沿河土家族自治县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沿河土家族自治县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )
A
. B
. C .1 D

2. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:
由2
()()()()()
n ad bc K a b c d a c b d -=++++算得22
500(4027030160)9.96720030070430K ⨯⨯-⨯=
=⨯⨯⨯ 附表:
参照附表,则下列结论正确的是( )
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 3. 数列1,3,6,10,…的一个通项公式是( )
3.841 6.635 10.828k 2() 0.050 0.010 0.001
P K k ≥
A .21n a n n =-+
B .(1)2n n n a -=
C .(1)
2
n n n a += D .21n a n =+
4. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 5. 下列各组表示同一函数的是( )
A .y=
与y=(
)2
B .y=lgx 2与y=2lgx
C .y=1+与y=1+
D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )
6. 下列命题中的假命题是( )
A .∀x ∈R ,2x ﹣1>0
B .∃x ∈R ,lgx <1
C .∀x ∈N +,(x ﹣1)2>0
D .∃x ∈R ,tanx=2
7. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .300
8. 执行如图的程序框图,则输出S 的值为( )
A .2016
B .2
C .
D .﹣1
9. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16
B .6
C .4
D .8
10.lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( ) A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既不充分也不必要条件
11.已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
12.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()
A.y=sinx B.y=1g2x C.y=lnx D.y=﹣x3
【考点】函数单调性的判断与证明;函数奇偶性的判断.
【专题】函数的性质及应用.
【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.
二、填空题
13.数列{a n}是等差数列,a4=7,S7=.
14.如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是.
15.经过A(﹣3,1),且平行于y轴的直线方程为.
16.已知tanβ=,tan(α﹣β)=,其中α,β均为锐角,则α=.
17.已知函数
5
()sin(0)
2
f x x a x
π
=-≤≤的三个零点成等比数列,则
2
log a=.
18.已知函数f(x)=恰有两个零点,则a的取值范围是.
三、解答题
19.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,
PD=AD=2EC,EC∥PD.
(Ⅰ)求异面直线BD与AE所成角:
(Ⅱ)求证:BE∥平面PAD;
(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.
20.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.
21.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.
(1)求实数m的取值范围;
(2)设向量,求满足
不等式的α的取值范围.
22.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.独立性检验观察值计算公式
,独立性检验临界值表:
23.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:
编号A1A2A3A4A5A6A7A8A9A10
直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47
其中直径在区间[1.48,1.52]内的零件为一等品.
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率.
24.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭
圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.
沿河土家族自治县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】B
【解析】解:由三视图知几何体的直观图是半个圆锥,
又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,
∴半圆锥的底面半径为1,高为

即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,
故侧视图的面积是,
故选:B .
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
2. 【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
由于9.967 6.635>,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D . 3. 【答案】C 【解析】
试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)
2
n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 4. 【答案】A
【解析】解:令f (x )=x 3


∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,
∴f (x )=x 3

在R 上单调递增;
又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,
∴f (x )=x 3

的零点在(0,1),
∵函数y=x3与y=()x的图象的交点为(x0,y0),
∴x0所在的区间是(0,1).
故答案为:A.
5.【答案】C
【解析】解:A.y=|x|,定义域为R,y=()2
=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.
C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.
D.两个函数的定义域不同,不能表示同一函数.
故选:C.
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.
6.【答案】C
【解析】解:A.∀x∈R,2x﹣1=0正确;
B.当0<x<10时,lgx<1正确;
C.当x=1,(x﹣1)2=0,因此不正确;
D.存在x∈R,tanx=2成立,正确.
综上可知:只有C错误.
故选:C.
【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.
7.【答案】C
解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,
首发共有1、2、2;2、1、2;2、2、1类型;
所求方案有:++=390.
故选:C.
8.【答案】B
【解析】解:模拟执行程序框图,可得
s=2,k=0
满足条件k<2016,s=﹣1,k=1
满足条件k<2016,s=,k=2
满足条件k<2016,s=2.k=3
满足条件k<2016,s=﹣1,k=4
满足条件k<2016,s=,k=5

观察规律可知,s的取值以3为周期,由2015=3*671+2,有
满足条件k<2016,s=2,k=2016
不满足条件k<2016,退出循环,输出s的值为2.
故选:B.
【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.
9.【答案】D
【解析】解:∵a=5,b=4,cosC=,可得:sinC==,
∴S△ABC=absinC==8.
故选:D.
10.【答案】A
【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y2=zx,∴充分性成立,
因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,
故选:A.
【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.
11.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;
故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
12.【答案】B
【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;
y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;
根据y=lnx的图象,该函数非奇非偶;
根据单调性定义知y=﹣x3在(0,+∞)上单调递减.
故选B.
【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.
二、填空题
13.【答案】49
【解析】解:
=
=7a4
=49.
故答案:49.
【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.
14.【答案】.
【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,
所以三棱柱的体积:××1×1×2=,
故答案为:.
【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.
15.【答案】x=﹣3.
【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.
故答案为:x=﹣3.
16.【答案】.
【解析】解:∵tanβ=,α,β均为锐角,
∴tan(α﹣β)===,解得:tanα=1,
∴α=.
故答案为:.
【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.
17.【答案】
1 2
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.
18.【答案】(﹣3,0).
【解析】解:由题意,a≥0时,
x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,
f(x)在(0,+∞)上至多一个零点;
x≥0,函数y=|x﹣3|+a无零点,
∴a≥0,不符合题意;
﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;
a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;
a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a的取值范围是(﹣3,0).
故答案为(﹣3,0).
三、解答题
19.【答案】
【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,
∴EC⊥平面ABCD,
又BD⊂平面ABCD,
∴EC⊥BD,
∵底面ABCD为正方形,AC∩BD=N,
∴AC⊥BD,
又∵AC∩EC=C,AC,EC⊂平面AEC,
∴BD⊥平面AEC,
∴BD⊥AE,
∴异面直线BD与AE所成角的为90°.
(Ⅱ)∵底面ABCD为正方形,
∴BC∥AD,
∵BC⊄平面PAD,AD⊂平面PAD,
∴BC∥平面PAD,
∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,
∴EC∥平面PAD,
∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴
∴平面BCE∥平面PAD,
∵BE⊂平面BCE,
∴BE∥平面PAD.
(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,
∴PD⊥CD,PD⊥AD,
∵PD=AD,F是PA的中点,
∴DF⊥PA,
∴∠PDF=45°,
∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,
∴DF⊥平面PAE,
∴DF⊥PE,
∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,
∴CD⊥平面PAD.
又DF⊂平面PAD,
∴DF⊥CD,
∵PD=2EC,EC∥PD,
∴PE与CD相交,
∴DF⊥平面PDCE,
∴DF⊥PD,
这与∠PDF=45°矛盾,
∴假设不成立即平面PAD与平面PAE不垂直.
【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.20.【答案】
【解析】解:f′(x)=
令g(x)=﹣ax2+(2a﹣b)x+b﹣c
函数y=f′(x)的零点即g(x)=﹣ax2+(2a﹣b)x+b﹣c的零点
即:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3
则解得:b=c=﹣a,
令f′(x)>0得0<x<3
所以函数的f(x)的单调递增区间为(0,3),
(2)由(1)得:
函数在区间(0,3)单调递增,在(3,+∞)单调递减,
∴,
∴a=2,
∴;,
∴函数f(x)在区间[0,4]上的最小值为﹣2.
21.【答案】
【解析】解:(1)∵函数f(x)=x2﹣mx在[1,+∞)上是单调函数
∴x=≤1
∴m≤2
∴实数m的取值范围为(﹣∞,2];
(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数
∵,

∴2﹣cos2α>cos2α+3
∴cos2α<

∴α的取值范围为.
【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.
22.【答案】
【解析】解:(1)
(2)
所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)
【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的
23.【答案】
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.
设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==;
(Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6.
从这6个一等品零件中随机抽取2个,
所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},
{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},
{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种.
(ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件B
B的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},
{A2,A3},{A2,A5},{A3,A5},共有6种.
∴P(B)=.
【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.
24.【答案】
【解析】解:(Ⅰ)∵椭圆C1:的离心率为,
∴a2=2b2,
令x2﹣b=0可得x=±,
∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,
∴2=2b,
∴b=1,
∴C1、C2的方程分别为,y=x2﹣1;…
(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0
∴x=0或x=k1,∴A(k1,k12﹣1)
同理可得B(k2,k22﹣1)…
∴S1=|MA||MB|=•|k1||k2|…
y=k1x﹣1与椭圆方程联立,可得D(),
同理可得E()…
∴S2=|MD||ME|=••…

若则解得或
∴直线AB的方程为或…
【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.。

相关文档
最新文档