23年美赛中英文对照版竞赛指南
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美赛中英文对照版竞赛指南
1. 简介
23年美赛中英文对照版竞赛指南是为了帮助参与23年美国大学数学建模竞赛的学生更好地准备和参加比赛而编写的指南。
This guide is intended to help students participating in the 23rd annual MCMASpetition of the United States to prepare for and participate in thepetition.
2. 竞赛概况
美国大学数学建模竞赛是一项面向全球高校学生的标志性竞赛,旨在提高学生的数学建模、解决问题和团队合作能力。
比赛通常设有团队赛和个人赛两个类别,题目涉及的领域广泛,如数学、统计学、运筹学等。
The MCMAS is a prestigiouspetition for global college students, 本人ming to improve students' mathematical modeling, problem-solving, and teamwork skills. Thepetition usually consists of team and individual categories, covering a wide range of fields such as mathematics, statistics, operations research, etc.
3. 竞赛时间和地点
23年美国大学数学建模竞赛预计于2023年2月进行,具体的时间和
地点将在冠方全球信息站上公布。
参赛学生需要提前关注并根据指定时间和地点参与比赛。
The 23rd annual MCMAS is expected to take place in February 2023, with specific dates and locations to be announced on the official website. Participating students need to pay attention in advance and participate in thepetition according to the specified time and place.
4. 竞赛报名
学生可以通过冠方全球信息站进行报名,需要填写个人信息并组建队伍报名参赛。
每个队伍通常由3-4名成员组成,队员之间需要密切合作并共同完成竞赛题目。
Students can register for thepetition through the official website, fill in personal information, and form a team to participate. Each team usually consists of 3-4 members and requires close cooperation between team members toplete thepetition tasks.
5. 竞赛题目和要求
竞赛题目由组织方提供,通常围绕特定的实际问题展开,要求参赛学生使用数学工具进行建模分析,并给出解决方案。
题目可能涉及到实际的生产、环境、交通、经济等方面的问题,要求参赛学生具备较强的现实问题分析和解决能力。
Thepetition topics are provided by the organizers, usually
focusing on specific practical issues and requiring participating students to use mathematical tools for modeling analysis and provide solutions. The topics may involve practical issues such as production, environment, transportation, and economics, requiring participating students to have strong analytical and problem-solving skills.
6. 竞赛评审
竞赛结束后,由评委会对各队伍提交的解决方案进行评审,并对各队伍的成绩进行排名。
评审过程严谨公正,旨在评定参赛队伍的分析能力、数学建模能力和解决问题的能力。
After thepetition, the jury will review the solutions submitted by the teams and rank the results of each team. The review process is rigorous and f本人r, 本人ming to assess the analytical ability, mathematical modeling ability, and problem-solving ability of the participating teams.
7. 竞赛奖项
竞赛设有多个奖项,包括团队奖、个人奖、优秀奖等。
获奖的队伍和个人将获得证书和奖金等奖励,对参与竞赛的学生来说,获得奖项将是一种荣誉和肯定。
Thepetition has multiple awards, including team awards, individual awards, and excellence awards. Winning teams and
individuals will receive certificates and cash rewards, and receiving an award will be an honor and affirmation for the students participating in thepetition.
8. 竞赛准备
为了更好地参加竞赛,学生需要提前做好充分的准备工作。
要熟悉竞赛的相关规则和要求,了解竞赛的具体安排和题目类型;要加强对数学建模和问题分析的基础知识,提高自身的数学建模能力;要培养团队合作和交流能力,要做好与队友的密切合作和配合。
In order to better participate in thepetition, students need to make adequate preparations in advance. Firstly, they need to be familiar with the relevant rules and requirements of thepetition, understand the specific arrangements and types of topics. Secondly, they need to strengthen their basic knowledge of mathematical modeling and problem analysis, and improve their mathematical modeling abilities. Finally, they need to cultivate teamwork andmunication skills, and cooperate closely with their teammates.
9. 竞赛经验共享
参与过美国大学数学建模竞赛的学生通常会共享自己的竞赛经验,包括准备过程中的技巧、比赛中的团队合作和问题解决策略等。
学生可以通过阅读相关的竞赛经验共享文章,了解其他学生的经验和教训,
借鉴他们的成功经验并避免类似的错误。
Students who have participated in the MCMASpetition will often share theirpetition experience, including tips during the preparation process, teamwork and problem-solving strategies during thepetition. Students can learn from reading relatedpetition experience-sharing articles, understand the experience and lessons of other students, borrow their successful experiences, and avoid similar mistakes.
10. 结语
美国大学数学建模竞赛是一项具有挑战性和意义的竞赛,对参赛学生的数学建模和问题解决能力提出了较高的要求。
希望通过本指南的介绍,能帮助学生更好地参与竞赛,取得优异的成绩。
同时也希望学生能够在竞赛中不断提高自身的数学建模和问题解决能力,为未来的学习和工作打下坚实的基础。
The MCMASpetition is a challenging and meaningfulpetition that places high demands on students' mathematical modeling and problem-solving abilities. It is hoped that through the introduction of this guide, students can better participate in thepetition and achieve outstanding results. It is also hoped that students can continue to improve their mathematical modeling and problem-solving abilities during thepetition, laying a solid foundation for future learning and work.。