江苏省苏州市相城区2018-2019学年度八年级数学上学期期中试卷
苏州市八年级数学上册期中试卷(含答案解析)
苏州市2019八年级数学上册期中试卷(含答案解析)苏州市2019八年级数学上册期中试卷(含答案解析)一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.)1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有( )个.A.1个B.2个C.3个D.4个2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b23.下列四个数中,是负数的是( )A.|﹣2| B.(﹣2)2 C.﹣D.4.如果a、b、c是一个直角三角形的三边,则a:b:c等于( ) A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:135.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40° B.35° C.25° D.20°6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于( )A.4 B.3 C.2 D.17.已知,则的值是( )A.457.3 B.45.73 C.1449 D.144.98.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为( )A.3cm或5cm B.3cm或7cm C.3cm D.5cm9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )A.24 B.24π C.D.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) A.90 B.100 C.110 D.121二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.2的平方根是__________.12.若的值在两个整数a与a+1之间,则a=__________.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为__________.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)__________.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形__________对.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是__________cm.17.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB 于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为__________.18.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.20.求下列各式的值(1)(2).21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.23.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F 在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.25.某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB 于M,试说明M是AB中点.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+ 的最小值.苏州市2019八年级数学上册期中试卷(含答案解析)参考答案一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.)1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有( )个.A.1个B.2个C.3个D.4个考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:①、②不是轴对称图形;③长方形是轴对称图形;④等腰三角形是轴对称图形.共2个.故选B.点评:轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b2考点:勾股定理.专题:计算题.分析:由已知两角之和为90度,利用三角形内角和定理得到三角形为直角三角形,利用勾股定理即可得到结果.解答:解:∵在△ABC中,∠A+∠C=90°,∴∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:a2+c2=b2.故选C点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.3.下列四个数中,是负数的是( )A.|﹣2| B.(﹣2)2 C.﹣D.考点:实数的运算;正数和负数.专题:计算题.分析:根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.解答:解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、= =2,是正数,故本选项错误.故选C.点评:本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.4.如果a、b、c是一个直角三角形的三边,则a:b:c等于( ) A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13考点:勾股定理.专题:计算题.分析:将四个选项的数字按照勾股定理进行计算,符合a2+b2=c2的即为正确答案.解答:解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;C、∵32+42≠72 ,∴3:4:7不是直角三角形的三条边;故本选项错误;D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.故选D.点评:本题考查了勾股定理,符合a2+b2=c2的三条边才能构成直角三角形.5.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40° B.35° C.25° D.20°考点:等腰三角形的性质.分析:先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B 的度数即可.解答:解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC= =50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.点评:此题比较简单,考查的是等腰三角形的性质及三角形内角和定理.6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于( )A.4 B.3 C.2 D.1考点:菱形的判定与性质;含30度角的直角三角形.专题:几何图形问题.分析:过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.解答:解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COM P为菱形,PM=4PM∥CO?∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD= PC=2.令解:作CN⊥OA.∴CN= OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.点评:本题运用了平行线和直角三角形的性质,并且需通过辅助线求解,难度中等偏上.7.已知,则的值是( )A.457.3 B.45.73 C.1449 D.144.9考点:算术平方根.分析:把的被开方的小数点向右移动4位,则其平方根的小数点向右移动2位,即可得到=144.9.解答:解:∵ = =100 ,而=1.449,∴ =1.449×100=144.9.故选D.点评:本题考查了算术平方根:若一个正数的平方等于a,那么这个数叫a的算术平方根,记作(a≥0).8.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为( )A.3cm或5cm B.3cm或7cm C.3cm D.5cm考点:等腰三角形的性质;三角形三边关系.分析:已知的边可能是腰,也可能是底边,应分两种情况进行讨论.解答:解:当腰是3cm时,则另两边是3cm,9cm.而3+3<9,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是6cm,6cm.则该等腰三角形的底边为3cm.故选:C.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )A.24 B.24π C.D.考点:勾股定理.专题:数形结合.分析:先求出直角三角形的斜边,再利用:阴影部分面积=两个小半圆面积+直角三角形面积﹣以斜边为直径的大半圆面积.解答:解:在Rt△ABC中,AC=6 ,BC=8,AB= = =10,S阴影= π()2+ π()2+ ×6×8﹣π()2= +8π+24﹣=24.故选A.点评:本题考查勾股定理的知识,难度一般,解答本题的关键是利用勾股定理得出AB的长及找出阴影部分面积的表示,另外本题也进一步验证了勾股定理.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) A.90 B.100 C.110 D.121考点:勾股定理的证明.专题:常规题型;压轴题.分析:延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.解答:解:如图,延长AB交KF于点O,延长AC交GM于点P,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM =4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.点评:本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.2的平方根是±.考点:平方根.分析:直接根据平方根的定义求解即可(需注意一个正数有两个平方根).解答:解:2的平方根是±.故答案为:±.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若的值在两个整数a与a+1之间,则a=2.考点:估算无理数的大小.专题:计算题.分析:利用”夹逼法“得出的范围,继而也可得出a的值.解答:解:∵2= <=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.点评:此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为2.考点:翻折变换(折叠问题).专题:压轴题;数形结合.分析:根据中点的性质得BD=DC=2.再根据对称的性质得∠BDC′=60°,判定三角形为等边三角形即可求.解答:解:根据题意:BC=4,D为BC的中点;故BD=DC=2.由轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,则∠BD C′=60°,故△BDC′为等边三角形,即可得BC′=BD= BC=2.故答案为:2.点评:本题考查了翻折变换的知识,同时考查了等边三角形的性质和判定,判定出△BDC为等边三角形是关键.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)∠B=∠D或∠C=∠E或AC=AE.考点:全等三角形的判定.专题:开放型.分析:要使要使△ABC≌△ADE,已知AB=AD,∠1=∠2得出∠BAC=∠DAE,若添加∠B=∠D或∠C=∠E可以利用ASA判定其全等,添加AC=AE可以利用SAS判定其全等.解答:解:∵AB=AD,∠1=∠2∴∠BAC=∠DAE∴若添加∠B=∠D或∠C=∠E可以利用ASA判定△ABC≌△ADE 若添加AC=AE可以利用SAS判定△ABC≌△ADE故填空答案:∠B=∠D或∠C=∠E或AC=AE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形4对.考点:全等三角形的判定.分析:根据AB∥CD,AD∥BC可得到相等的角,再根据公共边AC、BD易证得:△ACD≌△CAB、△BAD≌△DCB(ASA);由上可得AD=BC、AB=CD,再根据平行线确定的角相等可证得:△AOD≌△COB、△AOB≌△COD(ASA).解答:解:∵AB∥CD,AD∥BC,∴∠CAD=∠ACB,∠BDA=∠DBC,∠BAC=∠DCA,∠ABD=∠CDB,又∵AC、BD为公共边,∴△ACD≌△CAB、△BAD≌△DCB(ASA);∴AD=BC,AB=CD,∴△AOD≌△COB、△AOB≌△COD(ASA).所以全等三角形有:△AOD≌△COB、△AOB≌△COD、△ACD≌△CAB、△BAD≌△DCB,共4对;故答案是:4.点评:本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA 、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是100cm.考点:平面展开-最短路径问题.分析:蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.解答:解:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB= =10 cm;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB= =10 cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB= =100cm;三种情况比较而言,第三种情况最短.故答案为:100cm.点评:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.17.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB 于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+ DF.考点:等边三角形的性质;三角形的面积.分析:连接AD,利用三角形的面积相等结合等边三角形的性质可得到BN=DE+DF.解答:解:BN=DE+DF,证明如下:连接AD,∵S△ABC=S△ABD+S△ACD,∴ AC?BN= AB?DE+ AC?DF,∵△ABC为等边三角形,∴AB=AC,∴AC?BN=AC?DE+AC?DF,∴BN=DE+DF.故答案为:BN=DE+DF.点评:本题主要考查等边三角形的性质,利用等积法得到AC?BN=AB?DE+ AC?DF是解题的关键.18.等腰三角形一腰长为5,一边上的高为3,则底边长为8或或3 .考点:勾股定理;等腰三角形的性质.专题:分类讨论.分析:由已知的是一边上的高,分腰上的高于底边上的高两种情况,当高为腰上高时,再分锐角三角形与钝角三角形两种情况,当三角形为锐角三角形时,如图所示,在直角三角形ACD中,由AC及CD 的长,利用勾股定理求出AD的长,由AB﹣AD求出BD的长,在直角三角形BDC中,由BD及CD的长,即可求出底边BC的长;当三角形为钝角三角形时,如图所示,同理求出AD的长,由AB+AD 求出BD的长,同理求出BC的长;当高为底边上的高时,如图所示,由三线合一得到BD=CD,在直角三角形ABD中,由AB及AD的长,利用勾股定理求出BD的长,由BC=2BD即可求出BC的长,综上,得到所有满足题意的底边长.解答:解:如图所示:当等腰三角形为锐角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB﹣AD=5﹣4=1,在Rt△BDC中,CD=3,BD=1,根据勾股定理得:BC= = ;当等腰三角形为钝角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB+AD=5+4=9,在Rt△BDC中,CD=3,BD=9,根据勾股定理得:BC= =3 ;当AD为底边上的高时,如图所示:∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AD=3,AB=5,根据勾股定理得:BD= =4,∴BC=2BD=8,综上,等腰三角形的底边长为8或或3 .故答案为:8或或3点评:此题考查了勾股定理,以及等腰三角形的性质,利用了分类讨论的数学思想,要求学生考虑问题要全面,注意不要漏解.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.考点:立方根;平方根.分析:(1)运用直接开平方求解即可;(2)方程两边直接开立方即可得到方程的解.解答:解:(1)(x﹣1)2=25,解得:x=6或﹣4.(2)﹣8(2﹣x)3=27,解得:x=﹣点评:此题主要考查了平方根、立方根的定义,其中用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.20.求下列各式的值(1)(2).考点:实数的运算.分析:(1)分别根据绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据数的开方法则法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:(1)原式=2﹣+2 ﹣1=1+ ;(2)原式=4+4+3=11.点评:本题考查的是实数的运算,熟知绝对值的性质及数的开方法则是解答此题的关键.21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.考点:立方根;平方根;算术平方根.专题:计算题.分析:根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.解答:解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.点评:本题主要考查了平方根、立方根的概念,难易程度适中.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.考点:全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:先用SSS证△ADB≌△BCA,得到∠DBA=∠CAB,利用等角对等边知AE=BE,从而证得△EAB是等腰三角形.解答:证明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴∠DBA=∠CAB,∴AE=BE,∴△EAB是等腰三角形.点评:本题考查了三角形全等判定及性质和等腰三角形的性质;三角形的全等的证明是正确解答本题的关键.23.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC 于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)利用线段垂直平分线的性质可知BD+CD=5,易求BC;(2)根据第一问中BD+CD=5,易求△BCD的周长.解答:解:①AB=AC=5,DE垂直平分AB,故BD=AD.BD+CD=AD+CD=5.△BCD的周长为8?BC=3;②∵BC=4,BD+CD=5,∴△BCD=BD+CD+BC=9.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质;进行线段的有效转移是正确解答本题的关键.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.考点:全等三角形的判定.分析:根据SSS先证明△ABC≌△ADC,得∠BAC=∠DCA,根据平行线的判定得AB∥CD,即可得出△ABE≌△CDF,△EBC≌△FDA.解答:解:全等三角形有三对:△ABC≌△ADC,△ABE≌△CDF,△EBC≌△FDA.在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DCA,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴BE=DF,∵AE=CF,∴AF=CE,在△EBC和△FDA中,∴△BCE≌△DAF(SSS).点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?考点:勾股定理的应用;三角形的面积.专题:应用题.分析:仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度关系可得三角形DAC为一直角三角形,DA为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC构成,则容易求解.解答:解:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=52,∴AC=5.在△DAC中,CD2=132,AD2=122,而122+52=132,即AC2+AD2=CD2,∴∠DCA=90°,S四边形ABCD=S△BAC+S△DAC= ?BC?AB+ DC?AC,= ×4×3+ ×12×5=36.所以需费用36×100=3600(元).点评:本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAQ=60°,∴△APQ是等边三角形.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB 于M,试说明M是AB中点.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:连接AD、BD.易证△ADE≌△DBC,再根据全等三角形的性质可得AD=DB,即△ABD是等腰三角形,而DM⊥AB,利用等腰三角形三线合一定理可得M是AB中点.解答:证明:连接AD、BD,∴△ADE≌△DBC(SAS),∴AD=BD,又∵DM⊥AB,∴M是AB的中点.点评:本题考查了全等三角形的判定和性质及等腰三角形三线合一定理;作出辅助线是正确解答本题的关键.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.考点:等腰直角三角形;全等三角形的判定与性质.分析:连接OA.先证得△OAN≌△OBM,然后根据全等三角形的对应边相等推知OM=ON;然后由等腰直角三角形ABC的性质、等腰三角形OMN的性质推知∠NOM=90°,即△OMN是等腰直角三角形.解答:解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.点评:本题考查了等腰直角三角形的判定与性质、全等三角形的判定与性质.解答该题的关键一步是根据等腰直角三角形ABC的“三线合一”的性质推知OA=OB=OC.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+ 的最小值.考点:轴对称-最短路线问题;勾股定理.分析:(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;(2)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(3)由(1)(2)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式+ 的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.解答:解:(1)AC+CE= + ;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+ 的最小值.过点A作AF ∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE= = =13,即+ 的最小值为13.故代数式+ 的最小值为13.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
江苏省苏州市八年级上学期数学期中考试试卷
江苏省苏州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七下·浦东期中) 在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A . 2个B . 3个C . 4个D . 5个2. (2分)下列说法正确的是()A . -0.064的立方根是0.4B . 9的立方根是C . 16的立方根是D . 0.01的立方根是0.0000013. (2分) (2015八上·吉安期末) 如图,是象棋盘的一部分.若“帅”位于点(1,﹣2)上,“相”位于点(3,﹣2)上,则“炮”位于点()上.A . (﹣1,1)B . (﹣1,2)C . (﹣2,1)D . (﹣2,2)4. (2分) (2016八上·富宁期中) 下列说法正确的是()A . 数轴上的点与有理数一一对应B . 数轴上的点与无理数一一对应C . 数轴上的点与整数一一对应D . 数轴上的点与实数一一对应5. (2分) (2018八上·如皋月考) 下列二次根式中,最简二次根式是()A .B .C .D .6. (2分)如图,BD是⊙O的弦,点C在BD上,以BC为边作等边三角形△ABC,点A在圆内,且AC恰好经过点O,其中BC=12,OA=8,则BD的长为()A . 20B . 19C . 18D . 167. (2分)如图,直线y=-2x+4与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,则S△ABC=()A . 1B . 2C . 3D . 48. (2分)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A . 80°B . 90°C . 100°D . 无法确定9. (2分)(2018·吉林模拟) 甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距A地18千米的B 地,他们离开A地的距离(千米)和行驶时间t(小时)之间的函数关系图象如图所示. 根据题目和图象提供的信息,下列说法正确的是()A . 乙比甲早出发半小时B . 乙在行驶过程中没有追上甲C . 乙比甲先到达B地D . 甲的行驶速度比乙的行驶速度快10. (2分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A . CD、EF、GHB . AB、EF、GHC . AB、CD、GHD . AB、CD、EF二、填空题 (共8题;共8分)11. (1分) (2019七上·香坊期末) 一个数的立方根是,则这个数的算术平方根是________.12. (1分)(2016·黄石模拟) 在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1 , y1)、P2(x2 , y2)两点,若x1<x2 ,则y1________y2 .(填“>”“<”或“=”)13. (1分) (2019八下·浏阳期中) 菱形的两条对角线的长为24和10,则菱形的边长是________.14. (1分) (2016八上·县月考) 如图,已知一次函数, 当 ________时, =-2, 当________时, <-2,当 ________时, >-2;15. (1分) (2019七下·北京期中) 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分。
初中数学苏州市相城区八年级第一学期期中考模拟试数学考试卷 .docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:2的算术平方根是A. B.± C.4 D.±4试题2:已知等腰三角形的一个外角等于80°,则它的顶角是A.100° B. 20° C.100°或20° D.不能确定试题3:在四边形ABCD中,已知AB∥CD,下列条件中无法判定该四边形为平行四边形的是A.AB=CD B.AD//BC C.AD=BC D.∠A=∠C试题4:下列图形中,一定是中心对称图形的是A.平行四边形 B.等腰三角形 C.梯形 D.直角三角形试题5:有四个三角形,分别满足下列条件:(1)一个内角等于另外两个内角之和:(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为7、24、25.其中直角三角形有A.1个 B.2个 C.3个 D.4个试题6:矩形ABCD的对角线AC、BD相交于点O,如果△ABC的周长比△AOB的周长长10厘米,则矩形边AD的长是A.5厘米 B.10厘米 C.7.5厘米 D.不能确定试题7:一天中有86400秒,这个数用科学记数法表示,并保留二个有效数字,正确的表示A.8.6×104 B.0.86×105 C.86×103 D.86×104试题8:在梯形ABCD中,AD //BC,∠A=100°,CD的垂直平分线交BC于E,若CE=AB,则∠C的度数为A.40° B.50° C.80° D.40°或50°试题9:在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是A.3.5 B. C. D.7试题10:如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG:②BG=GC;③AG∥CF;④∠GAE=45°;⑤S△FGC=3.其中正确结论的个数是A.5 B.4C.3 D.2试题11:若x 2=9,则x=;若,则y=.试题12:如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为度.试题13:如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.试题14:如图,在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A沿纸箱表面爬到顶点B点,那么它所行的最短路线的长是.试题15:在实数π、、、3.14、1.362465…中,无理数的个数为个.试题16:如图,在平行四边形ABCD中,EF//AD,HN //AB,则图中的平行四边形共有个.试题17:在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于▲度.试题18:长为1,宽为a的矩形纸片(<a<1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第3次操作后,剩下的矩形恰好为正方形,则a的值为▲.试题19:试题20:试题21:5x2-10=0试题22:试题23:如图,网格中的图案是美国总统Garfie1d于1876年给出的一种验证某个著名结论的方法:(1)请你画出直角梯形EDBC绕EC中点O顺时针方向旋转180°的图案,你会得到一个美丽的图案.(阴影部分不要涂错).(2)若网格中每个小正方形边长为单位1,旋转后A、B、D的对应点为A'、B'、D',求四边形ACA'E的面积?(3)根据旋转前后形成的这个美丽图案,你能说出这个著名的结论吗?若能,请你写出这个结论.试题24:如图,等腰三角形ABC的顶角∠A=36°,CD是底角∠ACB的平分线,DE∥BC.(1)求证:△CDE是等腰三角形;(2)图中除了△ABC和△CDE外还有等腰三角形,请直接写出这些等腰三角形.试题25:如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,∠B=60°,BC=2AD,E、F分别为AB、BC的中点.求证:(1)四边形AFCD为矩形;(2)FE⊥DE.试题26:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证四边形DEBF是菱形.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.试题28:如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.(1)试说明OE=OF;(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.试题29:已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF//AB,BF的延长线交DC于点E.(1)求证:△BFC≌△DFC;(2)求证:AD=DE;(3)若△DEF的周长为6,AD=2,BC=5,求梯形ABCD的面积.试题30:如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.(1)连接DM并延长交BC于N,求证:CN=AD;(2)求证:△BMD为等腰直角三角形;(3)将△ADE绕点A逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.试题1答案:A试题2答案:A试题3答案:试题4答案: A试题5答案: C试题6答案: B试题7答案: A试题8答案: D试题9答案: D试题10答案: B试题11答案:试题12答案: 72试题13答案: 15试题14答案: 10试题15答案:试题16答案: 9试题17答案: 60试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:试题26答案:试题27答案:试题28答案:试题29答案:试题30答案:。
2018-2019学年苏科版八年级上数学期中复习试题含答案详解
期中测试题【本试卷满分120分,测试时间120分钟】一、选择题(每小题3分,共36分) 1.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形. 正确的有( )A.1个B.2个C.3个D.4个 2.已知等腰三角形的周长为15 cm ,其中一边长为7 cm ,则该等腰三角形的底边长为( ) A.3 cm 或5 cm B.1 cm 或7 cm C.3 cm D.5 cm 3.下列各组数中互为相反数的是( )A.2)2(2--与 B.382--与 C.2)2(2-与 D.22与-4.下列运算中,错误的是( ) ①1251144251=;②4)4(2±=-;③22222-=-=-;④2095141251161=+=+. A. 1个 B. 2个 C. 3个 D. 4个 5.如图,在△中,是角平分线,∠∠36°,则图中有等腰三角形( ) A.3个 B.2个 C.1个 D.0个6.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60° 7.如图,已知∠∠15°,∥,⊥,若,则( )A.4B.3C.2D.18.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.12 9.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( )A.24B.36C.40D.48 10. 已知平行四边形的周长为,两条对角线相交于点,且△的周长比△的周长大,则的长为( ) A.2ba -B.2ba + C.22ba + D.22ba + 11. 下列图形是轴对称图形而不是中心对称图形的是( )A.平行四边形B.菱形C.正方形D.等腰梯形12.顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为( )A.平行四边形B.菱形C.对角线相等的四边形D.直角梯形 二、填空题(每小题3分,共30分)13.把下列各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π. ①有理数集合: { };②无理数集合: { }; ③正实数集合: { };④实数集合: { }.14.若等腰梯形三边的长分别为3、4、11,则这个等腰梯形的周长为 . 15.在△中, cm , cm ,⊥于点,则_______. 16.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为________.17.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.18.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.19.已知5-a +3+b ,那么.20.若02733=+-x ,则_________.21.如图,点、分别是菱形的边、上的点,且∠∠60°,∠45°,则∠___________.22.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形. 三、解答题(共54分)23.(6分)如图,四边形ABCD 是平行四边形,,BD ⊥AD ,求BC ,CD 及OB 的长.24.(6分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).25.(6分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.26.(6分)如图,在梯形中,∥,,⊥,延长至点,使.(1)求∠的度数.(2)试说明:△为等腰三角形.27.(7分)如图,四边形为一梯形纸片,∥,.翻折纸片,使点与点重合,折痕为.已知⊥,试说明:∥.28.(7分)如图,菱形中,点是的中点,且⊥,.求:(1)∠的度数;(2)对角线的长;(3)菱形的面积.29.(8分)已知矩形中,6,8,平分∠交于点,平分∠交于点.(1)说明四边形为平行四边形;(2)求四边形的面积.30.(8分)如图,点是等腰直角△的直角边上一点,的垂直平分线分别交、、于点、、,且.当时,试说明四边形是菱形.期中测试题参考答案一、选择题1.A 解析:①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误; ③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A . 2.B 解析:(1)当边长7是腰时,底边长(cm ), 三角形的三边长为1、7、7,能组成三角形; (2)当边长7是底边时,腰长(cm ),三角形的三边长为4、4、7,能组成三角形.因此,三角形的底边长为1 cm 或7 cm . 3.A 解析:选项A 中;选项B 中;选项C 中;选项D中,故只有A 正确.4.D 解析:4个算式都是错误的.其中①12111213144169144251===;②4)4(2=-; ③22-没有意义; ④204125162516251161=⨯+=+.5.A 解析:∵ 是角平分线,∠36°,∴ ∠36°,∠72°,∴ (△是等腰三角形). ∵ ∠∠72°,∴(△是等腰三角形).∵ ∠72°,∴ (△是等腰三角形),故选A . 6.A 解析:∵ △和△都是等腰直角三角形,∴ ∠∠. 又∵ △绕着点沿逆时针旋转度后能够与△重合,∴ 旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A .7.C 解析:如图,作⊥于点,∵ ∠,⊥,⊥,∴ .∵ ∥,∴ ∠2∠30°,∴ 在Rt △中,,故选C .8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径. ∵,∴.∵ ,∴ ,即蚂蚁要爬行的最短距离是10 cm . 9.D 解析:设,则,根据“等面积法”得,解得,∴ 平行四边形的面积.10.B 解析:依据平行四边形的性质有,由△的周长比△的周长大,得,故2ba +. 11.D 解析:A 是中心对称图形,不是轴对称图形;B 、C 是轴对称图形,也是中心对称图形;D 是轴对称图形,不是中心对称图形,故选D . 12.C 解析:由于菱形的四边相等,且原四边形对角线为菱形边长的2倍,故原四边形为对角线相等的四边形. 二、填空题13. ①-7,0.32,31,46,0,3216;②8,21,-2π; ③0.32,31,46,8,21,3216;④-7,0.32,31,46,0,8,21,3216,-2π14.29 解析:当腰长为3时,等腰梯形不成立.同理,当腰长为4时,也不能构成等腰梯形.故只有当腰长为11时满足条件,此时等腰梯形的周长为29.15.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角平分线三线合一, ∴.∵,∴ .∵ ,∴ (cm ).16.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.17.15 解析:∵ 点关于的对称点是,关于的对称点是,∴ ,. ∴ △的周长为. 18. 解析:如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.19.8 解析:由5-a +3+b ,得,所以.20.27 解析:因为,所以,所以. 21. 解析:连接,∵ 四边形是菱形,∠, ∴ ∠,,∠,∠21∠.∴ ∠,△为等边三角形,∴ ,∠,即∠.又∠,即∠, ∴ ∠.又,∠,∴△≌△(ASA),∴.又,则△是等边三角形,∴.又,则.22.6、3 解析:因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形.三、解答题23.分析:在平行四边形中,可由对边分别相等得出,的长,再在Rt △中,由勾股定理得出线段的长,进而可求解的长.解:∵四边形ABCD是平行四边形,∴,,.∵ BD⊥AD,∴,∴2125.24.解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.25.(1)证明:在矩形ABCD中,,且,所以.(2)解:△ABF≌△DEA.证明:在矩形ABCD中,∵ BC∥AD,∴∠.∵ DE⊥AG,∴∠.∵∠,∴∠.又∵,∴△ABF≌△DEA.26.分析:(1)在三角形中,根据等边对等角,再利用角的等量关系可知,再由直角三角形中,两锐角互余即可求解.(2)有两条边相等的三角形是等腰三角形,故连接,根据等腰梯形的性质及线段间的关系及平行的性质,可得.解:(1)∵∥,∴.∵,∴.∴.∵,∴梯形为等腰梯形,∴.∴.在△中,∵,∴.∴.∴21.∴.(2)如图,连接,由等腰梯形可得.EF在四边形中,∵ ∥,,∴ 四边形是平行四边形.∴ ,∴ , 即△为等腰三角形.27.分析:过点作∥,交的延长线于点,连接,交于点,则. 证明四边形是平行四边形,△是等腰三角形,根据等腰三角形的性质,底边上的高是底边上的中线,得到是△的中位线, 可得∥,即∥.解:如图,过点作∥,交的延长线于点, 连接,交于点,则.∵ ∥,∴ 四边形是平行四边形,∴ ,.∵ ,∴ .∴ △是等腰三角形.又∵ ⊥,∴ .∴ 是△的中位线.∴ ∥.∴ ∥. 28.分析:(1)连接,可证△是等边三角形,进而得出;(2)可根据勾股定理先求得的一半,再求的长; (3)根据菱形的面积公式计算即可. 解:(1)如图,连接,∵ 点是的中点,且⊥,∴ (垂直平分线的性质).又∵ ,∴ △是等边三角形,∴ .∴ (菱形的对角线互相垂直平分,且每一条对角线平分一组对角). (2)设与相交于点,则2a.根据勾股定理可得a 23,∴ a 3.(3)菱形的面积=21××a 3=223a . 29.分析:(1)可证明∥,又∥,可证四边形为平行四边形.(2)先求△的面积,再求平行四边形的面积. 解:(1)∵ 四边形是矩形,∴ ∥,∥,∴ ∵ 平分,平分,∴ .∴ ∥. ∴ 四边形为平行四边形(两组对边分别平行的四边形是平行四边形). (2)如图,作⊥于点.∵ 平分∠,∴ (角平分线的性质).又,∴ ,.在Rt △中,设,则, 那么,解得.∴ 平行四边形的面积等于.30.解:如图,过点作⊥于点,∵,,∴△是等腰直角三角形,∵,,∴.又,,∴△≌△,∴.∵是的垂直平分线,∴,,∴,∴△≌△,∴,∴四边形是菱形.。
八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
2018-2019(含答案)八年级(上)期中数学试卷 (10)
2018-2019(含答案)八年级(上)期中数学试卷 (10).................................................................................................................................................................2018.10.22一、选择题:本大题共12题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.若一个多边形的内角和为1080∘,则这个多边形的边数为()A.6B.7C.8D.94.等腰三角形的一个内角是50∘,则这个三角形的底角的大小是()A.65∘或50∘B.80∘或40∘C.65∘或80∘D.50∘或80∘5.如图,在△ABC中,BC边上的高为()A.BEB.AEC.BFD.CF6.在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130∘,则∠A=()A.50∘B.60∘C.80∘D.100∘7.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对8.和点P(2, −5)关于x轴对称的点是()A.(−2, −5)B.(2, −5)C.(2, 5)D.(−2, 5)9.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙10.如图,∠A =15∘,AB =BC =CD =DE =EF ,则∠DEF 等于( )A.90∘B.75∘C.70∘D.60∘11.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180∘形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为( )A.80∘B.100∘C.60∘D.45∘12.已知AB =AC =BD ,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180∘C.∠1+3∠2=180∘D.3∠1−∠2=180∘二、填空题:本大题共5个小题,共20分,只要求填写最后结果,每小题填对得4分.13.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为________.14.点P 到△ABC 三边的距离相等,则点P 是________的交点.15.一辆汽车车牌在水中的倒影为如图,该车牌的牌照号码是________.16.如图在中,AB =AC ,∠A =40∘,AB 的垂直平分线MN 交AC 于D ,则∠DBC =________度.17.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.三、解答题18.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹)19.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(−2, −1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1________;B1________;C1________.(3)△A1B1C1的面积为________.20.如图,△ABC≅△ADE,且∠CAD=10∘,∠B=∠D=25∘,∠EAB=120∘,求∠DFB和∠DGB的度数.21.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.22.已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.23.如图,在△ABC中,∠ACB=90∘,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≅△CEB.(2)AD=5cm,DE=3cm,求BE的长度.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.答案1. 【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.2. 【答案】D【解析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3. 【答案】C【解析】首先设这个多边形的边数为n,由n边形的内角和等于180∘(n−2),即可得方程180(n−2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n−2)=1080,解得:n=8.故选C.4. 【答案】A【解析】等腰三角形的两个底角相等,已知一个内角是50∘,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50∘的角是底角时,三角形的底角就是50∘;当50∘的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65度.故选:A.5. 【答案】B【解析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AE为△ABC中BC边上的高.故选B.6. 【答案】C【解析】在△BOC中由三角形的内角和可求得∠OBC+∠OCB=50∘,再由角平分线的定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,在△ABC中再利用三角形内角和定理可求得∠A.【解答】解:∵∠BOC=130∘,∴∠OBC+∠OCB=180∘−∠BOC=180∘−130∘=50∘,∵BO和CO分别平分∠ABC和∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,∴∠A=180∘−(∠ABC+∠ACB)=180∘−100∘=80∘,故选C.7. 【答案】A【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.此类题可以先把单独的两个全等三角形的对数找完,再找由两个三角形组合的全等的大三角形的对数,最后找由三个小三角形组合的全等的大三角形的对数.【解答】解:单独的两个全等三角形的对数是3,分别是:△BDE≅△CDF、△DGE≅△DGF、△AGE≅△AGF;由两个三角形组合的全等的大三角形的对数是1,是:△AED≅△AFD;由三个小三角形组合的全等的大三角形的对数是1,是:△ADB≅△ADC;所以共5对,故选A.8. 【答案】C【解析】点P(m, n)关于x轴对称点的坐标P′(m, −n),然后将题目已经点的坐标代入即可求得解.【解答】解:根据轴对称的性质,得点P(2, −5)关于x轴对称的点的坐标为(2, 5).故选:C.9. 【答案】B【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.10. 【答案】D【解析】根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.【解答】解:∵AB=BC=CD=DE=EF,∠A=15∘,∴∠BCA=∠A=15∘,∴∠CBD=∠BDC=∠BCA+∠A=15∘+15∘=30∘,∴∠BCD=180∘−(∠CBD+∠BDC)=180∘−60∘=120∘,∴∠ECD=∠CED=180∘−∠BCD−∠BCA=180∘−120∘−15∘=45∘,∴∠CDE=180∘−(∠ECD+∠CED)=180∘−90∘=90∘,∴∠EDF=∠EFD=180∘−∠CDE−∠BDC=180∘−90∘−30∘=60∘,∴∠DEF=180∘−(∠EDF+∠EFC)=180∘−120∘=60∘.故选D.11. 【答案】A【解析】先根据三角形的内角和定理易计算出∠1=140∘,∠2=25∘,∠3=15∘,根据折叠的性质得到∠1=∠BAE=140∘,∠E=∠3=15∘,∠ACD=∠E=15∘,可计算出∠EAC,然后根据∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【解答】解:设∠3=3x,则∠1=28x,∠2=5x,∵∠1+∠2+∠3=180∘,∴28x+5x+3x=180∘,解得x=5∘,∴∠1=140∘,∠2=25∘,∠3=15∘,∵△ABE是△ABC沿着AB边翻折180∘形成的,∴∠1=∠BAE=140∘,∠E=∠3=15∘,∴∠EAC=360∘−∠BAE−∠BAC=360∘−140∘−140∘=80∘,又∵△ADC是△ABC沿着AC边翻折180∘形成的,∴∠ACD=∠E=15∘,而∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=80∘.故选A.12. 【答案】D【解析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【解答】解:∵AB=AC=BD,∴∠B=∠C=180−2∠1,∴∠1−∠2=180−2∠1,∴3∠1−∠2=180.故选D.13. 【答案】8cm【解析】设腰长为2x,得出方程(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,求出x后根据三角形三边关系进行验证即可.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故答案为:8cm.14. 【答案】角平分线的交点【解析】根据角平分线上的点到角的两边距离相等解答.【解答】解:∵点P到△ABC三边的距离相等,∴点P是角平分线的交点.故答案为:角平分线的交点.15. 【答案】M17936【解析】在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面成轴对称图形.【解答】解:根据镜面对称的性质,题中所显示的图片所显示的数字与M17936成轴对称,该车牌的牌照号码是M17936.故答案为M17936.16. 【答案】30【解析】由AB=AC,∠A=40∘,即可推出∠C=∠ABC=70∘,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40∘,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40∘,∴∠C=∠ABC=70∘,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40∘,∴∠DBC=30∘.故答案为30∘.17. 【答案】15【解析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:1518. 【答案】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解析】根据两点间线段最短可知作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解答】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.19. 【答案】; (−1, 2),(−3, 1),(2, −1); 4.5【解析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;; (2)根据平面直角坐标系写出各点的坐标;; (3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;; (2)△A1(−1, 2),B1(−3, 1),C1(2, −1);; (3)△A1B1C1的面积=5×3−12×1×2−12×2×5−12×3×3,=15−1−5−4.5,=15−10.5,=4.5.20. 【答案】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.【解析】由△ABC≅△ADE,可得∠DAE=∠BAC=12(∠EAB−∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B,因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形内角和定理可得∠DGB=∠DFB−∠D,即可得∠DGB的度数.【解答】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.21. 【答案】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.【解析】①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC= 90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.; ①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.22. 【答案】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.【解析】根据等腰三角形三线合一的性质可得到∠BAD=∠CAD,再根据三角形外角的性质可推出∠EFA=∠BAD,再根据内错角相等两直线平行得到EF // AD,已知AD⊥BC,则EF与BC的关系为垂直.【解答】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.23. 【答案】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.【解析】(1)根据全等三角形的判定定理AAS推知:△ADC≅△CEB;; (2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD−DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.24. 【答案】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.【解析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,; (2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90∘,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.。
2018-2019学度苏版初二上年中数学试卷含解析解析.doc.doc
2018-2019学度苏版初二上年中数学试卷含解析解析一、选择题〔每题3分,共30分〕1、计算〔﹣x〕2•x3所得的结果是〔〕A、x5B、﹣x5C、x6D、﹣x62、下面四个图形中,线段BD是△ABC的高的是〔〕A、B、C、D、3、三角形三条边大小之间存在一定的关系,以以下各组线段为边,能组成三角形的是〔〕A、2 cm,3 cm,5 cmB、5 cm,6 cm,10 cmC、1 cm,1 cm,3 cmD、3 cm,4 cm,9 cm4、计算﹣〔﹣3a2b3〕4的结果是〔〕A、81a8b12B、12a6b7C、﹣12a6b7D、﹣81a8b125、如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是〔〕A、边角边B、角边角C、边边边D、角角边6、假设3x=3,3y=5,那么3x+y等于〔〕A、5B、3C、15D、87、等腰三角形中,一个角为50°,那么这个等腰三角形的顶角的度数为〔〕A、150°B、80°C、50°或80°D、70°8、如图,MB=ND,∠MBA=∠NDC,以下条件中不能判定△ABM≌△CDN的是〔〕A、∠M=∠NB、AM=CNC、AB=CDD、AM∥CN9、如果一个多边形的边数由8边变成10边,其内角和增加了〔〕A、90°B、180°C、360°D、540°10、如图,将一副三角板叠放在一起,使直角的顶点重合于O,那么∠AOC+∠DOB=〔〕A、90°B、120°C、160°D、180°11、如图,给出以下四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E、BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E、其中,能使△ABC≌△DEF的条件共有〔〕A、1组B、2组C、3组D、4组12、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,那么∠EOB的度数为〔〕A、60°B、70°C、75°D、85°二、填空题〔每题3分,共18分〕13、计算:〔﹣a2〕3+〔﹣a3〕2= 、14、一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是、15、如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,那么∠1= 度、16、如图,点P在∠AOB的平分线上,假设使△AOP≌△BOP,那么需添加的一个条件是〔只写一个即可,不添加辅助线〕、17、假设a m=2,a n=4,那么a m﹣n= 、18、如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,那么△ABD的面积是、【三】解答题〔共8小题,总分值78分〕19、如图,在△ABC中,∠BAC是钝角,完成以下画图、〔不写作法保留作图痕迹〕〔1〕∠BAC的平分线AD;〔2〕AC边上的中线BE;〔3〕AC边上的高BF、20、计算〔1〕100×103×102〔2〕x2•x3+〔x3〕2〔3〕3〔x2〕2•〔x2〕5﹣〔x5〕2•〔x2〕2〔4〕〔〕100×〔1〕100×〔〕2018×42018、21、一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?22、如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数、23、n是正整数,且x3n=2,求〔3x3n〕2+〔﹣2x2n〕3的值、24、:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF、求证:〔1〕AF=CE;〔2〕AB∥CD、26、如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,△ABE≌△ADF、〔1〕在图中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置;〔2〕线段BE与DF有什么关系?证明你的结论、2016-2017学年重庆市XX中学八年级〔上〕期中数学试卷参考答案与试题解析一、选择题〔每题3分,共30分〕1、计算〔﹣x〕2•x3所得的结果是〔〕A、x5B、﹣x5C、x6D、﹣x6【考点】幂的乘方与积的乘方;同底数幂的乘法、【分析】积的乘方,等于把每个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加,计算后直接选取答案、【解答】解:〔﹣x〕2x3=x2•x3=x5、应选A、2、下面四个图形中,线段BD是△ABC的高的是〔〕A、B、C、D、【考点】三角形的角平分线、中线和高、【分析】根据三角形高的定义进行判断、【解答】解:线段BD是△ABC的高,那么过点B作对边AC的垂线,那么垂线段BD为△ABC 的高、应选A、3、三角形三条边大小之间存在一定的关系,以以下各组线段为边,能组成三角形的是〔〕A、2 cm,3 cm,5 cmB、5 cm,6 cm,10 cmC、1 cm,1 cm,3 cmD、3 cm,4 cm,9 cm【考点】三角形三边关系、【分析】根据三角形的三边关系对各选项进行逐一分析即可、【解答】解:A、∵2+3=5,∴不能组成三角形,故本选项错误;B、∵10﹣5<6<10+5,∴能组成三角形,故本选项正确;C、∵1+1=2<3,∴不能组成三角形,故本选项错误;D、∵3+4=7<9,∴不能组成三角形,故本选项错误、应选B、4、计算﹣〔﹣3a2b3〕4的结果是〔〕A、81a8b12B、12a6b7C、﹣12a6b7D、﹣81a8b12【考点】幂的乘方与积的乘方、【分析】根据积的乘方的性质:积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘,计算后直接选取答案、【解答】解:﹣〔﹣3a2b3〕4=﹣34a8b12=﹣81a8b12、应选D、5、如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是〔〕A、边角边B、角边角C、边边边D、角角边【考点】全等三角形的应用、【分析】由于O是AA′、BB′的中点O,再加对顶角相等即可证明△OAB≌△OA′B′,所以全等理由就可以知道了、【解答】解:△OAB与△OA′B′中,∵AO=A′O,∠AOB=∠A′OB′,BO=B′O,∴△OAB≌△OA′B′〔SAS〕、应选A、6、假设3x=3,3y=5,那么3x+y等于〔〕A、5B、3C、15D、8【考点】同底数幂的乘法、【分析】先结合同底数幂的乘法的运算法那么将3x+y变形为3x×3y,然后进行求解即可、【解答】解:∵3x=3,3y=5,∴3x+y=3x×3y=3×5=15、应选C、7、等腰三角形中,一个角为50°,那么这个等腰三角形的顶角的度数为〔〕A、150°B、80°C、50°或80°D、70°【考点】等腰三角形的性质、【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析、【解答】解:①50°是底角,那么顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°、应选:C、8、如图,MB=ND,∠MBA=∠NDC,以下条件中不能判定△ABM≌△CDN的是〔〕A、∠M=∠NB、AM=CNC、AB=CDD、AM∥CN【考点】全等三角形的判定、【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种、逐条验证、【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意、应选:B、9、如果一个多边形的边数由8边变成10边,其内角和增加了〔〕A、90°B、180°C、360°D、540°【考点】多边形内角与外角、【分析】根据多边形的内角和定理计算即可、【解答】解:∵n边形的内角和为〔n﹣2〕•180°,∴边数增加2它的内角和增加2×180°=360°、应选:C、10、如图,将一副三角板叠放在一起,使直角的顶点重合于O,那么∠AOC+∠DOB=〔〕A、90°B、120°C、160°D、180°【考点】角的计算、【分析】因为此题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解、【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°、应选D、11、如图,给出以下四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E、BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E、其中,能使△ABC≌△DEF的条件共有〔〕A、1组B、2组C、3组D、4组【考点】全等三角形的判定、【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断、【解答】解:第①组满足SSS,能证明△ABC≌△DEF、第②组满足SAS,能证明△ABC≌△DEF、第③组满足ASA,能证明△ABC≌△DEF、第④组只是SSA,不能证明△ABC≌△DEF、所以有3组能证明△ABC≌△DEF、故符合条件的有3组、应选:C、12、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,那么∠EOB的度数为〔〕A、60°B、70°C、75°D、85°【考点】全等三角形的判定与性质;三角形内角和定理、【分析】可得△ABF≌△ACE,结合三角形内角和可得∠AFB=∠AEC=95°,在由外角性质可得,∠EOB=95°﹣25°=70°【解答】解:∵AE=AF,AB=AC,∠A=60°∴△ABF≌△ACE∴∠C=∠B=25°∴∠AEC=180°﹣60°﹣25°=95°,∴∠EOB=95°﹣25°=70°应选B、二、填空题〔每题3分,共18分〕13、计算:〔﹣a2〕3+〔﹣a3〕2= 0 、【考点】幂的乘方与积的乘方、【分析】先利用〔ab〕n=a n b n计算,再合并即可、【解答】解:原式=﹣a6+a6=0,故答案是0、14、一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性、【考点】三角形的稳定性、【分析】将其固定,显然是运用了三角形的稳定性、【解答】解:一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性、故答案为:三角形的稳定性、15、如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,那么∠1= 45 度、【考点】三角形的外角性质;三角形内角和定理、【分析】根据三角形的外角的性质及三角形的内角和定理可求得、【解答】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°、16、如图,点P在∠AOB的平分线上,假设使△AOP≌△BOP,那么需添加的一个条件是∠APO=∠BPO〔答案不唯一〕〔只写一个即可,不添加辅助线〕、【考点】全等三角形的判定、【分析】首先添加∠APO=∠BPO,利用ASA判断得出△AOP≌△BOP、【解答】解:∠APO=∠BPO等、理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中∵,∴△AOP≌△BOP〔ASA〕,故答案为:∠APO=∠BPO〔答案不唯一〕、17、假设a m=2,a n=4,那么a m﹣n= 、【考点】同底数幂的除法、【分析】所求式子利用同底数幂的除法逆运算法那么变形,将的等式代入计算即可求出答案、【解答】解:∵a m=2,a n=4,∴a m﹣n=a m÷a n=2÷4=、故答案为:、18、如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,那么△ABD的面积是 5 、【考点】角平分线的性质;勾股定理、【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解、【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5、故答案为:5、【三】解答题〔共8小题,总分值78分〕19、如图,在△ABC中,∠BAC是钝角,完成以下画图、〔不写作法保留作图痕迹〕〔1〕∠BAC的平分线AD;〔2〕AC边上的中线BE;〔3〕AC边上的高BF、【考点】作图—复杂作图、【分析】〔1〕利用角平分线的作法得出即可;〔2〕首先作出线段AC的垂直平分线得出E为中点,进而得出中线;〔3〕延长CA,进而过点B作BF⊥CA即可、【解答】解:〔1〕如下图:AD即为所求;〔2〕如下图:BE即为所求;〔3〕如下图:BF即为所求、20、计算〔1〕100×103×102〔2〕x2•x3+〔x3〕2〔3〕3〔x2〕2•〔x2〕5﹣〔x5〕2•〔x2〕2〔4〕〔〕100×〔1〕100×〔〕2018×42018、【考点】整式的混合运算、【分析】〔1〕原式利用同底数幂的乘法法那么计算即可得到结果;〔2〕原式利用同底数幂的乘法,以及幂的乘方运算法那么计算即可得到结果;〔3〕原式利用幂的乘方运算法那么计算,合并即可得到结果;〔4〕原式逆用积的乘方运算法那么变形,计算即可得到结果、【解答】解:〔1〕原式=102×103×102=107;〔2〕原式=x5+x6;〔3〕原式=3x14﹣x14=2x14;〔4〕原式=〔×〕100×〔×4〕2018×4=4、21、一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?【考点】多边形内角与外角、【分析】首先设外角为x°,那么内角为3x°,根据内角与外角是邻补角的关系可得x+3x=180,再解方程可得外角度数,然后再用外角和除以外角度数可得边数、【解答】解:设外角为x°,那么内角为3x°,由题意得:x+3x=180,解得:x=45,360°÷45°=8,答:这个正多边形为八边形、22、如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数、【考点】三角形内角和定理;三角形的外角性质、【分析】根据三角形的内角和定理求出∠C,再根据直角三角形两锐角互余求出∠DAC,然后根据角平分线的定义求出∠DAE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解、【解答】解:∵∠BAC=80°,∠B=60°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°,∵AD⊥BC,∴∠DAC=90°﹣∠C=90°﹣40°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠AEC=∠DAE+∠ADE=25°+90°=115°、23、n是正整数,且x3n=2,求〔3x3n〕2+〔﹣2x2n〕3的值、【考点】幂的乘方与积的乘方、【分析】〔﹣2x2n〕3=﹣8x6n=﹣8〔x3n〕2,再代入x3n=2进行计算即可、【解答】解:〔3x3n〕2+〔﹣2x2n〕3,=〔3×2〕2﹣8x6n,=36﹣8×22,=36﹣32,=4、24、:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF、求证:〔1〕AF=CE;〔2〕AB∥CD、【考点】直角三角形全等的判定;全等三角形的性质、【分析】先利用HL求证两直角三角形全等,从而得出AF=CE,∠ACD=∠CAB、最终由内错角相等两直线平行推出AB∥CD、【解答】证明:〔1〕∵DE⊥AC,BF⊥AC,在△ABF和△CDE中,,∴△ABF≌△CDE〔HL〕、∴AF=CE、〔2〕由〔1〕知∠ACD=∠CAB,∴AB∥CD、【考点】全等三角形的判定、【分析】此题中要证△ABC≌△DEF,的条件有一组对应边AB=DE〔AD=BE〕,一组对应角∠A=∠FDE、要想证得全等,根据全等三角形的判定,缺少的条件是一组对应角〔AAS或ASA〕,或者是一组对应边AC=EF〔SAS〕、只要有这两种情况就能证得三角形全等、以下任一方法均可:①添加条件:AC=DF、证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE、在△ABC和△DEF中,AB=DE,∠A=∠FDE,AC=DF,∴△ABC≌△DEF〔SAS〕;②添加条件:∠CBA=∠E、证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE、在△ABC和△DEF中,∠A=∠FDE,AB=DE,∠CBA=∠E,∴△ABC≌△DEF〔ASA〕;③添加条件:∠C=∠F、证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE、在△ABC和△DEF中,∠A=∠FDE,∠C=∠F,AB=DE,∴△ABC≌△DEF〔AAS〕、26、如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AB,△ABE≌△ADF、〔1〕在图中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置;〔2〕线段BE与DF有什么关系?证明你的结论、【考点】几何变换的类型;全等三角形的性质;正方形的性质、【分析】〔1〕利用正方形的性质得到∠BAD=90°,而△ABE≌△ADF,那么利用旋转的定义可将△ABE绕点A逆时针旋转90°可得到△ADF;〔2〕利用全等三角形的性质可得BE=DF,ABE=∠ADF,那么利用对顶角相等和三角形内角和可判断∠DHE=∠EAB=90°,从而得到BE⊥DF、【解答】解:〔1〕把△ABE绕点A逆时针旋转90°可得到△ADF;〔2〕BE=DF,BE⊥DF、理由如下:∵△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,而∠AEB=∠DEH,∴∠DHE=∠EAB=90°,∴BE⊥DF、2016年12月21日。
2018-2019学 年上学期八年级数学期中考试卷含答案
2018-2019学年八年级数学上学期期中试题(时间:120分钟,总分:150分)A 卷(共100分)一.选择题(共10小题,共30分)1.下列各数①﹣3.14 ② π ③ ④ 227 )A .2B .3C .4D .52.在平面直角坐标系中,点P (﹣1,1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列语句中正确的是( )A .9的算术平方根是±3B .9的平方根是3C .﹣9的平方根是﹣3D .9的算术平方根是34.满足下列条件的△ABC ,不是直角三角形的是( )A .b2=a2﹣c2B .∠C=∠A ﹣∠BC .∠A :∠B :∠C=3:4:5D .a :b :c=12:13:55.有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是( )A B cm C .cm D .6.若点P (a ,b )在第三象限,则M (-ab ,-a )应在 ( )A .第一象限B .第二象限C .第三象限D .第四象限7.要使二次根式x 2有意义,字母x 必须满足的条件是( )A .x ≤2B .x <2C .x ≤﹣2D .x <﹣28.若函数y=(m ﹣1)x|m|﹣5是一次函数,则m 的值为( )A .±1B .﹣1C .1D .29.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .y=2x+4B .y=3x ﹣1C .y=﹣3x+1D .y=﹣2x+410.一块直角三角形的纸片,两直角边AC=6cm,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 5cmB.4cmC. 3cmD.2cm二.填空题(共4小题,共16分)11.若三角形的边长分别为6、8、10,则它的最长边上的高为 . (10题图)12.一个正数的平方根是2x 和x-6,则这个正数是 .13.若点M (a ﹣3,a+4)在x 轴上,则点M 的坐标是 .14.已知函数y=kx+b (k ≠0)的图象与y 轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为 .(第20题图)三.计算题(共5个小题,20分)15.计算①65027÷⨯②123148+-③13)2()13)(13(81---+-+-16.求下列各式中的x:①x2+5=7 ②(x﹣1)3+64=0.四、解答题(共5个小题,34分)17.如图,每个小方格都是边长为1的小正方形,△ABC的位置如图所示,你能判断△ABC是什么三角形吗?请说明理由.(6分)(17题图)18. 对于长方形OABC,O为平面直角坐标系的原点,A点在x轴的负半轴上,C点在y轴的正半轴上,点B(m,n)在第二象限.且m,n满足)3(52=-++nm求点B的坐标;并在图上画出长方形OABC;在画出的图形中,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:4两部分,求点P的坐标.(8分)(第18题图)五、(每小题10分,共20分)19.已知一次函数y=kx+b的图象经过点(1,4)和(2,2).(1)求这个一次函数;(2)画出这个函数的图象,与x轴的交点A、与y轴的交点B;并求出△AOB的面积;(3)在第四象限内,直线AB上有一点C使△AOC的面积等于△AOB的面积,请求出点C的坐标.20.矩形ABCD中,AB=10,BC=6,点E在线段AB上.点F在线段AD上(1)沿EF折叠,使A落在CD边上的G处(如图),若DG=3,求AF的长;求AE的长;(2)若按EF折叠后,点A落在矩形ABCD的CD边上,请直接写出AF的范围.B卷(共50分)一、填空题.(每题4分,共20分)21.已知x是10的整数部分,y是10的小数部分,则()110--xy的平方根为_______..如图,圆柱底面周长为4cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,(第22题图)求棉线最短为cm.23.如图,数轴上表示2C、B,点C是AB的中点,则点A表示的数是______.(第23图题)24.直线434+-=x y 与x 轴、y 轴分别交于点A 、B ,M 是y 轴上一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上,则点M 的坐标为 。
2018-2019(含答案)八年级(上)期中数学试卷 (3)
2018-2019(含答案)八年级(上)期中数学试卷 (3).................................................................................................................................................................2018.10.22一、选择题(本大题共16个小题,共42分)1.在,,,,,,分式的个数是()A.个B.个C.、个D.个2.的平方根为()A.和B.和C. D.3.已知,,,则A. B. C. D.4.若分式无意义,那么的取值为()A. B. C. D.5.分式约分的结果是()A. B. C. D.6.的相反数为()A. B. C. D.7.如图,下列条件中,不能证明的是()A.,B.,C.,D.,8.分式,,的最简公分母是()A. B. C. D.9.如图,在方格纸中,以为一边作,使之与全等,从,,,四个点中找出符合条件的点,则点的个数为()A. B. C. D.10.计算:A. B. C. D.11.若有平方根,则的取值范围是()A. B. C. D.12.若,,则分式的值是()A. B. C. D.13.的整数部分是()A. B. C. D.14.如图,小敏做了一个角平分仪,其中,.将仪器上的点与的顶点重合,调整和,使它们分别落在角的两边上,过点,画一条射线,就是的平分线.此角平分仪的画图原理是:根据仪器结构,可得,这样就有.则说明这两个三角形全等的依据是()A. B. C. D.15.一个水塘里放养了鲤鱼和草鱼,草鱼的数量占总数的,现又放进了条鲤鱼,这时草鱼的数量占总数的,则这个水塘里草鱼的数量是()A. B. C. D.16.下列命题中:①已知两数,,如果,那么;②同旁内角互补,两直线平行;③全等三角形的对应角相等,对应边相等;④对顶角相等;其逆命题是真命题的是()A.①②B.②③C.③④D.①④二、填空题(本大题有3个小题,共10分)17.的平方根是________.18.若分式的值为,则的值为________.19.若关于的分式方程有增根,则的值是________;若分式方程无解,则的值为________.三、解答题(本大题共7个小题,共68分)20.把下列各数分别填入相应的大括号中:,, . ,,,,,,, . ,,整数: ...分数: ...负实数: ...无理数: ....21.如图,点,,,在同一条直线上,,,.与相等吗?说说你的理由;与平行吗?说说你的理由.22.化简并求值:,其中,.22.解分式方程:.23.如图,已知线段及,只用直尺和圆规,求作,使,,(保留作图痕迹,不写作法)24.某公司接到一份合同,要生产部新型手机,有,两个车间接受此任务,车间每天的综合费用为万元,车间每天加工的数量为车间的 . 倍,若,两车间共同完成一半,剩余的由车间单独完成,则共需要天完成.求,两车间每天分别能加工多少部?25.如图,在中,,,过点的直线交于点,过点作,垂足为,过点作,垂足为,请你在图中找出一对全等三角形,并说明理由.26.阅读:例:若,求,因为,所以.探究:填空:①若,则________;②若,则________;③若,则________;规定:若,用符号“ ”表示,即填空:① ________;② ________;③ ________;应用:________;________;________;举例说明,,之间的关系.答案1. 【答案】B【解析】根据分式的定义,可得答案.【解答】解:,,是分式,故选:.2. 【答案】A【解析】根据平方根的定义即可得.【解答】解:的平方根为,故选:.3. 【答案】D【解析】根据全等三角形的性质即可求出的度数.【解答】解:∵ ,∴ ,∵∴故选4. 【答案】C【解析】根据分式无意义,分母等于列方程求解即可.【解答】解:由题意得,,解得.故选.5. 【答案】B【解析】先对分子、分母找出公约式,再约分即可.【解答】解:,故选.6. 【答案】D【解析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:的相反数为,故选:.7. 【答案】C【解析】全等三角形的判定定理有,,,,根据定理逐个判断即可.【解答】解:、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,不能推出,不符合全等三角形的判定定理,故本选项符合题意;、∵ ,∴ ,∵ ,∴根据三角形内角和定理得出,,,,符合全等三角形的判定定理,能推出,故本选项不符合题意.故选.8. 【答案】A【解析】确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的最简公分母是;故选9. 【答案】B【解析】根据全等三角形的判定定理进行分析即可.【解答】解:符合条件的点的个数为个,分别是,,故选:.10. 【答案】A【解析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式,故选11. 【答案】D【解析】根据非负数有平方根列式求解即可.【解答】解:根据题意得,解得.故选:.12. 【答案】B【解析】先算除法,再算减法,最后把,的值代入进行计算即可.【解答】解:原式,当,时,原式.故选.13. 【答案】C【解析】由被开方数的范围确定出所求无理数的整数部分即可.【解答】解:∵ ,∴,则的整数部分为,故选14. 【答案】D【解析】在和中,由于为公共边,,,利用定理可判定,进而得到,即.【解答】解:在和中,,∴ ,∴ ,即.故选:.15. 【答案】A【解析】设这个水塘里草鱼的数量是,根据题意列出方程解答即可.【解答】解:这个水塘里草鱼的数量是,可得:,解得:,经检验是原方程的解,故选16. 【答案】B【解析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①已知两数,,如果,那么的逆命题是:已知两数,,如果,那么,错误,如,都是负数时;②同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,正确;③全等三角形的对应角相等,对应边相等的逆命题是对应角相等,对应边相等的三角形是全等三角形,正确;④对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故本选项错误;其逆命题是真命题的是②③;故选.17. 【答案】【解析】根据平方根的定义,求数的平方根,也就是求一个数,使得,则就是的平方根,由此即可解决问题.【解答】解:的平方根.故答案为:.18. 【答案】【解析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得且,解得,故答案为:.19. 【答案】,或【解析】根据分式方程的增根,可得关于的整式方程,根据解方程,可得答案.【解答】解:两边都乘以,得,将代入,得,故答案为:;两边都乘以,得,将代入,得,时,,故答案为:或.20. 【答案】,,,,,, . , . ,,,, . ,,,,,,【解析】根据实数的分类即可求出答案.【解答】解:整数:...分数: . . ...负实数:...无理数:....21. 【答案】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .【解析】利用“边角边”证明和全等,根据全等三角形对应边相等可得,再求解即可;; 根据全等三角形对应角相等可得,再根据同位角相等,两直线平行证明即可.【解答】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .22. 【答案】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.【解析】原式去括号合并得到最简结果,把的值代入计算即可求出值;; 首先方程的两边同乘以最简公分母,把分式方程转化为整式方程,再求解即可,最后要把求得的的值代入到最简公分母进行检验.【解答】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.23. 【答案】解:如图,①作线段.②作,,与交于点.即为所求.【解析】①作线段.②作,,与交于点.即为所求.【解答】解:如图,①作线段.②作,,与交于点.即为所求.24. 【答案】,两车间每天分别能加工和部.【解析】关键描述语是:“ 车间每天加工的数量为车间的 . 倍”;等量关系为:共需要天完成,根据等量关系列式.,【解答】解:设两车间每天能加工部,根据题意可得:.解得:,经检验是原方程的解,. ,25. 【答案】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .【解析】根据余角的性质得到,根据全等三角形的判定即可得到结论.【解答】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .26. 【答案】,,; ; ,,; ,,; 设,,则,而,故即,,之间的关系是.【解析】根据题目中的例子可以解答本题;; ; 根据中的规定和中的结果可以解答本题;; 根据前面的问题解答可以解答本题;; 列出具体的数据加以说明,,之间的关系即可.【解答】解: ①∵ ,,∴ ,②∵ ,,∴ ,③∵ ,,∴ ,; ; 由可得,① ,② ,③ ,; ∵∴ ,∵,∴,∵ ,∴ ,; 设,,则,而,故即,,之间的关系是.。
苏科版2018--2019学年度第一学期八年级期中考试数学试卷
绝密★启用前苏科版2018--2019学年度第一学期八年级期中考试数学试卷望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!1.(本题3分)在实数﹣2,, ,0.1122,π中,无理数的个数为( ) A . 0个 B . 1个 C . 2个 D . 3个2.(本题3分)在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( ) A .34 B . 35 C . 45 D . 1253.(本题3分)已知2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A.3 B.7 C.3或7 D.1或7 4.(本题3分) 的整数部分为( ) A . 1 B . 2 C . 3 D . 45.(本题3分)等腰直角三角形的三边之比为( )A . 3∶4∶5B . 1∶1∶2C . 1∶1∶D . ∶ ∶16.(本题3分)如图,△OAD ≌△OBC ,且∠O =72°,∠C =20°,则∠AEB =_____度.7.(本题3分)下列各式中,正确的是( )A 2=-B .2(9=C 3=-D 3=○………………○………○…………………○…线…………○…※※请※※※※订※※线※※答※※题※※ ……○…线……………论中不正确的是A .B .C .D .9.(本题3分)如图,将 ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm ,△ADC 的周长为12cm ,则BC 的长为( )A . 7cmB . 10cmC . 12cmD . 22cm10.(本题3分)(题文)下列图形中不是轴对称图形的是( )A .B .C .D .二、填空题(计32分)11.(本题4分)如图,Rt ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.12.(本题4分) 的平方根是______.13.(本题4分)如图,在△ABC 中,AB =15cm ,AC =13cm ,BC =14cm ,则△ABC 的面积为________cm 2.…………○……………○………名:___________班级:__:___________………○…………线…………………○…………内……14.(本题4分)如果一个正数的两个平方根是a +9和2a +15,则这个数为____________ 15.(本题4分)已知两条线段的长分别为 和 ,当第三条线段的长取 ______ 时,这三条线段能围成一个直角三角形.16.(本题4分)如图,尺规作图作AOB 的平分线,方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画孤,两弧交于点P ,作射线OP ,由作法得OCP ≌ODP 的根据是:__________;17.(本题4分)如图所示,I 是 ABC 三内角平分线的交点,IE ⊥BC 于E ,AI 延长线交BC 于D ,CI 的延长线交AB 于F ,下列结论:①∠BIE=∠CID ;②S ABC =12IE (AB+BC+AC );③BE=12(AB+BC ﹣AC );④AC=AF+DC .其中正确的结论是_____.18.(本题4分)如图,△ABC 中,AB=AD=DC ,设∠BAD=x ,∠C=y ,试求y 与x 的函数关系式,并写出x 的取值范围.三、解答题(计58分)19.(本题8分)计算:(﹣2)3×+(﹣1)2018+.………外……………订……※※内※※答※……○……20.(本题8分)一个正数 的平方根是 与 ,求 和 的值。
最新整理2018-2019学年最新苏教版八年级数学上学期期中考试综合模拟试题及答案-精编试题
新课标精品卷 -------- 期中模拟试题
标
;
若
不
存
在
,
请
说
明
理
由.
新课标精品卷 -------- 期中模拟试题
数学试 卷
参考答案 与试题 解析
一、 选择题 (本 题共 10 小 题,每小 题 3 分,共 30 分) 1.数 25 的算 术平方根 为( ) A .±5 B .﹣5 C. 5 D.25 【考点】算 术平方根. 【分析】直接根据算 术平方根的定 义计 算即可. 【解答】解: 数 25 的算 术 平方根 为 5 . 故 选:C.
22 .已知一次函 数 y=kx+b 的图象 经过 点( ﹣1 ,﹣5 ),且 与 正比例函 数 的 图象相交于点( 2,a). ( 1)求 实数 a 的值 及一次函 数的解析式; ( 2)求 这两个 函数图 象与 x 轴所 围成的三角形面 积. 23 .在△ ABC 中,∠ ACB=9°0 , AC=BC ,D 是 AB 的中点,点 E 是边 AC 上 的一 动点,点 F 是边 BC 上的一 动点. ( 1)若 AE=CF ,试证 明 DE=DF ; ( 2)在点 E、点 F 的运动过 程中,若 DE⊥ DF , 试判断 DE 与 DF 是否一定相 等? 并加以 说明. ( 3)在( 2 )的 条件下,若 AC=2 ,四 边形 ECFD 的面 积是一 个 定 值吗 ?若不 是, 请说 明理由,若是, 请直接 写出它 的面 积 .
【解答】解:已知直角三角形的 两直角 边为 6、 8,
则 斜边长为
=10 ,
故斜 边的中 线长为 ×10=5 ,
故 选:C.
6 .由四舍五入得到地球的半 径约为 6.4 ×10 3km , 这个 近似 数 的精确程度 为 () A . 1000km B. 100km C . 10km D. 1km 【考点】近似 数 和有效 数 字. 【分析】近似 数 精确到 哪 一位就是看 这个数 的最后一位是 哪一位. 【解答】解: 6.4 ×10 3=6400 , 则这个数 近似到百位. 故选 B.
江苏省苏州市苏州工业园区2018-2019学年八年级上学期期中考试数学试题(解析版)
江苏省苏州市苏州工业园区2018-2019学年八年级上学期期中考试数学试题一、选择题(本大题共10小题,共30.0分)1.如图图形中,轴对称图形的个数为()A. 1个B. 2个C. 3个D. 4个2.27的立方根是()A. B. 3 C. 9 D.3.已知等腰三角形的一个内角等于50°,则该三角形的一个底角是()A. B. 或 C. 或 D.4.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是()A. B. C. 3 D. 15.关于的叙述,正确的是()A. 是有理数B. 5的平方根是C. D. 在数轴上不能找到表示的点6.由下列条件不能判定△ABC为直角三角形的是()A. B. :::3:2C. D. ,,7.下面几何图形中,其中一定是轴对称图形的有()①线段;②角;③等腰三角形;④直角三角形;⑤梯形;⑥平行四边形.A. 1个B. 2个C. 3个D. 4个8.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则△BCD的面积为()A. B. C. D.9.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.10.在平面直角坐标系中,我们把横坐标和纵坐标都是整数的点称为格点,则到坐标原点O的距离为10的格点共有()个.A. 4B. 6C. 8D. 12二、填空题(本大题共8小题,共24.0分)11.化简:=______.12.近似数8.28万的精确到______位.13.点A到x轴的距离为3,到y轴的距离为1,且点A在第二象限,则点A的坐标是______.14.有一个数值转换机,原理如下:当输入的x=81时,输出的y=______.15.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.16.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是________cm2 .17.直角三角形三角形两直角边长为5和12,三角形内一点到各边距离相等,那么这个距离为______.18.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=______°.三、计算题(本大题共1小题,共6.0分)19.求下列各式中x的值:(1)2(x-1)2=8;(2)3(x-3)3+81=0.四、解答题(本大题共7小题,共56.0分)20.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(-4,6),(-2,4).(1)请在如图所示的网格平面内作出平面直角坐标系(原点记为O);(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标______;(4)若把C1向下平移5个单位得到C2,请直接写出△OB1C2的面积______.21.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分,求3a-b+c的平方根.22.两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数.(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?25.如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒(0<t<13).(1)①点D的坐标是______;②当点P在AB上运动时,点P的坐标是______(用t表示);(2)求出△POD的面积等于9时点P的坐标;着△ABC的三条边逆时针走一圈回到C点,速度为2cm/s,设运动时间为t秒.(1)判断△ABC的形状,并求AB边上的高;(2)t为何值时,△ACP为等腰三角形?(3)另有一点Q,从点C开始,按顺时针走一圈回到C点,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?答案和解析1.【答案】B【解析】解:第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形不是轴对称图形,综上所述,轴对称图形有2个.故选:B.根据轴对称图形的概念对各图形分析判断即可得解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:∵3的立方等于27,∴27的立方根等于3.故选:B.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.3.【答案】C【解析】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选:C.等腰三角形的两个底角相等,已知一个内角是50°,则这个角可能是底角也可能是顶角.要分两种情况讨论.本题考查了等腰三角形的性质,分类讨论是正确解答本题的关键.4.【答案】D【解析】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3、1-n=2,解得:m=2、n=-1,所以m+n=2-1=1,故选:D.根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.5.【答案】C【解析】解:A、是有理数,说法错误,应是无理数;B、5的平方根是,说法错误,应是;C、2<<3,说法正确;D、在数轴上不能找到表示的点,说法错误;故选:C.根据无限不循环小数是无理数可得A说法错误,根据平方根定义可得5的平方根是±可得B说法错误,根据可得C说法正确;根据实数与数轴上点是一一对应关系可得D说法错误.此题主要考查了实数,以及平方根,关键是掌握实数与数轴上点是一一对应关系,掌握正数有两个平方根,它们互为相反数.6.【答案】D【解析】解:A、∵∠C+∠B=∠A,∴∠A=90°,故是直角三角形,正确;B、∵∠A:∠B:∠C=1:3:2,∴∠B=180°=90°,故是直角三角形,正确;C、∵(b+c)(b-c)=a2,∴b2-c2=a2,即a2+c2=b2,故是直角三角形,正确;D、∵()2≠()2+()2,故不能判定是直角三角形.故选:D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.【答案】C【解析】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.此题主要考查了轴对称图形,关键是找到图形的对称轴.8.【答案】B【解析】解:∵DE是BC的垂直平分线,∴DB=DC=2,∴AC=AD+CD=3,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,由勾股定理得,AB==,则BC==2,∴△BCD的面积=×2×1=,故选:B.根据线段垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理,三角形面积公式计算即可.本题考查的是角平分线的性质,线段垂直平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.【答案】C【解析】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.10.【答案】D【解析】解:设格点P(x,y)到坐标原点O的距离为10,根据题意得x2+y2=102=100,当x=0时,y=±10;当x=±6时,y=±8;当x=±8时,y=±6;当x=±10时,y=0,所以满足条件的格点坐标为(0,10)、(0,-10),(10,0)、(-10,0),(6,8)、(-6,-8),(6,-8)、(-6,8),(8,6)、(-8,-6),(8,-6)、(-8,6).故选:D.设格点P(x,y)到坐标原点O的距离为10,根据两点间的距离公式得到x2+y2=102=100,利用x 和y都是0到10的整数,易得当x=0时,y=±10;当x=±6时,y=±8;当x=±8时,y=±6;当x=±10时,y=0,然后写出满足条件的格点坐标.本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.11.【答案】3【解析】解:=3.故答案为:3.根据算术平方根的定义求出即可.此题主要考查了算术平方根的定义,是基础题型,比较简单.12.【答案】百【解析】解:近似数8.28万的精确到百位,故答案为:百.近似数精确到哪一位,应当看末位数字实际在哪一位.本题主要考查近似数和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.13.【答案】(-1,3)【解析】解:∵点A到x轴的距离是3,到y轴的距离是1,且点A在第二象限,∴点A的横坐标为-1,纵坐标为3,∴点A的坐标是(-1,3),故答案为:(-1,3).根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度以及第二象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.【答案】【解析】解:当x=81时,算术平方根为9,再输入9,9的算术平方根为3,再输入3,3的算术平方根为,为无理数,所以y=.故答案为:.把x=81代入数值转换机中计算即可得到输出的数.本题考查算术平方根,解决本题的关键是熟记算术平方根的定义.15.【答案】10【解析】解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG-FG=6,∴直角△ABF中,利用勾股定理得:AB===10.故答案是:10.在直角△ABF中,利用勾股定理进行解答即可.此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.16.【答案】5.1【解析】解:设AE=A′E=x,则DE=5-x;在Rt△A′ED中,A′E=x,A′D=AB=3cm,ED=AD-AE=5-x;由勾股定理得:x2+9=(5-x)2,解得x=1.6;即A'E=1.6cm,则DE=5-1.6=3.4cm,∴S△DEF=DE•AB÷2=3.4×3÷2=5.1(cm2).故答案为:5.1根据折叠的性质知:AE=A′E,AB=A′D;可设AE为x,用x表示出A′E和DE的长,进而在Rt△A′DE中求出x的值,即可得到A′E和DE的长,利用三角形面积公式即可求得△DEF的面积.此题考查了图形的折叠变换,能够根据折叠的性质和勾股定理求出A′E和DE的长是解答此题的关键.17.【答案】2【解析】解:由勾股定理得:AB=13,连接OA,OB,OC,则点O到三边的距离就是△AOC,△BOC,△AOB的高线,设到三边的距离是x,则三个三角形的面积的和是:AC•x+BC•x+AB•x=AC•BC,就可以得到x=2,故答案为:2.连接OA,OB,OC利用小三角形的面积和等于大三角形的面积即可解答.本题中点到三边的距离就是直角三角形的内切圆的半径长,内切圆的半径=.18.【答案】45【解析】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.19.【答案】解:(1)由2(x-1)2=8得:(x-1)2=4,∵(±2)2=4,∴x-1=±2,∴x=3或x=-1;(2)由3(x-3)3+81=0得:(x-3)3=-27,∵(-3)3=-27,∴x-3=-3,解得:x=0.【解析】(1)先系数化为1,再根据平方根定义进行解答;(2)由3(x-3)3=-81得(x-3)3=-27,再根据立方根定义即可解答.本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.20.【答案】(3,2) 3.5【解析】解:(1)平面直角坐标系如图所示;(2)△A1B1C1如图所示;(3)B1(3,2).故答案为(3,2);(4)=9-×2×3-×1×2-×1×3=3.5,故答案为3.5.(1)根据点A,C的坐标确定平面直角坐标系即可;(2)作出A,B,C的对应点A1,B1,C1即可;(3)根据点B1的位置写出坐标即可;(4)利用分割法求面积即可;本题考查作图-轴对称变换、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴3a-b+c=16,3a-b+c的平方根是±4.【解析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.此题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.22.【答案】解:作法:①作∠ECD的平分线CF,②作线段AB的中垂线MN,③MN与CF交于点P,则P就是山庄的位置.【解析】根据角平分线的性质可知:到CD和CE的距离相等的点在∠ECD的平分线上,所以第一步作:∠ECD的平分线CF;根据中垂线的性质可知:到A,B的距离相等的点在AB的中垂线上,所以第二步:作线段AB的中垂线MN,其交点就是P点.本题考查了应用与设计作图,主要利用了线段垂直平分线上的点到线段两端点的距离相等,角平分线上的点到角的两边距离相等的性质,熟练掌握线段垂直平分线的作法,角平分线的作法是解题的关键.23.【答案】解:(1)如图,∵DG、EF分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16-6=10cm,∴OC=5cm,∴OA=OC=OB=5cm.【解析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由△OBC的周长为16cm求出OC的长,进而得出结论.本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.24.【答案】解:(1)∵△ABC中,∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵BD=BA,CE=CA.∴∠BAD=(180°-45°)÷2,∠CAE=45°÷2,∴∠DAE=90°-∠BAD+∠CAE=45°.(2)不变.∠DAE=90°-+∠ACB=(∠B+∠ACB)=45°,从上式可看出当AB和AC不相等时,∠B+∠ACB也是定值为90°.所以不变.【解析】(1)在△ABC中,∠BAC=90°,AB=AC,是等腰直角三角形,所以∠B=∠ACB=45°,根据其他边相等可求出解.(2)可表示出角,看看和AB=AC有没有关系.本题考查等腰三角形的性质,等边对等角,以及直角三角形的角的特点.25.【答案】(3,4)(6,t-6)【解析】解:(1)①∵四边形OABC是矩形,A(6,0),B(6,4),∴C(0,4),∵D是BC的中点,∴D(3,4).②当P在AB上运动时,P(6,t-6),故答案为:(3,4),(6,t-6);(2)①当0<t≤6时,P(t,0),S=×t×4=2t.②当6<t≤10时,-S△OPA-S△PBD-S△CDO=24-12×6×(t-6)-×3×(10-t)-6=-t+21.S=S矩形OCBA③当10<t<13时,P(16-t,4),PD=13-t,∴S=×(13-t)×4=-2t+26,综上所述,S=.若S=9,由①得到2t=9,t=4.5,∴P1(4.5,0),若S=9,由②得到,-t+21=9,即t=8,∴P2(6,2).若S=9,由③得到,-2t+26=9,t=(不合题意舍弃),综上所述,当P(4.5,0)或(6,2)时,△POD的面积为9.(1)①利用矩形的性质求出B、C两点坐标,再利用中点坐标公式计算即可;②点P在线段AB上,求出PA即可;(2)分三种情形分别讨论求解即可.本题考查四边形综合题、矩形的性质、三角形的面积,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.26.【答案】解:(1)△ABC是直角三角形,理由是:如图1,∵AC2+BC2=36+64=100,AB2=100,∴AC2+BC2=AB2,∴△ABC是直角三角形,过C作CD⊥AB于D,∴×AC×BC=×AB×CD,解得,CD=4.8cm;则AB边上的高是4.8cm;(2)①当点P在BC上,如图2,CA=CP时,CP=6,则t=6÷2=3s,②当点P在AB上,如图3,CA=CP时,过C作CD⊥AB于D,在Rt△ADC中,AD==.=3.6,∵CA=CP,CD为AB边上的高,∴AD=PD=3.6,2t=BC+PB=8+10-7.2=10.8,则t=5.4,当AC=AP=6时,2t=BC+PB=8+10-6=12,t=6,当PA=PC时,如图4,作PH⊥AC于H,则AH=CH=3,∵PH∥BC∴AP=PB=5∴2t=BC+PB=8+5,t=6.5,故当t=3或6或6.5或5.4秒时,△ACP为等腰三角形;(3)如图5,当0≤t≤4时,P在BC上,Q在AC上,由题意得:CP=2t,CQ=t,则t+2t=10+6-t+8-2t,t=4;如图6,当4<t≤6时,P在BA上,Q在AC上,由题意得:CB+PB=2t,CQ=t,则t+2t=10+8-2t+6-t,t=4,不符合题意;当6<t≤9时,P、Q在BA上,直线PQ与AB重合,直线PQ不可能把△ABC的周长分成相等的两部分;如图7,当9<t≤12时,P在AC上,Q在AB上,由题意得:BC+AB+AP=2t,AC+AQ=t,则AP+AQ=PC+BC+BQ,2t-10-8+t-6=6+8+10-t+6-(2t-18),t=12,综上,t的值为4秒或12秒.【解析】(1)根据勾股定理的逆定理判断△ABC是直角三角形,根据三角形的面积公式计算CD的长;(2)分情况讨论:①在边BC上时,有一种情况;②在边AB上时,有三种情况;③在边AC上时,不能构成三角形;(3)分情况讨论:根据点P在BC、AB、AC边上讨论,根据周长平分列方程可得结论.本题是三角形的综合题,考查的是等腰三角形的判定和性质、勾股定理的应用、三角形的周长和几何动点问题,掌握等腰三角形的判定定理和性质定理、分类讨论的思想和数形结合的思想是解题的关键.。
【新城】2018-2019学年上学期初二数学期中数学试卷及解析
1 / 82018-2019学年度第一学期期中八年级数学试题(卷)一、选择题(本题共8小题,每小题3分,共24分) 1.在下列各数是无理数的是( )A .0.101001B .2C .D .52.若x ,y是实数,且10x ++=,则y x 的值为()A .1B .1−C .3D .3−3. 如图,在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D .若AC =3,BC =4.则BD 的长是( )A .2B .3C .4D .5 4. 对于四舍五入得到的近似数1.50万,下列说法中正确的是( )A .该近似数精确到百分位B .该近似数精确到千位C .该近似数精确到十分位D .该近似数精确到百位 5. 一个正数的两个平方根是a +3和2a ﹣6,则这个正数是( )A .1B .4C .9D .166. 如图,△ABC ≌△AED ,点D 在BC 上,若∠EAB =52°,则∠CDE 的度数是( )A .104°B .114°C .128°D .130°7. 如图,在Rt △ABC 中∠C =90°,两直角边AC =6cm ,BC =8cm ,现将AC 沿AD 折叠,使点C 落在斜边AB 上的点E 处,则CD 长为( )A .3B .4C .5D .68. 如图,已知点D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =6,BC =4,则BD 的长为( )A .1B .1.5C .2D .2.5二、填空题(本题共10小题,每小题3分,共30分) 9.36的平方根是,=,=.10.已知等腰三角形中有一个内角为80°,则该等腰三角形的底角为11.若A 2− 关于x12.13.,y ),则x =,y =,点A 轴的对称点的坐标是.若一个直角三角形的两边长为6,8,则斜边的中线长是.如图,在Rt △ABC 中,∠B =90°,CD 是∠ACB 的平分线,若BD =2,AC =8,则.(x ,3)关于y 轴的对称点是B (△ACD的面积为 .14.如图,在平面直角坐标系中,已知点A (6,8),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是 .15.点C 在x 轴上方,y 轴右侧,距离x 轴4个单位长度,距离y 轴3个单位长度,则点C 的坐标为 . 16.已知点P (1-2m ,m -1),则不论m 取什么值,该P 点必不在第 象限. 17.如图,AD 是等边△ABC 的中线,E 是AC 上一点,且AD =AE ,则∠EDC = °.(第17题图) (第18题图)18.如图所示,△ABC 中,BA =5,BC =10,∠ABC 的角平分线上有一点D ,DE ⊥AC 于点E 且AE =EC ,DF ⊥BC 于点F ,则CF = .三、解答题19.解下列方程(本题共2小题,每小题3分,共6分)(1)2490x −=(2)33(3)81x −−=20.(本题10分)如图,直角坐标系中,△ABC 的顶点都在网格点上.(1)写出点A 、B 、C 的坐标:A 、B 、C(2)将△ABC 先向上平移3个单位长度,再向左平移2个单位长度,得到△A ′B ′C ′,则△A ′B ′C ′的三个顶点坐标分别是A ′ 、B ′ 、 C ′(3)△ABC 的面积为 .(4)在x 轴上找一点P ,作射线CP 平分∠ACB .21.(本题5分)如图,在△ABC 和△AEF 中,AC ∥EF ,∠B =∠E ,AC =AF ,求证:AB =FE .22.(本题5分)在平面内找一点O ,使得OA =OB =OC ,(不写作图过程,请保留作图痕迹)23.(本题6分)如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC上的点,且DE⊥DF,求证:∠DEF=∠DFE.24.(本题6分)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N 两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MCN=50°,求∠MFN的度数.25.阅读题:(本题8分)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,在射线OP上任取一点A(O点除外),连接AB,AC,可证△AOB≌△AOC.请你参考这个作全等三角形的方法,解答下列问题:①如图2:在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系;②如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.2018-2019学年度第一学期期中八年级数学答案三、解答题 19.(1)32x =(2)x =620.(1)(2,1−),(4,3),(1,2)(2)(0,2),(2,6),(1−,5) (3)5(4)如图,射线CP 即为所求21. ∵AC ∥EF ,∴∠EF A =∠BAC , 在△ABC 和△FEA 中EFA BAC B EAC AF == =, ∴△ABC ≌△FEA (AAS ), ∴AB =FE .22.如图,点O 即为所求23. 如图,连接AD ,∵△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点, ∴AD ⊥BC ,AD =BD =CD ,∠DAF =45°=∠B , 又∵DE ⊥DF ,∴∠BDA -∠EDA =∠EDF -∠EDA 即∠BDE =∠ADF , 在△BDE 和△ADF 中BDE ADF B DAF BD AD == =∴△BDE ≌△ADF (AAS ), ∴DE =DF∴∠DEF =∠DFE24. (1)∵DM 、EN 分别垂直平分AC 和BC ,∴AM =CM ,BN =CN ,∴△CMN 的周长=CM +MN +CN =AM +MN +BN =AB , ∵△CMN 的周长为15cm , ∴AB =15cm ;(2)∵△CMN 中∠MCN =50°∴∠CMN +∠CNM =130° ∵∠CMN 是△ACM 的外角 ∴∠CMN =∠A +∠ACM ∵AM =CM∴∠A =∠ACM ,∠CMN =2∠A 同理,∠CNM =2∠B∴∠A +∠B =65°∵∠DMA =90°-∠A ,∠ENB =90°-∠B 又∵∠DMA =∠FMN ,∠ENB =∠FMN∴∠FMN +∠FMN =180°-(∠A +∠B )=115° ∵△MNF 中∠MFN +∠FMN +∠FMN =180° ∴∠MFN =65°25. ①BC =AC +AD如图2,截取CE =CA ,连接DE , ∵CD 平分∠ACB , ∴∠ACD =∠ECD , 在△ACD 与△ECD 中,{AC =CE∠ACD =∠ECD CD =CD,∴△CAD ≌△CED (SAS ),∴AD =DE ,∠A =∠CED =60°,AC =CE , ∵∠ACB =90°,∠A =60°, ∴∠B =30°,∴∠B =∠EDB =30°, ∴DE =EB =AD , ∴BC =AC +AD ;②如图,截取AE =AD ,连接CE ,作CH ⊥AB ,垂足为点H ,同理△ADC ≌△AEC ,∴AE =AD =9,CD =CE =10=CB ,∵CH ⊥AB ,CE =CB ,∴EH =HB ,设EH =HB =x ,在Rt △ACH 和Rt △CEH 中172﹣(9+x )2=102﹣x 2,解得x =6,∴AB =21.。
2018-2019第一学期八年级数学期中试卷 (答案)
2018—2019学年度八年级第一学期期中考试数学试卷参考答案一、选择题:(每小题4分,共40分.)DBCCC DBABB 二、填空题:(每小题4分,共32分.) 11.50°或80° 12.10:5113.AC=BD, ∠A BC =∠BAD 14. 180m 15.2.5cm 16.5 17.60 18.5三、(8分)作图题:(用尺规作图,保留作图痕迹) 19、解:(1)如图所示,抽水站应建在河边点P 处,可以使所修渠道最短。
(2)如图所示,物资仓库应修建在点Q 或Q ´处。
第19(1)题图ABa ..第19(2)题图B_ ABCFD AE四、解答题:(共70分)20.(7分)解:设该多边形是n 边形。
…………1分 则(n-2)x180°=360°x3-180° …………4分 180°n-360°=1080°-180°180°n=1080°-180°+360° 180°n=1080°-180°+360° 180°n=1260°n=7 …………6分答:该多边形是七边形。
…………7分 21.(9分) 解:(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示, C 1(3,-2) ……3分(2)△ABC 关于y 轴对称的△A 2B 2C 2如图所示, C 2(-3,2) ……6分(3)S △ABC = S 四边形BDEF -S △BCD -S △ACE -S △ABF=2x3- 21x2x1- 21x2x1- 21x3x1=6-1-1-1.5=2.5 ……9分22.(10分) 证明:如图。
(1) ∵AD= BF∴ AD+ DF=BF+ DF∴ AF= BD …………1分 ∵AE ∥BC∴∠EAF=∠CBD …………2分 ∵在△AEF 和△BCD 中AE=BC∠EAF=∠CBD AF=BD∴ △AEF ≌△BCD(SAS) …………4分 ∴ EF=CD …………6分 (2) ∵ △AEF ≌△BCD∴ ∠AFE=∠BDC …………8分 ∴EF ∥CD …………10分第21题图第22题图y x 第21题图A 2C 2B 2B 1C 1 A 1EDF23. (10分)解:如图。
苏州市初二数学上册期中试卷
苏州市初二数学上册期中试卷苏州市2019八年级数学上册期中试卷(含答案剖析) 一、选择题(每小题3分,共30分;把下列各题中唯一正确答案火线的字母填涂在答题卡相应的位置上.)1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.此中是轴对称图形有( )个.A.1个 B.2个 C.3个 D.4个2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b2 3.下列四个数中,是负数的是( )A.|﹣2| B.(﹣2)2 C.﹣ D.4.要是a、b、c是一个直角三角形的三边,则a:b:c即是( )A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:135.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40° B.35° C.25° D.20°6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD即是( )A.4 B.3 C.2 D.17.已知,则的值是( )A.457.3 B.45.73 C.1449 D.144.98.等腰三角形的周长为15cm,此中一边长为3cm.则该等腰三角形的底长为( )A.3cm或5cm B.3cm或7cm C.3cm D.5cm9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )A.24 B.24π C. D.10.勾股定理是几多中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形组成的,可以用其面积干系验证勾股定理.图2是由图1插进矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )A.90 B.100 C.110 D.121二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.2的平方根是__________.12.若的值在两个整数a与a+1之间,则a=__________.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC 沿直线AD折叠后,点C落在C′的位置上,那么BC′为__________.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需增加的条件是(只需填一个)__________.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形__________对.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是__________cm.17.△ABC是等边三角形,点D是BC边上的恣意一点,DE⊥AB 于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量干系为__________.18.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.三、解答题(本大题共11小题,共76分,把解答历程写在答题卷相应的位置上,解答时应写出必要的谋略历程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.20.求下列各式的值(1)(2).21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.23.如图:△ABC中,AB=AC=5,AB的垂直中分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.25.某开辟区有一空地ABCD,如图所示,现筹划在空地上种草皮,经丈量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入几多元?26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC 外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请鉴别△APQ是什么形状的三角形?试说明你的结论.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB 于M,试说明M是AB中点.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,要是在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你鉴别△OMN的形状,并说明理由.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,相连AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)讨教点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的纪律和结论,请构图求出代数式 + 的最小值.苏州市2019八年级数学上册期中试卷(含答案剖析)参考答案一、选择题(每小题3分,共30分;把下列各题中唯一正确答案火线的字母填涂在答题卡相应的位置上.)1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.此中是轴对称图形有( )个.A.1个 B.2个 C.3个 D.4个考点:轴对称图形.剖析:根据轴对称图形的概念求解.解答:解:①、②不是轴对称图形;③长方形是轴对称图形;④等腰三角形是轴对称图形.共2个.故选B.点评:轴对称图形的鉴别要领:要是一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b2考点:勾股定理.专题:谋略题.剖析:由已知两角之和为90度,利用三角形内角和定理得到三角形为直角三角形,利用勾股定理即可得到终于.解答:解:∵在△ABC中,∠A+∠C=90°,∴∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:a2+c2=b2.故选C点评:此题考察了勾股定理,熟练掌握勾股定理是解本题的要害.3.下列四个数中,是负数的是( )A.|﹣2| B.(﹣2)2 C.﹣ D.考点:实数的运算;正数和负数.专题:谋略题.剖析:根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项剖析鉴别后利用消除法求解.解答:解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、 = =2,是正数,故本选项错误.故选C.点评:本题考察了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是鉴别正、负数的要害.4.要是a、b、c是一个直角三角形的三边,则a:b:c即是( )A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13考点:勾股定理.专题:谋略题.剖析:将四个选项的数字根据勾股定理举行谋略,相符a2+b2=c2的即为正确答案.解答:解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;C、∵32+42≠72 ,∴3:4:7不是直角三角形的三条边;故本选项错误;D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.故选D.点评:本题考察了勾股定理,相符a2+b2=c2的三条边才华组成直角三角形.5.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40° B.35° C.25° D.20°考点:等腰三角形的性质.剖析:先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的干系求出∠B的度数即可.解答:解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC= =50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.点评:此题比较简略,考察的是等腰三角形的性质及三角形内角和定理.6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD即是( )A.4 B.3 C.2 D.1考点:菱形的鉴定与性质;含30度角的直角三角形.专题:几多图形标题.剖析:过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再连合标题推出四边形COMP为菱形,即可得PM=4,又由CO∥PM 可得∠PMD=30°,由直角三角形性质即可得PD.解答:解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COM P为菱形,PM=4PM∥CO?∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD= PC=2.令解:作CN⊥OA.∴CN= OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.点评:本题运用了平行线和直角三角形的性质,而且需议决帮助线求解,难度中等偏上.7.已知,则的值是( )A.457.3 B.45.73 C.1449 D.144.9考点:算术平方根.剖析:把的被开方的小数点向右移动4位,则其平方根的小数点向右移动2位,即可得到 =144.9.解答:解:∵ = =100 ,而 =1.449,∴ =1.449×100=144.9.故选D.点评:本题考察了算术平方根:若一个正数的平方即是a,那么这个数叫a的算术平方根,记作(a≥0).8.等腰三角形的周长为15cm,此中一边长为3cm.则该等腰三角形的底长为( )A.3cm或5cm B.3cm或7cm C.3cm D.5cm考点:等腰三角形的性质;三角形三边干系.剖析:已知的边可能是腰,也可能是底边,应分两种环境举行讨论.解答:解:当腰是3cm时,则另双方是3cm,9cm.而3+3<9,不满足三边干系定理,因而应舍去.当底边是3cm时,另双方长是6cm,6cm.则该等腰三角形的底边为3cm.故选:C.点评:本题从边的方面考察三角形,涉及分类讨论的思想要领.9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )A.24 B.24π C. D.考点:勾股定理.专题:数形连合.剖析:先求出直角三角形的斜边,再利用:阴影部分面积=两个小半圆面积+直角三角形面积﹣以斜边为直径的泰半圆面积.解答:解:在Rt△ABC中,AC=6 ,BC=8,AB= = =10,S阴影= π()2+ π()2+ ×6×8﹣π()2= +8π+24﹣=24.故选A.点评:本题考察勾股定理的知识,难度一般,解答本题的要害是利用勾股定理得出 AB的长及找出阴影部分面积的表示,别的本题也进一步验证了勾股定理.10.勾股定理是几多中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形组成的,可以用其面积干系验证勾股定理.图2是由图1插进矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )A.90 B.100 C.110 D.121考点:勾股定理的证明.专题:常规题型;压轴题.剖析:延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式谋略即可得解.解答:解:如图,延长AB交KF于点O,延长AC交GM于点P,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM =4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.点评:本题考察了勾股定理的证明,作出帮助线布局出正方形是解题的要害.二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.2的平方根是± .考点:平方根.剖析:直接根据平方根的定义求解即可(需注意一个正数有两个平方根).解答:解:2的平方根是± .故答案为:± .点评:本题考察了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若的值在两个整数a与a+1之间,则a=2.考点:估算无理数的巨细.专题:谋略题.剖析:利用”夹逼法“得出的范畴,继而也可得出a的值.解答:解:∵2= < =3,∴ 的值在两个整数2与3之间,∴可得a=2.故答案为:2.点评:此题考察了估算无理数的巨细的知识,属于基础题,解答本题的要害是掌握夹逼法的运用.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC 沿直线AD折叠后,点C落在C′的位置上,那么BC′为2.考点:翻折变换(折叠标题).专题:压轴题;数形连合.剖析:根据中点的性质得BD=DC=2.再根据对称的性质得∠BDC′=60°,鉴定三角形为等边三角形即可求.解答:解:根据题意:BC=4,D为BC的中点;故BD=DC=2.由轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,则∠BDC′=60°,故△BDC′为等边三角形,即可得BC′=BD= BC=2.故答案为:2.点评:本题考察了翻折变换的知识,同时考察了等边三角形的性质和鉴定,鉴定出△BDC为等边三角形是要害.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需增加的条件是(只需填一个)∠B=∠D或∠C=∠E或AC=AE.考点:全等三角形的鉴定.专题:绽放型.剖析:要使要使△ABC≌△ADE,已知AB=AD,∠1=∠2得出∠BAC=∠DAE,若增加∠B=∠D或∠C=∠E可以利用ASA鉴定其全等,增加AC=AE可以利用SAS鉴定其全等.解答:解:∵AB=AD,∠1=∠2∴∠BAC=∠DAE∴若增加∠B=∠D或∠C=∠E可以利用ASA鉴定△ABC≌△ADE若增加AC=AE可以利用SAS鉴定△ABC≌△ADE故填空答案:∠B=∠D或∠C=∠E或AC=AE.点评:本题考察三角形全等的鉴定要领,鉴定两个三角形全等的一般要领有:SSS、SAS、ASA、AAS、HL.增加时注意:AAA、SSA不能鉴定两个三角形全等,鉴定两个三角形全等时,必须有边的到场,如有双方一角对应相等时,角必须是双方的夹角.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形4对.考点:全等三角形的鉴定.剖析:根据AB∥CD,AD∥BC可得到相等的角,再根据大众边AC、BD易证得:△ACD≌△CAB、△BAD≌△DCB(ASA);由上可得AD=BC、AB=CD,再根据平行线确定的角相等可证得:△AOD≌△COB、△AOB≌△COD(ASA).解答:解:∵AB∥CD,AD∥BC,∴∠CAD=∠ACB,∠BDA=∠DBC,∠BAC=∠DCA,∠ABD=∠CDB,又∵AC、BD为大众边,∴△ACD≌△CAB、△BAD≌△DCB(ASA);∴AD=BC,AB=CD,∴△AOD≌△COB、△AOB≌△COD(ASA).所以全等三角形有:△AOD≌△COB、△AOB≌△COD、△ACD≌△CAB、△BAD≌△DCB,共4对;故答案是:4.点评:本题考察了全等三角形的鉴定,熟练掌握三角形全等的鉴定要领是解题的要害.鉴定两个三角形全等的一般要领有:SSS、SAS、ASA、AAS、HL.注意:AAA 、SSA不能鉴定两个三角形全等,鉴定两个三角形全等时,必须有边的到场,如有双方一角对应相等时,角必须是双方的夹角.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是100cm.考点:平面展开-最短路径标题.剖析:蚂蚁有三种爬法,便是把正视和俯看(或正视和侧视,或俯看和侧视)二个面展平成一个长方形,然后求其对角线,比较巨细即可求得最短的途径.解答:解:第一种环境:如图1,把我们所看到的火线和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB= =10 cm;第二种环境:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB= =10 cm;第三种环境:如图3,把我们所看到的火线和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB= =100cm;三种环境比较而言,第三种环境最短.故答案为:100cm.点评:本题考察了立体图形中的最短路线标题;通常应把立体几多中的最短路线标题转化为平面几多中的求两点间隔断的标题;注意长方体展开图形应分环境举行探究.17.△ABC是等边三角形,点D是BC边上的恣意一点,DE⊥AB 于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量干系为BN=DE+ DF.考点:等边三角形的性质;三角形的面积.剖析:相连AD,利用三角形的面积相等连合等边三角形的性质可得到BN=DE+DF.解答:解:BN=DE+DF,证明如下:相连AD,∵S△ABC=S△ABD+S△ACD,∴ AC?BN= AB?DE+ AC?DF,∵△ABC为等边三角形,∴AB=AC,∴AC?BN=AC?DE+AC?DF,∴BN=DE+DF.故答案为:BN=DE+DF.点评:本题主要考察等边三角形的性质,利用等积法得到AC?BN= AB?DE+ AC?DF是解题的要害.18.等腰三角形一腰长为5,一边上的高为3,则底边长为8或或3 .考点:勾股定理;等腰三角形的性质.专题:分类讨论.剖析:由已知的是一边上的高,分腰上的高于底边上的高两种环境,当高为腰上高时,再分锐角三角形与钝角三角形两种环境,当三角形为锐角三角形时,如图所示,在直角三角形ACD中,由AC及CD的长,利用勾股定理求出AD的长,由AB﹣AD求出BD的长,在直角三角形BDC中,由BD及CD 的长,即可求出底边BC的长;当三角形为钝角三角形时,如图所示,同理求出AD的长,由AB+AD求出BD的长,同理求出BC的长;当高为底边上的高时,如图所示,由三线合一得到BD=CD,在直角三角形ABD中,由AB及AD的长,利用勾股定理求出BD的长,由BC=2BD即可求出BC的长,综上,得到所有满足题意的底边长.解答:解:如图所示:当等腰三角形为锐角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB﹣AD=5﹣4=1,在Rt△BDC中,CD=3,BD=1,根据勾股定理得:BC= = ;当等腰三角形为钝角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB+AD=5+4=9,在Rt△BDC中,CD=3,BD=9,根据勾股定理得:BC= =3 ;当AD为底边上的高时,如图所示:∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AD=3,AB=5,根据勾股定理得:BD= =4,∴BC=2BD=8,综上,等腰三角形的底边长为8或或3 .故答案为:8或或3点评:此题考察了勾股定理,以及等腰三角形的性质,利用了分类讨论的数学思想,要修业生思虑标题要全面,注意不要漏解.三、解答题(本大题共11小题,共76分,把解答历程写在答题卷相应的位置上,解答时应写出必要的谋略历程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.考点:立方根;平方根.剖析:(1)运用直接开平方求解即可;(2)方程双方直接开立方即可得到方程的解.解答:解:(1)(x﹣1)2=25,解得:x=6或﹣4.(2)﹣8(2﹣x)3=27,解得:x=﹣点评:此题主要考察了平方根、立方根的定义,此中用直接开要领求一元二次方程的解的类型有:x2=a(a≥0);ax2=b (a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).准则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,破裂求得方程解”.20.求下列各式的值(1)(2).考点:实数的运算.剖析:(1)分别根据绝对值的性质分别谋略出各数,再根据实数混合运算的准则举行谋略即可;(2)根据数的开方准则准则谋略出各数,再根据实数混合运算的准则举行谋略即可.解答:解:(1)原式=2﹣ +2 ﹣1=1+ ;(2)原式=4+4+3=11.点评:本题考察的是实数的运算,熟知绝对值的性质及数的开方准则是解答此题的要害.21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.考点:立方根;平方根;算术平方根.专题:谋略题.剖析:根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.解答:解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.点评:本题主要考察了平方根、立方根的概念,难易程度适中.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.考点:全等三角形的鉴定与性质;等腰三角形的鉴定.专题:证明题.剖析:先用SSS证△ADB≌△BCA,得到∠DBA=∠CAB,利用等角对等边知AE=BE,从而证得△EAB是等腰三角形.解答:证明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴∠DBA=∠CAB,∴AE=BE,∴△EAB是等腰三角形.点评:本题考察了三角形全等鉴定及性质和等腰三角形的性质;三角形的全等的证明是正确解答本题的要害.23.如图:△ABC中,AB=AC=5,AB的垂直中分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.考点:线段垂直中分线的性质;等腰三角形的性质.剖析:(1)利用线段垂直中分线的性质可知BD+CD=5,易求BC;(2)根据第一问中BD+CD=5,易求△BCD的周长.解答:解:①AB=AC=5,DE垂直中分AB,故BD=AD.BD+CD=AD+CD=5.△BCD的周长为8?BC=3;②∵BC=4,BD+CD=5,∴△BCD=BD+CD+BC=9.点评:本题考察的是线段垂直中分线的性质以及等腰三角形的性质;举行线段的有效转移是正确解答本题的要害.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.考点:全等三角形的鉴定.剖析:根据SSS先证明△ABC≌△ADC,得∠BAC=∠DCA,根据平行线的鉴定得A B∥CD,即可得出△ABE≌△CDF,△EBC≌△FDA.解答:解:全等三角形有三对:△ABC≌△ADC,△ABE≌△CDF,△EBC≌△FDA.在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DCA,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴BE=DF,∵AE=CF,∴AF=CE,在△EBC和△FDA中,∴△BCE≌△DAF(SSS).点评:本题考察了全等三角形的鉴定,鉴定两个三角形全等的一般要领有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能鉴定两个三角形全等,鉴定两个三角形全等时,必须有边的到场,如有双方一角对应相等时,角必须是双方的夹角.25.某开辟区有一空地ABCD,如图所示,现筹划在空地上种草皮,经丈量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入几多元?考点:勾股定理的应用;三角形的面积.专题:应用题.剖析:仔细剖析标题,需要求得四边形的面积才华求得终于.相连AC,在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度干系可得三角形DAC为一直角三角形,DA为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC组成,则简略求解.解答:解:相连AC,在Rt△ABC中,AC2=AB2+BC2=32+42=52,∴AC=5.在△DAC中,CD2=132,AD2=122,而122+52=132,即AC2+AD2=CD2,∴∠DCA=90°,S四边形ABCD=S△BAC+S△DAC= ?BC?AB+ DC?AC,= ×4×3+ ×12×5=36.所以需用度36×100=3600(元).点评:本题考察了勾股定理及其逆定理的相关知识,议决勾股定理由边与边的干系也可证明直角三角形,这样解题较为简略.26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC 外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请鉴别△APQ是什么形状的三角形?试说明你的结论.考点:全等三角形的鉴定与性质;等边三角形的鉴定与性质.剖析:(1)根据等边三角形的性质可得AB=AC,再根据SAS 证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAQ=60°,∴△APQ是等边三角形.点评:本题考察了全等三角形的鉴定,考察了全等三角形对应边相等的性质,考察了正三角形的鉴定,本题中求证△ABP≌△ACQ是解题的要害.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB 于M,试说明M是AB中点.考点:全等三角形的鉴定与性质;等腰三角形的性质.专题:证明题.剖析:相连AD、BD.易证△ADE≌△DBC,再根据全等三角形的性质可得AD=DB,即△ABD是等腰三角形,而DM⊥AB,利用等腰三角形三线合一定理可得M是AB中点.解答:证明:相连AD、BD,∴△ADE≌△DBC(SAS),∴AD=BD,又∵DM⊥AB,∴M是AB的中点.点评:本题考察了全等三角形的鉴定和性质及等腰三角形三线合一定理;作出帮助线是正确解答本题的要害.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,要是在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你鉴别△OMN的形状,并说明理由.考点:等腰直角三角形;全等三角形的鉴定与性质.剖析:相连OA.先证得△OAN≌△OBM,然后根据全等三角形的对应边相等推知OM=ON;然后由等腰直角三角形ABC的性质、等腰三角形OMN的性质推知∠NOM=90°,即△OMN是等腰直角三角形.解答:解:△OMN是等腰直角三角形.理由:相连OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.点评:本题考察了等腰直角三角形的鉴定与性质、全等三角形的鉴定与性质.解答该题的要害一步是根据等腰直角三角形ABC的“三线合一”的性质推知OA=OB=OC.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,相连AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)讨教点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的纪律和结论,请构图求出代数式 + 的最小值.考点:轴对称-最短路线标题;勾股定理.剖析:(1)由于△ABC和△CDE都是直角三角形,故AC,CE 可由勾股定理求得;(2)若点C不在AE的连线上,根据三角形中恣意双方之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE 的值最小;(3)由(1)(2)的终于可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,相连AE交BD于点C,则AE的长即为代数式 + 的最小值,然后布局矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.解答:解:(1)AC+CE= + ;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,相连AE交BD于点C,设BC=x,则AE的长即为代数 + 的最小值.过点A作AF ∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE= = =13,即 + 的最小值为13.故代数式 + 的最小值为13.点评:此题主要考察了轴对称求最短路线以及勾股定理等知识,本题利用了数形连合的思想,求形如的式子的最小值,可议决布局直角三角形,利用勾股定理求解.。