淳安县第一中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淳安县第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知集合2
{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的
个数为
A 、
B 、2
C 、3
D 、4 2. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )
A .{﹣2}
B .{2}
C .{﹣2,2}
D .∅
3. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定
4. (+
)2n (n ∈N *
)展开式中只有第6项系数最大,则其常数项为( )
A .120
B .210
C .252
D .45
5. 已知向量=(1,),=(
,x )共线,则实数x 的值为( )
A .1
B .
C . tan35°
D .tan35°
6. 在复平面上,复数z=a+bi (a ,b ∈R )与复数i (i ﹣2)关于实轴对称,则a+b 的值为( )
A .1
B .﹣3
C .3
D .2
7. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )
A .
B .
C .
D .
8. 函数2
()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 9. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )
A .0
B .0或
C .
或
D .0或
10.下列函数中哪个与函数y=x 相等( )
A .y=(
)2
B .y=
C .y=
D .y=
11.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )
A .p 或q
B .p 且q
C .¬p 或q
D .p 且¬q
12.已知直线l :2y kx =+过椭圆)0(122
22>>=+b a
y x 的上顶点B 和左焦点F ,且被圆
224x y +=截得的弦长为L ,若L ≥e 的取值范围是( ) (A ) ⎥⎦
⎤ ⎝⎛
550, ( B ) 0⎛ ⎝⎦
(C ) ⎥⎦⎤
⎝⎛5530, (D ) ⎥⎦⎤
⎝
⎛5540, 二、填空题
13.如图,函数
f (x )的图象为折线 AC B ,则不等式f (x )≥lo
g 2(x+1)的解集是 .
14.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是
___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
15.函数y=sin 2x ﹣2sinx 的值域是y ∈ .
16.设a 抛掷一枚骰子得到的点数,则方程x
2+ax+a=0有两个不等实数根的概率为 .
17.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为
A 1
B 1
的中点,则AM 与平面AA 1
C 1C
所成角的正切值为( )
A .
B .
C .
D .
18.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c
,则cosB= .
三、解答题
19.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设
,且
,则的最小值为
(几何证明选做题)如图,中,
,以
为直径的半圆分别交
于点
,
若
,则
20.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
21.已知函数f(x)=sinx﹣2sin2
(1)求f(x)的最小正周期;
(2)求f(x)在区间[0,]上的最小值.
22.已知函数,
.
(Ⅰ)求函数的最大值; (Ⅱ)若,求函数
的单调递增区间.
23.斜率为2的直线l 经过抛物线的y 2=8x 的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长.
24.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为
23
π
,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧
AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.
(1)用θ表示CD的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?
淳安县第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 2. 【答案】A
【解析】解:由A 中的方程x+2=0,解得x=﹣2,即A={﹣2};
由B 中的方程x 2
﹣4=0,解得x=2或﹣2,即B={﹣2,2},
则A ∩B={﹣2}. 故选A
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
3. 【答案】C
【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02
>4,
求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,
故直线和圆C 相交, 故选:C .
【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.
4. 【答案】
B
【解析】
【专题】二项式定理.
【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.
【解答】解:由已知(
+
)2n (n ∈N *
)展开式中只有第6项系数为
最大,
所以展开式有11项,所以2n=10,即n=5,
又展开式的通项为=
,
令5﹣
=0解得k=6,
所以展开式的常数项为=210;
故选:B
【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.5.【答案】B
【解析】解:∵向量=(1,),=(,x)共线,
∴x====,
故选:B.
【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.
6.【答案】A
【解析】解:∵z=a+bi(a,b∈R)与复数i(i﹣2)=﹣1﹣2i关于实轴对称,
∴,∴a+b=2﹣1=1,
故选:A.
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
7.【答案】D
【解析】解:∵当x>0时,3f(x)﹣2f()=…①,
∴3f()﹣2f(x)==…②,
①×3+③×2得:
5f(x)=,
故f(x)=,
又∵函数f(x)为偶函数,
故f(﹣2)=f(2)=,
故选:D.
【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.
8.【答案】B
【解析】
试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.
考点:二次函数图象与性质.
9.【答案】D
【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,
∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),
又f(x+2)=f(x),∴f(x)是周期为2的函数,
又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:
当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;
当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].
由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].
综上所述,a=﹣或0
故选D.
10.【答案】B
【解析】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.
B.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.
C.函数的定义域为R,y=|x|,对应关系不一致.
D.函数的定义域为{x|x≠0},两个函数的定义域不同.
故选B.
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.
11.【答案】C
【解析】解:在长方体ABCD﹣A1B1C1D1中
命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,
显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;
命题q:平面AC为平面α,平面A1C1为平面β,
直线A1D1,和直线AB分别是直线m,l,
显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;
故选C.
【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.
12.【答案】 B
【解析】依题意,2, 2.b kc ==
设圆心到直线l 的距离为d ,则L =≥
解得216
5d ≤。
又因为
d =2116,15k ≤+解得2
14k ≥。
于是222
222211c c e a b c k ===++,所以
2
40,5e <≤解得0e <≤故选B . 二、填空题
13.【答案】 (﹣1,1] .
【解析】解:在同一坐标系中画出函数f (x )和函数y=log 2(x+1)的图象,如图所示:
由图可得不等式f (x )≥log 2(x+1)的解集是:(﹣1,1],. 故答案为:(﹣1,1]
14.【答案】[2e,)-+∞
【解析】由题意,知当0,1x ∈()时,不等式2
e 1x
x ax -≥-,即21e x x a x +-≥恒成立.令()21e x
x h x x
+-=,
()()()2
11e 'x x x h x x
-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,x
k x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()
2
11e '0x x x h x x
-+-=
>,∴()h x 在()0,1x ∈为递增,∴
()()12e h x h <=-,则2e a ≥-.
15.【答案】 [﹣1,3] .
【解析】解:∵函数y=sin 2x ﹣2sinx=(sinx ﹣1)2
﹣1,﹣1≤sinx ≤1,
∴0≤(sinx ﹣1)2≤4,∴﹣1≤(sinx ﹣1)2
﹣1≤3.
∴函数y=sin 2
x ﹣2sinx 的值域是y ∈[﹣1,3].
故答案为[﹣1,3].
【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.
16.【答案】.
【解析】解:∵a是甲抛掷一枚骰子得到的点数,
∴试验发生包含的事件数6,
∵方程x2+ax+a=0 有两个不等实根,
∴a2﹣4a>0,
解得a>4,
∵a是正整数,
∴a=5,6,
即满足条件的事件有2种结果,
∴所求的概率是=,
故答案为:
【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.
17.【答案】
【解析】解:法1:取A1C1的中点D,连接DM,
则DM∥C1B1,
在在直三棱柱中,∠ACB=90°,
∴DM⊥平面AA1C1C,
则∠MAD是AM与平面AA1C1C所的成角,
则DM=,AD===,
则tan∠MAD=.
法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,
则∵AC=BC=1,侧棱AA
=,M为A1B1的中点,
1
∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量
设AM与平面AA1C1C所成角为θ,
则sinθ=||=
则tanθ=
故选:A
【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.
18.【答案】.
【解析】解:在△ABC中,∵6a=4b=3c
∴b=,c=2a,
由余弦定理可得cosB===.
故答案为:.
【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题.
三、解答题
19.【答案】
【解析】A
B
20.【答案】
【解析】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,
又PD∩DC=D,PD、DC⊂平面PCD,
所以BC⊥平面PCD.
因为PC⊂平面PCD,故PC⊥BC.
(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:
易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.
又点A到平面PBC的距离等于E到平面PBC的距离的2倍.
由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,
因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.
易知DF=,故点A到平面PBC的距离等于.
(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.
因为AB∥DC,∠BCD=90°,所以∠ABC=90°.
从而AB=2,BC=1,得△ABC的面积S△ABC=1.
由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.
因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.
又PD=DC=1,所以.
由PC⊥BC,BC=1,得△PBC的面积.
由V
=V P﹣ABC,,得,
A﹣PBC
故点A到平面PBC的距离等于.
【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.
21.【答案】
【解析】解:(1)∵f(x)=sinx﹣2sin2
=sinx﹣2×
=sinx+cosx﹣
=2sin(x+)﹣
∴f(x)的最小正周期T==2π;
(2)∵x∈[0,],
∴x+∈[,π],
∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],
∴可解得f(x)在区间[0,]上的最小值为:﹣.
【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.
22.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)由已知
当,即,时,
(Ⅱ)当时,递增
即,令,且注意到
函数的递增区间为
23.【答案】
【解析】解:设直线l 的倾斜解为α,则l 与y 轴的夹角θ=90°﹣α,
cot θ=tan α=2, ∴sin θ
=,
|AB|=
=40.
线段AB 的长为40.
【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式
|AB|=的灵活运用.
24.【答案】(1
)cos ,0,3CD πθθθ⎛⎫
=+∈ ⎪⎝⎭
;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=
时,观光道路最长.
【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD CO COD DCO CDO
==∠∠∠
2cos 3CD πθθθ⎛⎫
∴=-= ⎪⎝⎭
,OD θ=
1sin 03OD OB π
θθθ<<∴<<<
cos ,0,3CD πθθθ⎛⎫
∴=∈ ⎪⎝⎭
(2)设观光道路长度为()L θ, 则()L BD CD AC θ=++弧的长
= 1cos θθθθ+++
= cos 1θθθ++,0,3πθ⎛⎫∈ ⎪⎝⎭
∴(
)sin 1L θθθ=-+' 由()0L θ'=
得:sin 6πθ⎛⎫
+= ⎪⎝
⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭
6πθ∴=
∴当6
π
θ=
时,()L θ取得最大值,即当6
π
θ=
时,观光道路最长.
考点:本题考查了三角函数的实际运用
点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
多数题型为选择题或填空题;其次是三角函数式的恒等变形。
如运用三角公式进行化简、求值解决简单的综合题等。
除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。
另外,还要注意利用三角函数解决一些应用问题。