等差数列试题及答案 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.在数列{}n a 中,129a =-,()
*
13n n a a n +=+∈N ,则1220a a a ++
+=( )
A .10
B .145
C .300
D .320
2.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1
B .2
C .3
D .4
3.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231
n n a n b n =+,则2121S T 的值为( )
A .
13
15
B .
2335
C .
1117 D .
49
4.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -
B .
3
22
n - C .
3122
n - D .
31
22
n + 5.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
6.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29
B .38
C .40
D .58
8.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60 B .120
C .160
D .2409.题目文件丢失!
10.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .
4
7
B .
1629
C .
815
D .
45
11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等
差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+
B .2
()4f x x =
C .3()4x
f x ⎛⎫= ⎪⎝⎭
D .4()log f x x =
12.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列
{}n a ,已知11a =,2
2a
=,且满足()211+-=+-n
n n a a (n *∈N ),则该医院30天入
院治疗流感的共有( )人
A .225
B .255
C .365
D .465
13.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25
B .11
C .10
D .9
14.已知递减的等差数列{}n a 满足22
19a a =,则数列{}n a 的前n 项和取最大值时n =( )
A .4或5
B .5或6
C .4
D .5
15.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36
B .48
C .56
D .72
16.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >
D .70S <,且80S <
17.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15
B .30
C .3
D .64
18.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,1
2,2n n a n n =⎧=⎨≥⎩
19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( )
A .10
B C .64
D .4
20.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m
B .21m +
C .22m +
D .23m +
二、多选题
21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n =
B .数列{}n a 的通项公式为1
4(1)
n a n n =
+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫
⎨
⎬⎩⎭
为递增数列 22.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小
B .130S =
C .49S S =
D .70a =
23.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列24.题目文
件丢失!
25.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =
C .135********a a a a a +++
+= D .222
2123202020202021a a a a a a ++++=
26.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减
D .数列{}n S 有最大值
27.(多选题)在数列{}n a 中,若22
1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称
{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )
A .若{}n a 是等差数列,则{}
2
n a 是等方差数列
B .
(){}1n
-是等方差数列
C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列
28.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310
S S =
D .当8n ≥时,0n a <
29.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中
正确的有( )
A .若100S =,则280S S +=;
B .若412S S =,则使0n S >的最大的n 为15
C .若150S >,160S <,则{}n S 中8S 最大
D .若78S S <,则89S S <
30.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <
D .613S S =
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.C 【分析】
由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
【详解】
因为129a =-,()
*
13n n a a n N +=+∈,
所以数列{}n a 是以29-为首项,公差为3的等差数列, 所以()11332n a a n d n =+-=-,
所以当10n ≤时,0n a <;当11n ≥时,0n a >; 所以()()12201210111220a a a a a a a a a ++
+=-++⋅⋅⋅++++⋅⋅⋅+
1101120292128
101010103002222a a a a ++--+=-
⨯+⨯=-⨯+⨯=. 故选:C. 2.C 【分析】 利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】
设等差数列{}n a 的公差为d ,
则3856522a a a a a +=+=+,解得652d a a =-=,
212112228S a a a d a =+=+=+=,解得13a =
故选:C
3.C 【分析】
利用等差数列的求和公式,化简求解即可 【详解】
2121S T =12112121()21()22
a a
b b ++÷=121121a a b b ++=1111a b =211
3111⨯⨯+=1117.
故选C 4.C 【分析】
根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】
因为数列{}n a 为等差数列,11a =,34a =, 则公差为313
22
a a d -=
=, 因此通项公式为()331
11222
n a n n =+-=-. 故选:C. 5.D 【分析】
设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出
(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出
111429m n =-,再由[]90,100m ∈求出n 的值.
【详解】
根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m +++++
+++=++=
则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 6.B 【分析】
设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得
728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断
D . 【详解】
设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;
所以7710217022128S d =⨯+≤-⨯=,B 错误;
1(1)10(1)0n a a n d n d =+-=+-≥,解得10
1n d
≤-
+,11100n a a nd nd +=+=+≤,解得10n d
≥-, 所以1010
1n d d
-
≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,
当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】
关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关
键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由1
0n n a a +≥⎧⎨≤⎩求得.
7.A 【分析】
根据等差中项的性质,求出414a =,再求10a ; 【详解】
因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 8.B 【分析】
根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()
11515815152
a a S a +==,从而可得出结果.
【详解】
解:由题可知,2938a a a +=+,
由等差数列的性质可知2938a a a a +=+,则88a =,
故()1158
158151521515812022
a a a S a +⨯=
===⨯=. 故选:B.
9.无
10.D 【分析】
设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果
设该妇子织布每天增加d 尺, 由题意知202019
2042322
S d ⨯=⨯+=, 解得45
d =
. 故该女子织布每天增加4
5
尺. 故选:D 11.D 【分析】
把点列代入函数解析式,根据{x n }是等比数列,可知
1
n n
x x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】
对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1
n n
x x +为常数,
因此1n n y y +-=()
2222
14441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于C ,函数3()4x
f x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1
n n
x x +为常数, 因此1n n y y +-=
133()()44
n n
x x +-=33()()144n q x ⎡⎤
-⎢⎥⎣⎦
,这是一个与n 有关的数,故{y n }不是等差数列;
对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x
,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=11
444
4log log log log n n n n
x x x x q ++-==为常数,故{y n }是等差数列;
故选:D .
方法点睛:
判断数列是不是等差数列的方法:定义法,等差中项法. 12.B 【分析】
直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】
解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,
2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,
所以30132924301514
()()1515222552
S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 13.D 【分析】
利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,
故选:D . 14.A 【分析】
由22
19a a =,可得14a d =-,从而得2922
n d d S n n =
-,然后利用二次函数的性质求其最值即可 【详解】
解:设递减的等差数列{}n a 的公差为d (0d <),
因为2219a a =,所以22
11(8)a a d =+,化简得14a d =-,
所以221(1)9422222
n n n d d d d
S na d dn n n n n -=+=-+-=-, 对称轴为92
n =
, 因为n ∈+N ,
02
d
<, 所以当4n =或5n =时,n S 取最大值, 故选:A 15.A
根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】
因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()199998
3622
a a S +⨯===. 故选:A . 【点睛】
熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 16.A 【分析】
根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】
依题意,有170a a +>,180a a +< 则()177702a a S +⋅=
>
()()1881884
02
a a S a a +⋅=
=+<
故选:A . 17.A 【分析】
设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,
12111a a d =+,即可求解.
【详解】
设等差数列{}n a 的公差为d ,
则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174
174d a ⎧
=⎪⎪⎨⎪=-⎪⎩
,
所以12117760
111115444
a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 18.B 【分析】
利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】
2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,
当1n =时,111a S ==,上式也成立,
()
*21n a n n N ∴=-∈,
故选:B. 【点睛】
易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即
11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结
果,考查学生的分类思想与运算求解能力,属于基础题. 19.D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,104a .
故选:D. 20.C 【分析】
首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】
由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++=
=
+,
()()()1232322323<02
m m m m a a S m a +++++==+, ()()()()1222212211>02
m m m m m a a S m a a ++++++=
=
++.
故选:C.
【点睛】
关键点睛:本题的第一个关键是根据公式11
,2
,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,
第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负.
二、多选题
21.ABC 【分析】
数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11
4
a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1n
S ,n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a . 【详解】
数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),11
4
a =, ∴1140n n n n S S S S ---+=,化为:
1
11
4n n S S --=, ∴数列1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,公差为4,
∴()1
4414n n n S =+-=,可得14n S n
=, ∴2n ≥时,()()
1111
44141n n n a S S n n n n -=-=
-=---, ∴()1
(1)41(2)41n n a n n n ⎧=⎪⎪
=⎨⎪-≥-⎪⎩
,
对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】
本题考查数列递推式,解题关键是将已知递推式变形为1
11
4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题 22.BCD 【分析】
由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求
和公式即可进行判断. 【详解】
设等差数列数列{}n a 的公差为d .
由13522,a a S +=有()111254
2252
a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176
773212
S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113
137131302
a S a a +=
⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】
关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件
13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,
属于中档题. 23.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
24.无
25.BCD 【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误.
【详解】
对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2
121a a a =,则()222312321a a a a a a a a =-=-,
()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222
123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD 【点睛】
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形. 26.ABD 【分析】
由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】
根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;
由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD. 27.BCD 【分析】
根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】
对于A 选项,取n a n =,则
()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦
()()221221n n n =+++不是常数,则{}
2
n a 不是等方差数列,A 选项中的结论错误;
对于B 选项,()()2
2
111110n n
+⎡⎤⎡⎤---=-=⎣⎦⎣⎦
为常数,则(){
}
1n
-是等方差数列,B 选项
中的结论正确;
对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得22
1n n a a p +-=,则数列
{}2n
a 为等差数列,所以(
)
2
21kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方
差数列,C 选项中的结论正确;
对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得
n a dn m =+,
则()()()()2
2
2
1112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,
由于数列{}n a 也为等方差数列,所以,存在实数p ,使得22
1n n a a p +-=,
则()
2
22d n m d d p ++=对任意的n *
∈N 恒成立,则()2202d m d d p
⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】
本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 28.AD 【分析】
由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】
由已知得:780,0a a ><,
结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,
310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,
这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】
本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系. 29.BC 【分析】
根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】
A 选项,若101109
1002
S a d ⨯=+
=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++
++=+=,
又因为10a >,所以前8项为正,从第9项开始为负, 因为()
()116168916802
a a S a a +=
=+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502
a a S a +=
=>,()
()116168916802a a S a a +=
=+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;
D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】
本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型. 30.AD 【分析】
由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】
解:1385a a S +=,111110875108,90,02
d
a a d a a d a ⨯++=+
+==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.
9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.
61656+
5415392
d
S a d d d ⨯==-+=-, 131131213+
11778392
d
S a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】
考查等差数列的有关量的计算以及性质,基础题.。