2019-2020年高三数学总复习 直线与平面平行教案 理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高三数学总复习直线与平面平行教案理
教材分析
直线与平面平行是在研究了空间直线与直线平行的基础上进行的,它是直线与直线平行的拓广,也是为今后学习平面与平面平行作准备.在直线与平面的三种位置关系中,平行关系占有重要地位,是今后学习的必备知识.所以直线与平面平行的判定定理和性质定理是这节的重点,难点是如何解决好直线与直线平行、直线与平面平行相互联系的问题.突破难点的关键是直线与直线平行和直线与平面平行的相互转化.
教学目标
1. 了解空间直线和平面的位置关系,理解和掌握直线与平面平行的判定定理和性质定理,进一步熟悉反证法的实质及其证题步骤.
2. 通过探究线面平行的定义、判定、性质及其应用,进一步培养学生观察、发现问题的能力和空间想象能力.
3. 培养学生的逻辑思维和合情推理能力,进而使其养成实事求是的学习态度.
任务分析
这节的主要任务是直线与平面平行的判定定理、性质定理的发现与归纳,证明与应用.学习时,要引导学生观察实物模型,分析生活中的实例,进而发现、归纳出数学事实,并在此基础上分析和探索定理的论证过程,区分判定定理和性质定理的条件和结论,理解定理的实质和直线与平面平行的判定.在运用性质时,要引导学生完成对“过直线———作平面———得交线———直线与直线平行”这一过程的理解和掌握.
教学设计
一、问题情境
教室内吊在半空的日光灯管、斜靠在墙边的拖把把柄,都可以看作直线的一部分,这些直线与地平面有何位置关系?
二、建立模型
[问题一]
1. 空间中的直线与平面有几种位置关系?
学生讨论,得出结论:
直线与平面平行、直线与平面相交(学生可能说出直线与平面垂直的情况,教师可作解释)及直线在平面内.
2. 在上述三种位置中,直线与平面的公共点的个数各是多少?
学生讨论,得出相关定义:
若直线a与平面α没有公共点,则称直线与平面α平行,记作a∥α.若直线a与平面α有且只有一个公共点,则称直线a与平面α相交.当直线a与平面α平行或相交时均称直线a不在平面α内(或称直线a在平面α外).若直线a与平面α有两个公共点,依据公理1,知直线a上所有点都在平面α内,此时称直线a在平面α内.
3. 如何对直线与平面的位置关系的进行分类?
学生讨论,得出结论:
方法1:按直线与平面公共点的个数分:
[探索]
直线与平面平行、相交的画法.
教师用直尺、纸板演示,引导学生说明画法.
1. 画直线在平面内时,要把表示直线的线段画在表示平面的平行四边形内部,如图16-1.
2. 画直线与平面相交时要画出交点,如图16-2.
3. 画直线与平面平行时,一般要把表示直线的线段画在表示平面的平行四边形外,并使它与平行四边形的一组对边或平面内的一条直平行,如图16-3.
[问题二]
1. 如何判定直线与平面平行?教师演示:(1)教师先将直尺放在黑板内,然后慢慢平移到平面外.
(2)观察教室的门,然后教师转动的门的一条门边给人平行于墙面的感觉.
学生讨论,归纳和总结,形成判定定理.
定理如果不在平面内的一条直线与平面内的一条直线平行,那么这条直线和这个平面平行.
已知:aα,bα,a∥b.
求证:a∥α.
分析:要证明直线与平面平行,根据定义,只要证明直线与平面没有公共点,这时可考虑使用反证法.
证明:假设a不平行于α,由aα,得a∩α=A.若A∈b,则与已知a∥b矛盾;若Ab,则a与b是异面直线,与a∥b矛盾.所以假设不成立,故a∥α.
总结:此定理有三个条件,(1)aα,(2)bα,(3)a∥b.三个条件缺少一个就不能推出a∥α这一结论.此定理可归纳为“若线线平行,则线面平行”.
2. 当直线与平面平行时,直线与平面内的直线有什么位置关系?是否平行?
教师演示:教师先让直尺平行于讲桌面,再将纸板经过直尺,慢慢绕直尺旋转使纸板与桌面相交.
学生讨论得出:直尺平行于纸板与桌面的交线.
师生共同归纳和总结,形成性质定理.
定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
已知:l∥a,lβ,α∩β=m.
求证:l∥m.
证明:因为l∥α,所以l∩α=,又因为mα,所以l∩m=,由于l,m都在β内,且没有公共点,所以l∥m.
总结:此定理的条件有三个:
(1)l∥α,即线面平行.
(2)lβ,即过线作面.
(3)β∩α=m,即面面相交.
三个条件缺一不可,此定理可简记为“若线面平行,则线与交线平行”.
三、解释应用
[例题]
1. 已知:如图16-5,空间四边形ABCD,E,F分别是AB,AD的中点.求证:EF∥平面BCD.
证明:连接BD,在△ABD中,
因为E,F分别是AB,AD的中点,
所以EF∥BD.
又因为BD是平面ABD与平面BCD的交线,EF∥平面BCD,所以EF∥平面BCD.
2. 求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内.
已知:l∥α,点P∈α,P∈m,m∥l(如图16-6).
求证;mα.
证明:设l与P确定的平面为β,且α∩β=m′,则l∥m′.又知l∥m,m∩m′=P,由平行公理可知,m与m′重合.所以mα.
[练习]
1. 已知:如图16-7,长方体AC′.求证:B′D′∥平面ABCD.
2. 如图16-8,一个长方体木块ABCD-A1B1C1D1,如果要经过平面A1C1内一点P和棱BC将木块锯开,那么应该怎样画线?
四、拓展延伸
1. 教室内吊在半空中的日光灯管平行于地面,也平行于教室的一墙面,试探讨它和这个墙面与地面的交线之间有什么样的位置关系?
2. 已知:如图16-9,正方形ABCD和正方形ABEF不在同一平面内,点M,N分别是对角线AC,BF上的点.问:当M,N 满足什么条件时,MN∥平面BCE.
3. 如果三个平面两两相交于三条直线,那么这三条直线有怎样的位
置关系.
点评
这篇案例从学生身边的实例出发,引导学生抽象出直线与平面平行、
相交的定义,又通过演示,总结和归纳出直线与平面平行的判定及性质定理,整个过程都把学科理论和学生面临的实际生活结合起来,使学生能较好地理解和把握学科知识.同时,培养了学生的探索创新能力和实践能力,激发了学生的学习兴趣.
2019-2020年高三数学总复习直线方程的几种形式教案理
教材分析
这节内容介绍了直线方程的几种主要形式:点斜式、两点式和一般式,并简单介绍了斜截式和截距式.直线方程的点斜式是其他直线方程形式的基础,因此它是本节学习的重点.在推导直线方程的点斜式时,要使学生理解:(1)建立点斜式的主要依据是,经过直线上一个
定点与这条直线上任意一点的直线是唯一的,其斜率等于k.(2)在得出方程后,要把它变成方程y-y1=k(x-x1).因为前者表示的直线缺少一个点P1(x1,y1),而后者才是这条直线的方程.(3)当直线的斜率不存在时,不能用点斜式求它的方程,这时的直线方程为x=x1.在学习了点斜式的基础上,进一步介绍直线方程的其他几种形式:斜截式、两点式、截距式和一般式,并探索它们的适用范围和相互联系与区别.通过研究直线方程的几种形式,指出它们都是关于x,y的二元一次方程,然后从两个方面进一步研究直线和二元一次方程的关系,使学生明确一个重要事实:在平面直角坐标系中,任何一条直线的方程,都可以写成关于x,y的一次方程;反过来,任何一个关于x,y的一次方程都表示一条直线,为以后继续学习“曲线和方程”打下基础.因为这部分内容较为抽象,所以它是本节学习的难点.
教学目标
1. 在“直线与方程”和直线的斜率基础上,引导学生探索由一个点和斜率推导出直线方程,初步体会直线方程建立的方法.
2. 理解和掌握直线方程的点斜式,并在此基础上研究直线方程的其他几种形式,掌握它们之间的联系与区别,并能根据条件熟练地求出直线方程.
3. 理解直线和二元一次方程的关系,并能用直线方程解决和研究有关问题.
4. 通过直线方程几种形式的学习,初步体会知识发生、发展和运用的过程,培养学生多向思维的能力.
任务分析
这节内容是在学习了直线方程的概念与直线的斜率基础上,具体地研究直线方程的几种形式,而这几种形式的关键是推导点斜式方程.因此,在推导点斜式方程时,要使学生理解:已知直线的斜率和直线上的一个点,这条直线就确定了,进而直线方程也就确定了.求直线方程就是把直线上任一点用斜率和直线上已知点来表示,这样由两点的斜率公式即可推出直线的点斜式方程.在直线的点斜式方程基础上,由学生推出直线方程的其他几种形式,并使学生明确直线方程各种形式的使用范围,以及它们之间的联系与区别.对于直线和方程的一一对应关系是本节课的难点,在论证直线和方程的关系时,一方面分斜率存在与斜率不存在两类,另一方面又分B≠0与B=0两类.这种“两分法”的分类,科学严密,可培养学生全面系统和周密地讨论问题的能力.
教学设计
一、问题情境
飞逝的流星形成了一条美丽的弧线,这条弧线可以看作满足某种条件的点的集合.在平面直角坐标系中,直线也可以看作满足某种条件的点的集合.为研究直线问题,须要建立直线的方程.直线可由两点唯一确定,也可由一个点和一个方向来确定.如果已知直线上一个点的坐标和斜率,那么如何建立这条直线的方程呢?
二、建立模型
1. 教师提出一个具体的问题若直线l经过点A(-1,3),斜率为-2,点P在直线l上运动,那么点P的坐标满足什么条件?
设点P的坐标为(x,y),那么当P在直线l上运动时(除点A外),点P与定点A确定的直线就是l,它的斜率恒为-2,所以=-2,即2x+y-1=0.
显然,点A(-1,3)满足此方程,因此,当点P在直线l上运动时,其坐标(x,y)满足方程2x+y-1=0.
2. 教师明晰一般地,设直线l经过点P1(x1,y1),且斜率为k,对于直线l上任意一点P (x,y)(不同于点P1),当点P在直线l上运动时,PP1的斜率始终为k,则,即y-y1=k(x-x1).
可以验证:直线l上的每个点(包括点P1)的坐标都是这个方程的解;反过来,以这个方程的解为坐标的点都在直线l上,这个方程就是过点P1、斜率为k的方程,我们把这个方程叫作直线的点斜式方程.
当直线l与x轴垂直时,斜率不存在,其方程不能用点斜式表示,但因为直线l上每一点的横坐标都等于x1,所以它的方程是x=x1.
思考:(1)方程与方程y-y1=k(x-x1)表示同一图形吗?
(2)每一条直线都可用点斜式方程表示吗?
[例题]
求满足下列条件的直线方程.
(1)直线l1:过点(2,5),k=-1.
(2)直线l2:过点(0,1),k=-.
(3)直线l3:过点(2,1)和点(3,4).
(4)直线l4:过点(2,3)平行于y轴.
(5)直线l5:过点(2,3)平行于x轴.
参考答案:(1)x+y-7=0.(2)y=-x+1.(3)3x-y-5=0.(4)x=2.(5)y =3.
[练习]
求下列直线方程.
(1)已知直线l的斜率为k,与y轴的交点P(0,b).
(如果直线l的方程为y=kx+b,则称b是直线l在y轴上的截距,这个方程叫直线的斜截式方程)
(2)已知直线l经过两点P1(x1,y1),P2(x2,y2).
(如果直线l的方程为y-y1=(x-x1),(x1≠x2),则这个方程叫直线的两点式方程)
(3)已知直线l经过两点A(a,0),B(0,b),其中ab≠0.
(如果直线l的方程为,(ab≠0),则a,b分别称为直线l在x轴、y轴上的截距,这个方程叫直线的截距式方程)
进一步思考讨论:前面所学的直线方程的几种形式都是关于x,y的二元一次方程,那么任何一条直线的方程是否为关于x,y的二元一次方程?反过来,关于x,y的二元一次方程都表示一条直线吗?
通过学生讨论后,师生共同明晰:
在平面直角坐标系中,每一条直线的方程都是关于x,y的二元一次方程.
事实上,当直线斜率存在时,它的方程可写成y=kx+b,它可变形为kx-y+b=0,若设A =k,B=-1,C=b,它的方程可化为Ax+By+C=0;当直线斜率不存在时,它的方程可写成x=x1,即x-x1=0,设A=1,B=0,C=-x1,它的方程可化为Ax+By+C=0.即任何一条直线的方程都可以表示为Ax+By+C=0;反过来,关于x,y的二元一次方程Ax+By +C=0,(A,B不全为0)的图像是一条直线.
事实上,对于方程Ax+By+C=0,(A,B不全为0),当B≠0时,方程可化为y=-x-,它表示斜率为-,在y轴上截距为-的直线;当B=0时,A≠0,方程可化为x=-,它表示一条与y轴平行或重合的直线.
综上可知:在平面直角坐标系中,直线与关于x,y的二元一次方程是一一对应的.我们把方程Ax+By+C=0,(A,B不全为0)叫作直线的一般式方程.
三、解释应用
[例题]
1. 已知直线l通过点(-2,5),且斜率为-.
(1)求直线的一般式方程.
(2)求直线在x轴、y轴上的截距.
(3)试画出直线l.解答过程由学生讨论回答,教师适时点拨.
2. 求直线l:2x-3y+6=0的斜率及在x轴与y轴上的截距.
解:已知直线方程可化为y=x+2,所以直线l的斜率为,在y轴上的截距为2.在方程2x -3y+6=0中,令y=0,得x=-3,即直线在x轴上的截距为-3.
[练习]
1. 求满足下列条件的直线方程,并画出图形.
(1)过原点,斜率为-2.
(2)过点(0,3),(2,1).
(3)过点(-2,1),平行于x轴.
(4)斜率为-1,在y轴上的截距为5.
(5)在x轴、y轴上的截距分别为3,-5.
2. 求过点(3,-4),且在两条坐标轴上的截距相等的直线方程.
3. 设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列条件确定m的值.
(1)直线l在x轴上的截距为-3.
(2)直线l的斜率为1.
(3)直线l与两坐标轴围成的三角形的面积为10.
四、拓展延伸
1. 在直线方程y-1=k(x-1)中,k取所有实数,可得到无数条直线,这无数条直线具有什么共同特点?
2. 在直线方程Ax+By+C=0中,当A,B,C分别满足什么条件时,直线有如下性质:
(1)过坐标原点.(2)与两坐标轴都相交.
(3)只与x轴相交.(4)只与y轴相交.
(5)与x轴重合.(6)与y轴重合.
3. 直线方程的一般式与几种特殊形式有什么区别与联系?你能说明它们的适用范围以及相互转化的条件吗?
参考答案:
1. 直线过点(1,1),它不包括直线x=1.
2. (1)C=0.A,B不全为0;(2)A,B都不为0.
(3)A≠0,B=0,C≠0.(4)A=0,B≠0,C≠0.
(5)A=0,B≠0,C=0.(6)A≠0,B=0,C=0.
3. 略.
点评
这篇案例在直线与方程和直线的斜率基础上,通过实例探索出过一点且斜率已知的直线的方程,然后按照由特殊到一般的方程建立了直线的点斜式方程,在点斜式方程的基础上由学生自主的探究出直线方程的其他形式,并研究了几种直线方程的联系与区别以及它们的适用范围.在案例的设计上注意了知识的发生、发展和适用的过程.在例题与练习的设计上,注意了层次性和知识的完整性的结合,在培养学生的能力上,注意了数学的本质是数学思维过程的教学,体现了数形结合、化归、转化、抽象、概括以及函数与方程的思想.在培养学生创新意识、探索研究、分析解决问题的能力等方面,做了一些尝试,体现了新课程的教学理念,能够较好地完成本节的教育教学任务.。

相关文档
最新文档