玉田县二中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玉田县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1)
D .(﹣5,3,4)
2. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样
方法是( )
A .抽签法
B .随机数表法
C .系统抽样法
D .分层抽样法
3. 曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )
A . e 2
B .2e 2
C .e 2
D . e 2
4. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为183,则球O 的体积为( )
A .81π
B .128π
C .144π
D .288π
【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
甲 乙 丙 丁 平均环数x 8.3 8.8 8.8 8.7 方差s s
3.5
3.6
2.2
5.4
A .甲
B .乙
C .丙
D .丁
6. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )
A .3
B .2
C .3
D .4
7. “p q ∨为真”是“p ⌝为假”的( )条件
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要 8. 若抛物线y 2=2px 的焦点与双曲线﹣
=1的右焦点重合,则p 的值为( )
A .﹣2
B .2
C .﹣4
D .4
9. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π10
10.圆2
2
2
(2)x y r -+=(0r >)与双曲线2
2
13
y x -=的渐近线相切,则r 的值为( )
A B .2 C D .
【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.
11.执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )
A .9
B .11
C .13
D .15
12.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )
A .20种
B .22种
C .24种
D .36种
二、填空题
13.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:
①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k
,2
k+1
)”;其中所有正确
结论的序号是 .
14.已知函数f (x )=
有3个零点,则实数a 的取值范围是 .
15.已知两个单位向量,a b 满足:1
2
a b ∙=-
,向量2a b -与的夹角为,则cos θ= . 16.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .
17.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是 度.
18.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .
三、解答题
19.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.
(1)证明://MN 平面PAB ;
(2)求直线AN 与平面PMN 所成角的正弦值;
20.已知y=f (x )是R 上的偶函数,x ≥0时,f (x )=x 2﹣2x
(1)当x <0时,求f (x )的解析式.
(2)作出函数f (x )的图象,并指出其单调区间.
21.根据下列条件,求圆的方程:
(1)过点A(1,1),B(﹣1,3)且面积最小;
(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).
22.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)
(1)求点C到直线AB的距离;
(2)求AB边的高所在直线的方程.
23.设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.
24.若函数f(x)=sinωxcosωx+sin2ωx﹣(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横
坐标依次构成公差为π的等差数列.
(Ⅰ)求ω及m的值;
(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.
玉田县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
2.【答案】C
【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,
∴是系统抽样法,
故选:C.
【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.
3.【答案】D
【解析】解析:依题意得y′=e x,
因此曲线y=e x在点A(2,e2)处的切线的斜率等于e2,
相应的切线方程是y﹣e2=e2(x﹣2),
当x=0时,y=﹣e2
即y=0时,x=1,
∴切线与坐标轴所围成的三角形的面积为:
S=×e2×1=.
故选D.
4. 【答案】D
【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,
则由题意,得2
11
sin 6032
R R ⨯⨯︒⋅=6R =,所以球的体积为
3
42883
R π=π,故选D . 5. 【答案】C
【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大, 甲、乙、丙、丁四人的射击环数的方差中丙最小, ∴丙的射击水平最高且成绩最稳定,
∴从这四个人中选择一人参加该运动会射击项目比赛, 最佳人选是丙. 故选:C .
【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.
6. 【答案】A
【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线, ∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值
∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,
∴两直线的距离为
=
,
∴AB 的中点M 到原点的距离的最小值为+=3
,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
7. 【答案】B 【解析】
试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 8. 【答案】D
【解析】解:双曲线
﹣
=1的右焦点为(2,0),
即抛物线y 2=2px 的焦点为(2,0),
∴=2,
∴p=4.
故选D.
【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.
9.【答案】B
【解析】
考点:球与几何体
10.【答案】C
11.【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5,
当a=5时,不满足退出循环的条件,故a=9,
当a=9时,不满足退出循环的条件,故a=13,
当a=13时,满足退出循环的条件,
故输出的结果为13,
故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.12.【答案】C
【解析】解:根据题意,分2种情况讨论:
①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,
共有=12种推荐方法;
②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,
共有=12种推荐方法;
故共有12+12=24种推荐方法;
故选:C.
二、填空题
13.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.
…
一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.
14.【答案】(,1).
【解析】解:∵函数f(x)=有3个零点,
∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,
∴,
解得<a <1,
故答案为:(,1).
15.【答案】. 【解析】
考点:向量的夹角.
【名师点睛】平面向量数量积的类型及求法 (1)
求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;
三是利用数量积的几何意义.
(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 16.【答案】 (﹣4,0] .
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;
当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,
则满足,
即,
∴
解得﹣4<a<0,
综上:a的取值范围是(﹣4,0].
故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
17.【答案】75度.
【解析】解:点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.当点P在二面角α﹣l﹣β的内部
时,如图,A、C、B、P四点共面,∠ACB为二面角的平面角,
由题设条件,点P到α,β和棱l的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.
故答案为:75.
【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键.
18.【答案】(﹣∞,3].
【解析】解:f′(x)=3x2﹣2ax+3,
∵f(x)在[1,+∞)上是增函数,
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2﹣2ax+3≥0在[1,+∞)上恒成立.
则必有≤1且f′(1)=﹣2a+6≥0,
∴a ≤3;
实数a 的取值范围是(﹣∞,3].
三、解答题
19.【答案】(1)证明见解析;(2)25
. 【解析】
试
题解析:
(2)在三角形AMC 中,由2
2,3,cos 3
AM AC MAC ==∠=
,得 2222cos 5CM AC AM AC AN MAC =+-∠=,
222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,
∴平面ABCD ⊥平面PAD ,且平面ABCD
平面PAD AD =,
∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,
在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。
在Rt PAM ∆中,由PA AM PM AF =,得45AF =,∴85
sin ANF ∠=, 所以直线AN 与平面PMN 所成角的正弦值为
85.1
考点:立体几何证明垂直与平行. 20.【答案】
【解析】解:(1)设x <0,则﹣x >0,
∵x >0时,f (x )=x 2
﹣2x .
∴f (﹣x )=(﹣x )2﹣2(﹣x )=x 2
+2x
∵y=f (x )是R 上的偶函数
∴f (x )=f (﹣x )=x 2
+2x
(2)单增区间(﹣1,0)和(1,+∞);
单减区间(﹣∞,﹣1)和(0,1).
【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.
21.【答案】
【解析】解:(1)过A 、B 两点且面积最小的圆就是以线段AB 为直径的圆,
∴圆心坐标为(0,2),半径r=|AB|=
=×=,
∴所求圆的方程为x 2+(y ﹣2)2
=2;
(2)由圆与y 轴交于点A (0,﹣4),B (0,﹣2)可知,圆心在直线y=﹣3上,
由
,解得
,
∴圆心坐标为(2,﹣3),半径r=
,
∴所求圆的方程为(x ﹣2)2+(y+3)2
=5.
22.【答案】
【解析】解(1)∵
,
∴根据直线的斜截式方程,直线AB :
,化成一般式为:4x ﹣3y+12=0,
∴根据点到直线的距离公式,点C 到直线AB 的距离为
;
(2)由(1)得直线AB 的斜率为,∴AB 边的高所在直线的斜率为,
由直线的点斜式方程为:
,化成一般式方程为:3x+4y ﹣7=0,
∴AB 边的高所在直线的方程为3x+4y ﹣7=0.
23.【答案】
【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,
即有(ax﹣1)(x﹣1)>0,
当a=0时,即有1﹣x>0,解得x<1;
当a<0时,即有(x﹣1)(x﹣)<0,
由1>可得<x<1;
当a=1时,(x﹣1)2>0,即有x∈R,x≠1;
当a>1时,1>,可得x>1或x<;
当0<a<1时,1<,可得x<1或x>.
综上可得,a=0时,解集为{x|x<1};
a<0时,解集为{x|<x<1};
a=1时,解集为{x|x∈R,x≠1};
a>1时,解集为{x|x>1或x<};
0<a<1时,解集为{x|x<1或x>}.
(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,
即为ax2﹣(a+1)x+1>0,
即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.
设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].
则g(﹣1)>0,且g(1)>0,
即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,
即(x﹣1)(x+2)<0,且x(x﹣1)>0,
解得﹣2<x<1,且x>1或x<0.
可得﹣2<x<0.
故x的取值范围是(﹣2,0).
24.【答案】
【解析】解:(Ⅰ)∵f(x)=sinωxcosωx+sin2
ωx﹣
=ωx+(1﹣cos2ωx)﹣=2ωx﹣2ωx=sin(2ωx﹣),依题意得函数f(x)的周期为π且ω>0,
∴2ω=,
∴ω=1,则m=±1;
(Ⅱ)由(Ⅰ)知f(x)=sin(2ωx﹣),∴,
∴.
又∵x∈[0,2π],
∴.
∴y=f(x)在x∈[0,2π]上所有零点的和为.
【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题.。