的函 数,记为
高等数学基础PPT第一章
返回
1.1函数的概念与特性—函数
返回
1.1函数的概念与特性—函数
返回
1.1函数的概念与特性—函数
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.1函数的概念与特性—函数的几种简单性态
返回
1.2初等函数与建立函数关系式—初等函数
返回
1.2初等函数与建立函数关系式ห้องสมุดไป่ตู้初等函数
返回
1.2初等函数与建立函数关系式— 建立函数关系式举例
返回
1.2初等函数与建立函数关系式— 建立函数关系式举例
返回
本章结束
请选择: 重学一遍 退出
高等数学基础
第一章 函数及其图形
主讲:
函数及其图形
函数的概念与特性
集合与区间 函数 函数的几种简单性态
初等函数与建立函数关系式
初等函数 建立函数关系式举例
退出
1.1函数的概念与特性--集合与区间
返回
1.1函数的概念与特性--集合与区间
返回
1.1函数的概念与特性--集合与区间
返回
1.1函数的概念与特性--集合与区间
高等数学课件1.1 函数
y
2
o 2 x
周期为 注 . : 周期函数不一定存在最小正周期 . 例如, 常量函数 f ( x) C
周期为
四
几类简单函数及其图形(图形见教材P9-11)
机动 目录 上页 下页 返回 结束
1.1.3. 反函数与复合函数
一 反函数
定义1.1.2 设函数 当 时,有
的定义域为D, 如果对任何
称为 y = f ( x ) 的反函数 . 习惯上记作
y f 1 ( x) , x f ( D)
函数
与其反函数 的图形关于直线
y yx
Q(b, a) y f ( x)
对称 .
例如 ,
指数函数 y e x , x ( , ) 对数函数 它们都单调递增, 其图形关于直线
证明
x (0, ),
则 f ( x ) sin( x ) cos( x ) 1 sin x cos x 1, 所以,该函数是非奇非偶函数. (P16,习题7 的结论)
4 周期性
x D, l 0 , 且 x l D, 若
则称 f ( x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
u sin x 可定义复合
u 2 sin x不能构成复合函数 .
2
三. 初等函数
(1) 基本初等函数 幂函数:
指数函数:
对数函数: 三角函数: 反三角函数:
(2) 初等函数 由常数及基本初等函数 经过有限次四则运算和复合步 骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .
闭区间 [ a , b ] x a x b
集合之间的关系及运算 定义2 . 设有集合 A , B , 若 x A 必有 x B , 则称 A 是 B 的子集 , 或称 B 包含 A , 记作 A B .
第一章 函数与极限 1
称为闭区间 称为闭区间, 记作 [a , b] 闭区间
a
b
x
{ x a ≤ x < b} 称为半闭半开区间 称为半闭半开区间 半闭半开区间, { x a < x ≤ b} 称为半开半闭区间 称为半开半闭区间 半开半闭区间, [a ,+∞ ) = { x a ≤ x }
O
记作 [a , b ) 记作 (a , b]
阶梯曲线
15
取最值函数
y = max{ f ( x ), g ( x )}
y
f ( x)
g( x )
y = min{ f ( x ), g ( x )}
y
f (x)
x
16
某运输公司规定货物的吨公里运价为: 例1. 某运输公司规定货物的吨公里运价为 在400公里 公里 以内, 每公里为K元 超过400公里每增一公里为 公里每增一公里为0.8K, 以内 每公里为 元, 超过 公里每增一公里为 求吨运价Y与里程 的函数关系. 求吨运价 与里程s的函数关系 与里程 的函数关系
例3. 设函数 f ( x )的定义域为 : [0,2),
解:
x 求函数 f ( − 1) + f ( 7 − x )的定义域 . 2 x x f ( − 1)的定义域 : 0 ≤ − 1 < 2, ⇒ x ∈ [2,6), 2 2
f (7 − x )的定义域 : 0 ≤ 7 − x < 2, ⇒ x ∈ (5,7],
当0 < s ≤ 400 Ks , 解: Y = K 400 + 0.8 K ( s − 400), 当400 < s
17
x2, x ≥ 1 例2. 求 y = 的反函数 . 2 x − 1, x < 1
高等数学教案PPt
注 有时平面曲线用极坐标方程表示非
常简便.
例如,圆 x2 y2 R2,其极坐标方程为
rR
y
R
x 圆 x2 y2 2ax 的极坐标方程为
r 2a cos
上页 下页 返回
§1.1 函数
几个特殊的函数举例
例2 分段函数
设
f (x)
1 x2
x
1,
,
1 0
x 0, x 1.
y
其定义域为 [1,1).
y (1)x y a
y ax
(a 1)
(0,1)
O
x
定义域为 (, ),值域为(0, ).
上页 下页 返回
§1.1 函数
(3) 对数函数
y loga x
y
(a 0, a 1)
y log a x
(a 1)
(1,0)
O
x
y log 1 x
a
定义域为 (0, ), 值域为 (, ).
第一章 函数与极限
§1.1 函数 §1.2 函数的极限 §1.3 极限运算法则 §1.4 极限存在准则与两个重要极限 §1.5 无穷小与无穷大
上页 下页 返回
第一章 函数与极限
§1.6 函数的连续性与连续函数的运算 §1.7 初等函数的连续性及闭区间上连续
函数的性质
上页 下页 返回
§1.1 函数
如果 D1 x (x)U , x D ,则对每个x D1
通过函数u (x) 有确定的 u U 与之对应,又
通过函数 y f (u)有确定的实数y 与u 对应,从而
得到一个以为x自变量,y为因变量定义在 D1上的函
数,称它为由函数 y f (u) 与 u (x) 复合而成的
高等数学第1章 函数
1.3 应用与实践
2.自定义函数
(1)变量
In[1]:=x=y=3
对变量连续赋值
Out[1]=3
In[2]:= z:=3x+y In[3]=z
定义一个延迟赋值变量 z 计算变量z的值
Out[3]=12
In[4]:=x=.
清除变量x的值
In[5]:=2x+y
Out[5]=3+2x
称为由y=f(u)和 u(x复) 合而成的复合函数,
记作 yf[(x)],其中u是中间变量。
1.2 初等函数
例6 讨论下列函数可否复合成复合函数,若 可以,求出复合函数及其定义域。
yf(u)eu u(x)arcsxin
解:因为 yf(u)eu的定义域为Df ( ,)
u(x)arcsxi的n值域
M
π 2
yarccxos
yarctaxn
yarccotx
1.2 初等函数
yarcsixn
yarccxos
1.2 初等函数
yarctaxn
yarcoxt
1.2 初等函数
1.2.2 复合函数 定义1.8 设函数y=f(u)的定义域为Df,函数
u(x)的定义域为 D ,值域为 M ,则当
Df M 时,y通过u成为x的函数,这个函数
例3 求函数 y x2 4arcsxin的定义域.
4
解:要使函数y有意义,自变量x须同时满足:
x2 4 0,
x 4
1.
x42x 或 4x. 2,
故函数的定义域为 [4,2]U [2,4].
习题:求函数 y 2 ln3(x)的定义域.
| x| x
1.1 函数及其性质
1.1.2 分段函数 在定义域的不同范围内用不同的解析式表 示的函数称为分段函数.
高等数学(微积分学)教学课件
三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D
高等数学-函数
函数1.1知识回顾1.1.1重要概念1.区间在数轴、上来说,区间是指介于某两点之间的线段上点的全体。
1)有限区间:设a<b,称数集{a<x<b}为开区间,记为(a,b),即(a,b)={x|a<x<b}.类似地有[a,b]={x|a≤x≤b}称为闭区间,[a,b)= {x|a≤x<b}、(a,b]= {x|a<x≤b}称为半开区间,其中a和b称为区间(a,b)、[a,b]、[a,b)、(a,b]的端点,b-a称为区间的长度.2)无限区间:[a,+∞)={x|a≤x},(a,+∞)={x|a<x},(-∞o,b]={x|x≤b},(-∞,b)={x|x<b},(-∞,+∞)={x||x|<+∞}.注-∞和+∞,分别读作“负无穷大”和“正无穷大”,它们不是数,仅仅是记号,通常分别表示全体实数的上界与下界.2.邻域定义1设a,δER,且δ>0,称满足不等式|x—a|<δ的实数x的全体称为点a的δ邻域,记作U(a,δ),即U(a,δ)=(a-δ,a+δ)={x|a-δ<a+δ}其中点a称为邻域的中心,δ称为邻域的半径.点a称为此邻域的中心,δ称为此邻域的半径.当不需要指明半径时,有时可以用U(a)表示点a 的一个泛指的邻域.定义2 设a,δER,且δ>0,称满足不等式0<|x—a|<δ的实数x的全体称为点a的去心δ邻域,记作U°(a,δ),即U°(a,δ)={x|0<|x-a|<δ}={x|a-&<x<a+δ,且x≠a}.显然U(a,δ)仅比U°(a,δ)多出一点a.1.1.2函数的定义定义3 设非空数集DcR,若存在一个对应法则f,使得对任一xED,都有唯一确定的一个实数y,则称为f定义在D上的函数,其中x称为自变量,y称为因变量,D称为定义域.x所对应的y称为f在x的函数值,通常简记为 y=f(x),xeD,全体函数值的集合f(D)={y|y=f(x),xεD}称为函数的值域.注(1)记号f和f(x)的含义是有区别的,前者表示自变量x和因变量y之间的对应法则,而后者表示与自变量x对应的函数值.为了叙述方便,习惯上常用记号“f(x),xED”或“y=f(x),xED”理解为D上的函数;(2)由定义容易看出构成函数的要素是定义域D及对应法则f.若两个函数的定义域相同,对应法则也相同,则这两个函数就是相同的,否则就是不同的.例如,函数f(x)=1-x2/1-x与g(x)=1+x是不同的,因为它们的定义域不同;(3)在中学数学中已经介绍过函数的定义域通常取使函数y=f(x)有意义的实数x的全体,这种定义域也可以称为函数的自然定义域,在这种情况下,我们有时将定义域D省略.例如,函数f(x)=V1—x2虽然没有指出定义域,但是我们容易求出它的定义域是D={x|-1≤x≤1}或者D=[-1,1].确定函数的定义域时,往往把使函数y=f(x)无意义的点去掉即可得到该函数的定义域.如偶次方根下被开方数不能为负数,分式的分母不能为零,对数的真数必须为正数等.另外,对于有实际背景的函数,函数的定义域应由实际背景中变量的实际意义来确定.(4)在函数的定义中,对每个xED,对应的函数值y总是唯一的,这样定义的函数称为单值函数.如果给定一个对应法则,按这个法则,对每个xeD,总有确定的y值与之对应,但这个y不总是唯一的,我们称这种法则确定了一个多值函数.对于多值函数,往往只要附加一些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分支.本教材一般讨论单值函数情形.(5)函数的表示方法主要有三种:图形法、表格法、公式法(解析法).图形法表示函数非常直观,一目了然;表格法使用方便便于求函数值;而公式法表达清晰、紧凑,在理论研究、推到论证中容易表达,是应用最广泛的一种方法(6)在实际应用中经常遇到这样的函数:在自变量的不同变化范围中,对应法则用不同表达式来表示的一个函数,我们称这类函数为分段函数,分段函数在经济问题中应用非常广泛,如出租车价格的计算、所得税的计算、邮件的资费计算方法等都可用分段函数表示1.1.3反函数函数y=f(x)的自变量x与因变量y的关系往往是相对的,有时我们不仅要研y随x而变化的状况,有时也需要研究x随y而变化的状况.为此,我们引入反函数的概念.定义4设有函数y=f(x),xεD,若在函数的值域内任取一个y值时,在函数的定义域内有且仅有一个x值与之对应,则变量x是变量y的函数.我们称此函数为y=f(x),xεD的反函数.一般记为x=f-1(y),yef(D).注(1)由定义可知,函数x=f—1(y),yεf(D)也是函数y=f(x),xED 的反函数,进一步地,y=f(x),xεD与x=f(y),yεf(D)互为反函数.此外,相对于反函数x =f—(y),yεf(D)来说,我们往往称原来的函数y=f(x),xεD为直接函数.(2)在中学数学教材已经指出,习惯上,我们可以把x=f—1(y),yεf(D)中的变量x与变量y对调,这样,函数y=f(x),xeD的反函数就可以写为y =f—1(x),xεf(D),所以反函数的定义域就是其直接函数的值域,反函数的值域就是其直接函数的定义域.(3)把函数y=f(x)和它的反函数y=f—1(x)的图形画在同一坐标平面上,这两个图形关于直线y=x是对称的.这是因为如果P(a,b)是y=f(x)图形上的点,则有b=f(a).按反函数的定义,有a=f}(b),故Q(b,a)是y =f—(x)图形上的点;反之,若Q(b,a)是y=f(x)图形上的点,则P(a,b)是y=f(x)图形上的点.显然P(a,b)与Q(b,a)是关于直线y=x对称的,所以反函数y=f—1(x),xεf(D)的图像与直接函数y=f(x),xεD 的图像关于直线y=x对称.(4)可以证明,若f(x)是定义在D上的严格单调函数,则f(x)的反函数f-1(x)必定存在,且f—1(x)也是f(D)上的严格单调函数.1.1.4复合函数设函数y=f(u)的定义域为E,函数u=g(x)在D上有定义且g(D)NE≠Ø,记E*=g(D)NE,则对于VxεE,可通过函数g(x)对应D内唯一的一个值u,而u又通过函数f(u)对应E内唯一的一个值y.这样就确定了一个定义在E上的函数,它以x为自变量,y为因变量,记作y=f[g(x)],xεE.我们称此函数为由函数u=g(x)和函数y=f(u)构成的复合函数,u称为中间变量,也可称f(u)为外函数,g(x)为内函数.注(1)u=g(x)和函数y=f(u)构成的复合函数f(g(x))的条件是:函数g(x)在D上的值域g(D)必须与f(u)的定义域E的交非空.否则,不能构成复合函数.即不是任意两个函数都能复合成复合函数的.如y=f(u)=arcsinu与u=g(x)=1-x2可以构成复合函数y=arcsin 21-x2 xe[—1,1](因为f(u)的定义域是[—1,1],g(x)的值域是[0,+00),显然[—1,1](ø≠(x+0)U但函数y=f(u)=arcsinu和函数u=g(x)=2+x2不能构成复合函数,这是因为f(u)的定义域是[—1,1],g(x)的值域是[2,+∞),显然[—1,1]n[2,+∞)=Ø(2)复合函数可以由两个以上的函数经过复合构成.如由三个函数u=cotv,v =√u,u=cotv,v=x/2可以构成复合函数y√cot x/2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
x
-1
x sgn x x
(2) 取整函数 y=[x]
[x]表示不超过 x 的最大整数
y
4 3 2 1 o
-4 -3 -2 -1
x 1 2 3 4 5 -1 -2 -3 -4 阶梯曲线
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
(4) 取最值函数
f ( x) 为奇函数时, 必有 f (0) 0.
y y
f ( x )
y f ( x)
y f ( x)
f ( x)
-x x
f ( x )
f ( x)
o
x
x
-x o
x
(4) 周期性
x D, l 0 , 且 x l D, 若
则称 f ( x)为周期函数 ,称 l 为周期
x1 x2 时, x1 , x2 I , 当 , f ( x) M , 称 为有上界 f ( x) 为 I 上的 若 f ( x1 ) f ( x2 ) 称 , , M f ( x ), 称 为有下界 单调增加函数 ;
则称 f ( x ) 无界 . 单调减少函数 .
(2) 单调性
对应法则
有界性, 单调性, 奇偶性, 周期性
思考题
1 2 设 x 0 ,函数值 f ( ) x 1 x , x 求函数 y f ( x ) ( x 0) 的解析表达式.
解
1 设 u x
2 1 1 1 1 u 则 f u 1 2 , u u u
b
x
半开半闭区间:{ x a x b} 记作 [a , b)
{ x a x b} 记作 (a , b]
有限区间
区间长度的定义: 两端点间的距离(线段的长度)称为区间的长度. 无限区间
(, ) { x x } R
[a, ) { x x a}
集合之间的关系: 设有集合 A , B , 若 x A 必有 x B , 则称 A 是 B 的子集 , 或称 B 包含 A , 记作 A B 规定 空集为任何集合的子集. 若 若 且 且 则称 A 与 B 相等, 记作A B . 则称 A 是B 的真子集, 记作 A B .
显然有下列关系 :
y x2 1
x0 x0
y 2x 1
1 0 x1 设f ( x ) , 求函数 f ( x 3)的Hale Waihona Puke 义域. 2 1 x 2解
例
1 0 x1 f ( x) 2 1 x 2 1 0 x31 f ( x 3) 2 1 x 3 2 1 3 x 2 2 2 x 1
y
)1 x M , D, 使 f ( xx f ( x) 为 x M , 均存在 若若对任意正数 f ( x1 ) f ( x2 ) 称 , I 上的 x 2
(3) 奇偶性
x D, 且有 x D,
若 若 则称 f (x) 为偶函数; 则称 f (x) 为奇函数.
说明: 若 f ( x) 在 x = 0 有定义 , 则当
第一章
第一节 函数
一、基本概念 二、函数概念 三、函数特性
四、反函数
一、基本概念
1.集合: 具有某种特定性质的事物的全体.
组成这个集合的事物称为该集合的元素.
a M,
枚举法 描述法
a M, A {a1 , a2 ,, an }
M { x x所具有的特征}
不含任何元素的集合称为空集. (记作 )
为奇函数 .
2 . 设函数 y f ( x) , x ( , ) 的图形与 x a ,
x b (a b) 均对称, 求证 y f ( x)是周期函数.
证: 由 f ( x) 的对称性知
f (a x) f (a x ),
于是
f (b x) f (b x )
U ( x0 , ) { x x0 x x0 }
x0
x0
x0
x
U ( x0 , ) { x 0 x x0 } 称为点x0的去心 邻域
当不需要指出邻域的半径时,用U ( x0 )表示x0的某邻域,
U ( x0 )表示x0的某去心邻域.
4.常量与变量: 在某过程中数值保持不变的量称为常量,
而数值变化的量称为变量.
常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量. 在数轴上,常量表示定点,而变量表示动点.
二、函数概念 1.映射 设 X , Y 是两个非空集合, 若存在一个对应法 则 f , 使得 有唯一确定的 与之对应 , 则
故 D f : [3,1]
三. 函数特性
设函数 y f ( x) , x D , 且有区间 I D . (1) 有界性 x D , M 0 , 使 f ( x) M , 称 f ( x) 为有界函数. x I , M 0 , 使 f ( x) M , 称 f ( x) 在 I 上有界,
1 1 x2 故 f ( x) . ( x 0) x
1. 设
且
时 证明 为奇函数 .
其中
a, b, c 为常数, 且
) b f (t ) ct 则 x 1 , a f (1 , 证: 令 t 1 t x t
由 消去 f ( 1 ), 得 x
af (1 ) b f ( x) c x x
y f ( x) , x D
因变量 f ( D ) 称为值域 自变量
xD
(定义域) • 定义域
f
y f ( D) y y f ( x), x D
(值域)
(对应法则)
使表达式及实际问题都有意义的自变量 集合.
几个特殊的函数举例
(1) 符号函数
1 y
1 当x 0 y sgn x 0 当x 0 1 当x 0
f ( x) f a ( x a)
f a ( x a ) f (2a x)
f b (2a x b )
故 f ( x) 是周期函数 , 周期为 T 2(b a )
特例:
R R
记
R
2
为平面上的全体点集
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a, b R, 且a b.
{ x a x b} 称为开区间, 记作 (a, b)
o a x b { x a x b} 称为闭区间, 记作 [a, b] o a
称为 f 的 值域 .
注意: 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .
对映射
, 则称 f 为满射;
f 为满射 f ( X ) Y
X
若
则称 f 为单射;
f
Y f (X )
有
X
Y
若 f 既是满射又是单射, 则称 f 为双射 或一一映射.
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
(a, ) { x x a}
, b { x x b}
( , b) { x x b}
3.邻域:
设x0是一个给定的实数, 是某一正数即 0,
数集{ x x x0 }称为点x0的 邻域 ,
点x0叫做此邻域的中心 , 叫做此邻域的半径 .
名称. 例如,
X (≠ ) X (≠ )
f f
Y (数集)
X
f 称为X 上的泛函 f 称为X 上的变换
X (数集 或点集 )
f
R
f 称为定义在 X 上的函数 一元函数是一种特殊的映射,即非空集合X与Y均 为实数集.
2. 函数 设数集 D R , 则称映射 D 上的函数 , 记为
为定义在 定义域
y max{ f ( x ), g( x )}
y
f ( x) g( x )
y min{ f ( x ), g( x )}
y
f ( x) g( x )
o
x
o
x
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
2 x 1, f ( x) 2 x 1,
习惯上, y f ( x) , x D 的反函数记成
性质:
y f 1 ( x) , x f ( D)
1) y=f (x) 单调递增 (减) 其反函数 且也单调递增 (减) .
2) 函数 关于直线
与其反函数 对称 .
的图形
内容小结
1. 集合及映射的概念 2. 函数的定义及函数的二要素 3. 函数的特性 4. 反函数的概念 定义域
集合运算: 并集 A B x 交集 A B x 差集 A \ B x
或记作A B
或
且
A B
B A
A\ B
A B
但 x B
余集或补集
B A \ B ( 其中B A , A为基本集)
B AB
B A B A
卡氏积 A B ( x , y ) x A , y B
称 f 为从 X 到 Y 的映射, 记作 f : X Y . f X Y 元素 y 称为元素 x 在映射 f 下的 像 , 记作 y f ( x).
元素 x 称为元素 y 在映射 f 下的 原像 . 集合 X 称为映射 f 的定义域 ;
Y 的子集 f ( X ) f ( x) x X