公主岭市第四高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公主岭市第四高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)
2. 在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π 3. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.15
4. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )
A .A
B ⊂α
B .AB ⊄α
C .由线段AB 的长短而定
D .以上都不对
5. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )
A .
B .或
C .
D .

6. 设x ∈R ,则x >2的一个必要不充分条件是( )
A .x >1
B .x <1
C .x >3
D .x <3
7. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )
A .点A 处
B .线段AD 的中点处
C .线段AB 的中点处
D .点D 处
8. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( ) A .{x|x <﹣2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|0<x <4}
9. 已知f (x )=
,g (x )=(k ∈N *
),对任意的c >1,存在实数a ,b 满足0<a <b <c ,使得f (c )
=f (a )=g (b ),则k 的最大值为( )
A .2
B .3
C .4
D .5
10.函数y=a x +1(a >0且a ≠1)图象恒过定点( )
A .(0,1)
B .(2,1)
C .(2,0)
D .(0,2)
11.已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分
别为( )
A .x=1,y=1
B .x=1,y=
C .x=,y=
D .x=,y=1
12.已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )
A .
B .
C .
D .
二、填空题
13.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .
14.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .
15.已知椭圆+
=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,
且θ∈[

],则该椭圆离心率e 的取值范围为 .
16.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 17.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧
面11BCC B 内一点,若1AP 平行于平面
AEF ,则线段1A P 长度的取值范围是_________.
18.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的
有向线段首尾相接能构成四边形,则向量的坐标是 .
三、解答题
19.已知函数f (x )=+lnx ﹣1(a 是常数,e ≈=2.71828).
(1)若x=2是函数f (x )的极值点,求曲线y=f (x )在点(1,f (1))处的切线方程;
(2)当a=1时,方程f (x )=m 在x ∈[,e 2
]上有两解,求实数m 的取值范围;
(3)求证:n ∈N*,ln (en )>1+.
20.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.
21.已知矩阵M 所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的
坐标.
22.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.
(1)当1a =时,解不等式()211f x x <--;
(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.
23.设△ABC 的内角A ,B ,C 所对应的边长分别是a ,b ,c 且cosB=,b=2 (Ⅰ)当A=30°时,求a 的值;
(Ⅱ)当△ABC 的面积为3时,求a+c 的值.
24.已知函数f (x )=﹣x 2+ax ﹣lnx (a ∈R ).
(I )当a=3时,求函数f (x )在[,2]上的最大值和最小值; (Ⅱ)函数f (x )既有极大值又有极小值,求实数a 的取值范围.
公主岭市第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】B
【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,
∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),
故选:B.
2.【答案】C
【解析】
考点:三角形中正余弦定理的运用.
3.【答案】B
【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,
∴所求概率为.
故选B.
4.【答案】A
【解析】解:∵线段AB在平面α内,
∴直线AB上所有的点都在平面α内,
∴直线AB与平面α的位置关系:
直线在平面α内,用符号表示为:AB⊂α
故选A.
【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.
5.【答案】B
【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,
根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,
当x<0时,f(x)=x+2,
代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,
解得x<﹣,则原不等式的解集为x<﹣;
当x≥0时,f(x)=x﹣2,
代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,
解得x<,则原不等式的解集为0≤x<,
综上,所求不等式的解集为{x|x<﹣或0≤x<}.
故选B
6.【答案】A
【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,
x<1是x>2的既不充分也不必要条件,
x>3是x>2的充分条件,
x<3是x>2的既不充分也不必要条件,
故选:A
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
7.【答案】A
【解析】解:如图,
E为底面ABCD上的动点,连接BE,CE,D1E,
对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,
面BCD1的面积为定值,
要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,
∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.
故选:A.
【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.
8.【答案】D
【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象
关于y轴对称,
且图象经过点(﹣2,0)、(0,﹣3),(2,0),
故f(x﹣2)的图象是把f(x)的图象向右平移2个
单位得到的,
故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),
则由f(x﹣2)<0,可得0<x<4,
故选:D.
【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.9.【答案】B
【解析】解:∵f(x)=,g(x)=(k∈N*),
对任意的c>1,存在实数a,b满足0<a<b<c,使得f(c)=f(a)=g(b),
∴可得:>,对于x>1恒成立.
设h(x)=x•,h′(x)=,且y=x﹣2﹣lnx,y′=1﹣>0在x>1成立,
∴即3﹣2﹣ln3<0,4﹣2﹣ln4>0,
故存在x0∈(3,4)使得f(x)≥f(x0)>3,
∴k的最大值为3.
故选:B
【点评】本题考查了学生的构造函数,求导数,解决函数零点问题,综合性较强,属于难题.10.【答案】D
【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.
∴函数f(x)=a x+1的图象必过定点(0,2).
故选:D.
【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.
11.【答案】C
【解析】解:如图,
++().
故选C.
12.【答案】B
【解析】解:∵函数的周期为T==,
∴ω=
又∵函数的最大值是2,相应的x值为
∴=,其中k∈Z
取k=1,得φ=
因此,f(x)的表达式为,
故选B
【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.
二、填空题
13.【答案】﹣3<a<﹣1或1<a<3.
【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,
∴﹣3<a<﹣1或1<a<3.
故答案为:﹣3<a<﹣1或1<a<3.
【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.
14.【答案】(,0).
【解析】解:y′=﹣,
∴斜率k=y′|x=3=﹣2,
∴切线方程是:y﹣3=﹣2(x﹣3),
整理得:y=﹣2x+9,
令y=0,解得:x=,
故答案为:.
【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.
15.【答案】[,﹣1].
【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);
F(﹣c,0);
∵AF⊥BF,
∴=0,
即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,
故c2﹣a2cos2α﹣b2sin2α=0,
cos2α==2﹣,
故cosα=,
而|AF|=,
|AB|==2c,
而sinθ=
==,
∵θ∈[,],
∴sinθ∈[,],
∴≤≤,
∴≤+≤,
∴,
即,
解得,≤e≤﹣1;
故答案为:[,﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
16.【答案】
1
e e
- 【解析】解析: 由ln a b ≥得a
b e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“a
b e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为
1
1
1|a a e da e e ==-⎰
,∴随机事件“ln a b ≥”的概率为
1
e e
-.
17.【答案】42⎡⎢⎣
⎦, 【解析】
考点:点、线、面的距离问题.
【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.
18.【答案】(﹣2,﹣6).
【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,
则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),
故答案为:(﹣2,﹣6).
【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.
三、解答题
19.【答案】
【解析】解:(1).
因为x=2是函数f(x)的极值点,
所以a=2,则f(x)=,
则f(1)=1,f'(1)=﹣1,所以切线方程为x+y﹣2=0;
(2)当a=1时,,其中x∈[,e2],
当x∈[,1)时,f'(x)<0;x∈(1,e2]时,f'(x)>0,
∴x=1是f(x)在[,e2]上唯一的极小值点,∴[f(x)]min=f(1)=0.
又,,
综上,所求实数m 的取值范围为{m|0<m ≤e ﹣2};
(3)
等价于

若a=1时,由(2)知f (x )=在[1,+∞)上为增函数,
当n >1时,令x=
,则x >1,故f (x )>f (1)=0,
即,∴.

即,
即.
20.【答案】16
y x =-. 【解析】
试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线
12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1
考点:直线方程的求解. 21.【答案】
【解析】解:依题意,由M=得|M|=1,故M ﹣1
=
从而由
=


=
故A (2,﹣3)为所求.
【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础.
22.【答案】(1){}
11x x x ><-或;(2)(,2]-∞-. 【解析】

题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,
当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;

1
12x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当1
2
x <时,1211x x -+-<-,∴1x <-,从而1x <-;
综上,不等式的解集为{}11x x x ><-或.
(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,
所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--
记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.
考点:1.含绝对值的不等式;2.分类讨论. 23.【答案】
【解析】解:(Ⅰ)∵cosB=,B∈(0,π),
∴sinB==,
由正弦定理可知:,
∴a=.
(Ⅱ)∵S△ABC===3,
∴ac=.
由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,
∴(a+c)2=+4=28,
故:a+c=2.
24.【答案】
【解析】解:(Ⅰ)a=3时,f′(x)=﹣2x+3﹣=﹣=﹣,
函数f(x)在区间(,2)仅有极大值点x=1,故这个极大值点也是最大值点,
故函数在[,2]最大值是f(1)=2,
又f(2)﹣f()=(2﹣ln2)﹣(+ln2)=﹣2ln2<0,故f(2)<f(),
故函数在[,2]上的最小值为f(2)=2﹣ln2.
(Ⅱ)若f(x)既有极大值又有极小值,则必须f′(x)=0有两个不同正根x1,x2,即2x2﹣ax+1=0有两个不同正根.
故a应满足⇒⇒,
∴函数f(x)既有极大值又有极小值,实数a的取值范围是.。

相关文档
最新文档