浦江县二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦江县二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=()
A.5 B.C.D.
2.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()
A. B.4 C. D.2
3.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()
A.9 B.11 C.13 D.15
4.若集合M={y|y=2x,x≤1},N={x|≤0},则N∩M()
A.(1﹣1,] B.(0,1] C.[﹣1,1] D.(﹣1,2]
5.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距()
A .10米
B .100米
C .30米
D .20米
6. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )
A .
B .
C .
D .
7. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣
+1=0,则角B 的度数是( )
A .60°
B .120°
C .150°
D .60°或120°
8. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )
A .“∀a ∈R ,函数y=π”是减函数
B .“∀a ∈R ,函数y=π”不是增函数
C .“∃a ∈R ,函数y=π”不是增函数
D .“∃a ∈R ,函数y=π”是减函数
9. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )
A .
B . C. D .1111]
10.某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种
11.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( )
A .x=π
B .
C .
D .
12.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )
A .3
B .
C .
D .
二、填空题
13.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .
14.【泰州中学2018届高三10月月考】设函数()()21x
f x e x ax a =--+,其中1a <,若存在唯一的整数
0x ,使得()00f x <,则a 的取值范围是
15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .
16.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点
B .存在定点P 不在M 中的任一条直线上
C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上
D .M 中的直线所能围成的正三角形面积都相等
其中真命题的代号是 (写出所有真命题的代号).
17.
= .
18.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .
三、解答题
19.已知a >0,a ≠1,命题p :“函数f (x )=a x 在(0,+∞)上单调递减”,命题q :“关于x 的不等式x 2﹣2ax+≥0对一切的x ∈R 恒成立”,若p ∧q 为假命题,p ∨q 为真命题,求实数a 的取值范围.
20.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.
(Ⅰ)当x∈[0,]时,求函数f(x)的值域;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),
求f(B)的值.
21.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.
(I)求AM的长;
(Ⅱ)求面DCE与面BCE夹角的余弦值.
22.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.
23.已知函数f (x )=,求不等式f (x )<4的解集.
24.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).
(1)若函数在区间上是单调减函数,求实数的取值范围;
(2)求函数
的极值;
(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.
浦江县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:∵双曲线焦点在y轴上,故两条渐近线为y=±x,
又已知渐近线为,∴=,b=2a,
故双曲线离心率e====,
故选C.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.
2.【答案】C
【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得
这个几何体是一个四棱锥
由图可知,底面两条对角线的长分别为2,2,底面边长为2
故底面棱形的面积为=2
侧棱为2,则棱锥的高h==3
故V==2
故选C
3.【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5,
当a=5时,不满足退出循环的条件,故a=9,
当a=9时,不满足退出循环的条件,故a=13,
当a=13时,满足退出循环的条件,
故输出的结果为13,
故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
4.【答案】B
【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],
由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,
解得:﹣1<x≤1,即N=(﹣1,1],
则M∩N=(0,1],
故选:B.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
5.【答案】C
【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,
设A处观测小船D的俯角为30°,连接BC、BD
Rt△ABC中,∠ACB=45°,可得BC=AB=30米
Rt△ABD中,∠ADB=30°,可得BD=AB=30米
在△BCD中,BC=30米,BD=30米,∠CBD=30°,
由余弦定理可得:
CD2=BC2+BD2﹣2BCBDcos30°=900
∴CD=30米(负值舍去)
故选:C
【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.
6.【答案】A
【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,
上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:
故选A.
【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.
7.【答案】A
【解析】解:根据正弦定理有:=,
代入已知等式得:﹣+1=0,
即﹣1=,
整理得:2sinAcosB﹣cosBsinC=sinBcosC,
即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),
又∵A+B+C=180°,
∴sin(B+C)=sinA,
可得2sinAcosB=sinA,
∵sinA≠0,
∴2cosB=1,即cosB=,
则B=60°.
故选:A.
【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
8.【答案】C
【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.
故选:C.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
9.【答案】A
【解析】
考点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.
10.【答案】 C
【解析】
排列、组合及简单计数问题.
【专题】计算题;分类讨论.
【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.
【解答】解:分4种情况讨论,
①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,
②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,
③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况,
④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,
则共有6+12+6+3=27种乘船方法,
故选C.
【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.
11.【答案】B
【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cos x,再向右平移个单位得到y=cos[(x)],
由(x )=k π,得x =2k π,
即
+2k π,k ∈Z ,
当k=0时,
,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
12.【答案】B
【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,
则F (,0),
依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF|, 则点P 到点M (0,2)的距离与P 到该抛物线准线的距离之和,
d=|PF|+|PM|≥|MF|=
=
.
即有当M ,P ,F 三点共线时,取得最小值,为.
故选:B . 【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思
想.
二、填空题
13.【答案】
.
【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高 由于此三角形的高为,故圆锥的高为
此圆锥的体积为=
故答案为
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
14.【答案】
【解析】试题分析:设
,由题设可知存在唯一的整数0x ,使得
在直线
的下方.因为
,故当
时,
,函数
单调递减;
当时,
,函数
单调递增;故,而当
时,
,故当
且
,解之得,应填答案
3,12e ⎡⎫
⎪⎢⎣⎭
. 考点:函数的图象和性质及导数知识的综合运用.
【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线
的下方.然后再借助导数的知识求出函数的最小值,依
据题设建立不等式组求出解之得.
15.【答案】 [
] .
【解析】解:由题设知C 41p (1﹣p )3≤C 42p 2(1﹣p )2
,
解得p ,
∵0≤p ≤1,
∴
,
故答案为:[].
16.【答案】BC
【解析】
【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,
B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.
【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离
d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集
合,
A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;
B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;
C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;
D.如下图,M中的直线所能围成的正三角形有两类,
其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,
故本命题不正确.
故答案为:BC.
17.【答案】2.
【解析】解:=2+lg100﹣2=2+2﹣2=2,
故答案为:2.
【点评】本题考查了对数的运算性质,属于基础题.
18.【答案】6.
【解析】解:双曲线的方程为4x2﹣9y2=36,即为:
﹣=1,
可得a=3,
则双曲线的实轴长为2a=6.
故答案为:6.
【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.
三、解答题
19.【答案】
【解析】解:若p为真,则0<a<1;
若q为真,则△=4a2﹣1≤0,得,
又a>0,a≠1,∴.
因为p∧q为假命题,p∨q为真命题,所以p,q中必有一个为真,且另一个为假.
①当p为真,q为假时,由;
②当p为假,q为真时,无解.
综上,a的取值范围是.
【点评】1.求解本题时,应注意大前提“a>0,a≠1”,a的取值范围是在此条件下进行的.20.【答案】
【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2
x﹣cos2x+3=2sin2x﹣
+3=2sin2x+2cos2x=4sin(2x+).
∵x∈[0,],
∴2x+∈[,],
∴f(x)∈[﹣2,4].
(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),
∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ), 化简得 sinC=2sinA , 由正弦定理得:c=2a , 又b=
,
由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=
,
故解得:A=,B=
,C=
,
∴f (B )=f (
)=4sin =2.
【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.
21.【答案】解:(I )由已知可得AM ⊥CD ,又M 为CD 的中点, ∴
; 3分
(II )在平面ABED 内,过AD 的中点O 作AD 的垂线OF ,交BE 于F 点, 以OA 为x 轴,OF 为y 轴,OC 为z 轴建立坐标系, 可得
,
∴,
,5分
设
为面BCE 的法向量,由
可得=(1,2,﹣
),
∴cos <,
>=
=
,∴面DCE 与面BCE 夹角的余弦值为
4分
22.【答案】(1)证明见解析;(2)【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判
定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC ,利用棱锥的体积公式可得结果.
考
点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式. 23.【答案】
【解析】解:函数f (x )=
,不等式f (x )<4,
当x ≥﹣1时,2x+4<4,解得﹣1≤x <0; 当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1. 综上x ∈(﹣3,0).
不等式的解集为:(﹣3,0).
24.【答案】(1)
(2)见解析(3)
【解析】试题分析:(1)由题意转化为
在区间
上恒成立,化简可得一次函数恒成立,根据一次函
数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x 轴上的截距,最后根据a 的正负以及基本不等式求截距的取值范围. 试题解析:(1)函数的导函数,
则在区间上恒成立,且等号不恒成立,
又
,所以
在区间
上恒成立,
记,只需, 即,解得.
(2)由
,得
,
①当时,有;,
所以函数在单调递增,单调递减,
所以函数在取得极大值,没有极小值.
②当时,有;,
所以函数在单调递减,单调递增,
所以函数在取得极小值,没有极大值.
综上可知: 当时,函数在取得极大值,没有极小值;
当时,函数在取得极小值,没有极大值.(3)设切点为,
则曲线在点处的切线方程为,
当时,切线的方程为,其在轴上的截距不存在.
当时,令,得切线在轴上的截距为
,
当时,
,
当且仅当,即或时取等号;
当时,
,
当且仅当,即或时取等号.
所以切线在轴上的截距范围是.
点睛:函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.
(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.。