数学版七年级上册数学总复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学版七年级上册数学总复习

一、压轴题

1.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.

(1)如图2,经过t 秒后,OP 恰好平分∠BOC .

①求t 的值;

②此时OQ 是否平分∠AOC ?请说明理由;

(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一

周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;

(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).

2.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、

2Q 、3Q 的位置如图2所示.

解决如下问题:

(1)如果4t =,那么线段13Q Q =______;

(2)如果4t <,且点3Q 表示的数为3,那么t =______;

(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.

3.综合试一试

(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.

(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.

(3)a 是不为1的有理数,我们把11a

-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112

=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.

(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉

一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.

(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______

(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,

甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后

甲和乙、丙的距离相等.

4.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.

(1)可求得 x =______,第 2021 个格子中的数为______;

(2)若前 k 个格子中所填数之和为 2019,求 k 的值;

(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算

|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.

5.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点

C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为

0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.

请根据上述规定回答下列问题:

(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值;

(2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______;

(3)若点E 在数轴上(不与A 、B 重合),满足BE=

12

AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.

6.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .

(1)分别求a ,b ,c 的值;

(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.

i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.

ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.

7.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.

(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.

(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),

COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.

8.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.

问题解决:

(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);

(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).

相关文档
最新文档