2010北京市中学生数学竞赛
保值区间
高考数学母题保值区间年福建高考试题)设非空集合S={x|m ≤x ≤n}满足:当x ∈S 时,有x 2∈S.给出如下三(A)0 (B)1 (C)2 (D)3[解析]:①若m=1,由m ≤x ≤n ⇒1≤x ≤n ⇒1≤x 2≤n 2;又由x 2∈S ⇒n 2≤n ⇒n=1⇒S={1};②若m=-21,由m ≤x ≤n ⇒-21≤x ≤n ⇒0≤x ≤max{41,n 2};又由x 2∈S ⇒max{41,n 2}≤n ⇒41≤n ≤1;③若n=21,由m ≤x ≤n ⇒m ≤x ≤21;(i)当m>0时,m 2≤x 2≤41;又由x 2∈S ⇒m 2≥m,且m ≤21⇒m ∈∅;(ii)当m ≤0时,0≤x ≤max{41,m 2};又由x 2∈S ⇒max{41,m 2}≤21 ⇒m 2≤21⇒-22≤m ≤0.故选[点评]:本题是一道以集合为背景的形似不等式的问题,但实质是函数的保值区间问题,当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间;令f(x)=x 2,x ∈S,则x 2∈S ⇔f(x)∈S;函数f(x)与y=x 的图像如图①若m=1,由m ≤x ≤n ⇒1≤x ≤n;又由f(x)∈S ⇒n=1⇒S={1};②若m=-21,由m ≤x ≤n ⇒-21≤x ≤n;又由f(x)∈S ⇒41≤n ≤1;③若n=21,由m ≤x ≤n ⇒m ≤x ≤21;又由f(x)∈S ⇒-22≤m ≤0.故选(D). 在函数的三要素:定义域、解析式和值域中,定义域和解析式是函数的“基本量”,即由函数的定义域和解析式可唯一确定函数的值域,但由函数的解析式和值域不能唯一确定函数的定义域;解答函数的定义域与值域的关系问题常用的方法是图解法,即通过作出所给函数的图像直观分析求解;或通过研究函数的单调性分析求解.着意于函数的定义域和值域的关系,是高考命题的出发点之一.年广东高考模拟试题)当函数的自变量取值区间与值域区间相同时,我们称这样的区间为该函数的保值区间.函数的保值区间有(-∞,m]、[m,n]、[n,+∞)三种形式.以下四个二次函数图象的对称轴是直线l,从图象可知,有2个保值区间的函数是( )[解析]:图(A)中无保值区间;设直线y=x 与二次函数y=ax 2+bx+c 的图象交于A(m,m),B(n,n),图(B)中,有3个保值区间[m,n]、[m,+∞)、[n,+∞);图(C)中,有2个保值区间[k,+∞)、[n,+∞),其中,k=ab ac 442-;图(D)中,有1个保值区间(-∞,m].故选(C).注:关于二次函数f(x)=ax 2+bx+c(a>0)的保值区间有如下结论:①当f(x)与y=x 无交点时,f(x)无保值区间;②当f(x)与y=x 恰有一个交点A(m,m)时,f(x)恰有1个保值区间[m,+∞);③当f(x)与y=x 有二个交点A(m,m)、B(n,n)(m<n),且-ab2 272 [母题]Ⅰ(5-33):保值区间(094)≤m 时,f(x)恰有3个保值区间[m,n]、[m,+∞)、[n,+∞);④当f(x)与y=x 有二个交点A(m,m)、B(n,n)(m<n), m<-ab2<n且f(k )>n 时,f(x)恰有2个保值区间[k,+∞)、[n,+∞),其中,k=ab ac 442-;⑤当f(x)与y=x 有二个交点A(m,m)、B(n,n)(m<n),m<-ab2<n 且f(k )≤n 时,f(x)恰有3个保值区间[k,n]、[k,+∞)、[n,+∞),其中,k=a b ac 442-.年江苏省高考试题)设函数f(x)=-||1x x+,区间M=[a,b](a<b),集合N={y|y=f(x),x ∈M},则使M=N 成立的实数对(a,b)有( )(A)0个 (B)1个 (C)2个 (D)无数多个[解析]:(法一)由y=-x 是奇函数,y=1+|x|是偶函数⇒f(x)是奇函数;又因当x>0时,f(x)=-||1x x +=-1+x x =11+x -1⇒f(x)在(0,+∞)内单调递减⇒f(x)在(-∞,+∞)内单调递减;集合N 的意义是f(x)的定义域为M 时的值域,所以M=N ⇔f(a)=b,f(b)=a ⇔-||1a a +=b,-||1b b+=a,两式相乘得|)|1|)(|1(b a ab++=ab ⇒ab=0,或(1+|a|)(1+|b|)=1⇒a=b=0,与己知a<b 矛盾.故选(法二)当x>0时,f(x)=11+x -1⇒其图像如图由f(x)是奇函数⇒f(x)的图像如图:由图知,f(x)不存在保值区间.故选(A).注:对于单调函数f(x)存在保值区间[a,b]有如下结论:①若f(x)单调递增,则f(a)=a,且f(b)=b ⇔方程f(x)=x 有两个不等根a,b;②若f(x)单调递减,则f(a)=b,且f(b)=a.年江西高考试题)设函数f(x)=c bx ax ++2(a<0)的定义域为D,若所有点(s,f(t))(s,t ∈D)构成一个正方形区域,则a 的值为( )(A)-2 (B)-4 (C)-8 (D)不能确定[解析]:由所有点(s,f(t))(s,t ∈D)构成一个正方形区域⇔f(x)的值域为D;设ax 2+bx+c=0的两根分别为x 1,x 2(x 1<x 2),则D=[x 1,x 2],f(x)的值域为[0,a b ac 442-]⇒x 1=0⇒c=0⇒x 2=-a b ⇒-a b =a b ac 442-⇒-a b =ab 42-⇒a 2=-4a ⇒a=-4.故选(B).注:本题利用条件:“所有点(s,f(t))(s,t ∈D)构成一个正方形区域”包装函数f(x)存在保值区间,体现了高考命题的一个方向;已知函数存在保值区间,求参数的值(或范围)是保值区间问题的一个重要题型. 1.(1997年第八届“希望杯”全国数学邀请赛(高一)试题)当a>1时,若函数f(x)=21x 2-x+23的定义域和值域都是[1,a],则a= .2.(典型题)函数y=|2x-1|的定义域与值域均为[a,b](b>a),则a+b=( )(A)1 (B)2 (C)3 (D)43.(2007年全国高中数学联赛湖北预赛试题)对于函数f(x)=bx ax +2,存在一个正数b,使得f(x)的定义域和值域相同,则非零实数a 的值为 .4.(2010年北京市中学生数学竞赛高一试题)已知函数f(x)=x 2−1的定义域为D,值域为{−1,0,1,3},试确定这样的集合D 最多有多少个.[母题]Ⅰ(5-33):保值区间(094) 2735.(2008年天津高考试题)设a>1,若仅有一个常数c 使得对于任意的x ∈[a,2a],都有y ∈[a,a 2]满足方程log a x+log a y=c,这时a 的取值的集合为 .6.(2003年江苏省数学夏令营数学竞赛题)如图,已知函数y=2x2在[a,b](a<b)上的值域为[0,2],则点(a,b)的轨迹为图中的( ) (A)线段AB 、BC (B)线段AB 、OC (C)线段OA 、BC (D)线段OA 、OC 7.(2004年北京高考试题)函数f(x)=⎩⎨⎧∈-∈Mx x Px x ,,,其中P,M 为实数集R 的两个非空子集,又规定f(P)={y|y=f(x),x ∈P},f(M)={y|y=f(x),x ∈M}.给出下列四个判断:①若P ∩M=∅,则f(P)∩f(M)=∅;②若P ∩M ≠∅,则f(P)∩f(M)≠∅;③若P ∪M=R,则f(P)∪f(M)=R;④若P ∪M ≠R,则f(P)∪f(M)≠R.其中正确判断有( )(A)1个 (B)2个 (C)3个 (D)4个 8.(2007年全国高中数学联赛陕西初赛试题)定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.己知函数y=|x 21log |的定义域为[a,b],值域为[0,2],则区间[a,b]长度的最大值与最小值的差为 . 9.(2010年全国高中数学联赛内蒙古预赛试题)已知函数f(x)=-21x 2+x.若函数f(x)的定义域为[m,n](m<n)时,值域为 [km,kn](k>1),则m,n,k 的关系是 .10.(2011年全国高中数学联赛湖北预赛试题)已知函数f(x)=x 2-2|x|+2的定义域为[a,b](其中a<b),值域为[2a,2b],则符合条件的数组(a,b)为 .11.(2000年全国高中数学联赛试题)若函数f(x)=-21x 2+213在区间[a,b]上的最小值为2a,最大值为2b,求[a,b]. 12.(2004年全国高中数学联赛河南初赛试题)己知二次函数f(x)=ax 2+bx+a,满足条件:f(x+47)=f(47-x),且方程f(x)=7x+a 有两个相等的实根. (Ⅰ)求f(x)的解析式;(Ⅱ)是否存在实数m 、n(0<m<n),使f(x)的定义域和值域分别是[m,n]和[n 3,m3]?如果存在,求出m 、n 的值;若不存在,请说明理由.1.解:由f(x)=x ⇒21x 2-x+23=x ⇒x=1,3;又f(x)在区间[1,3]内单调递增⇒当x ∈[1,3]时,f(x)的值域是[1,3]⇒a=3. 2.解:由|2x-1|=x ⇒x=0,1;又f(x)在[0,1]内递增⇒当x ∈[0,1]时,f(x)的值域是[0,1]⇒a=0,b=1⇒a+b=1.故选(A). 3.解:若a>0, f(x)的定义域为D=(-∞,-ab]∪[0,+∞),但f(x)的值域A=[0,+∞),不合要求;若a<0,对于正数b,f(x)的 274 [母题]Ⅰ(5-33):保值区间(094)定义域为D=[0,-a b ],由于此时f max (x)=f(-a b 2)=a b -2⇒f(x)的值域A=[0,ab -2],由D=A ⇒-a b =a b-2⇒a=-4. 4.解:由f(x)=-1⇒x=0;f(x)=0⇒x=-1,1;f(x)=1⇒x=-2,2;f(x)=3⇒x=-2,2⇒0∈D,-1,1至少一个属于D,有3种选择;-2,2至少一个属于D,有3种选择;-2,2至少一个属于D,有3种选择⇒这样的D 共有3×3×3=27个.5.解:由log a x+log a y=c ⇒xy=a c⇒y=x a c ;任意的x ∈[a,2a],值域为[a a c 2,a a c ];由[a a c 2,a a c ]⊆[a,a 2]⇒a a c 2≥a,aa c ≤a 2⇒c ≥log a 2+2,c ≤3⇒log a 2+2≤c ≤3;又由常数c 仅有一个⇒log a 2+2=3⇒a=2⇒a 的取值的集合为{2}.6.解:由函数y=2x 2在[a,b](a<b)上的值域为[0,2],①当a=-1时,0≤b ≤1⇒点(a,b)的轨迹为图中的线段BC;②当b=1时,-1≤a ≤0⇒点(a,b)的轨迹为图中的线段AB.故选(A).7.解:由函数f(x)的定义知,P ∩M=∅,或P ∩M={0};当f(x)=|x|(x ≠0),P=(0,+∞),M=(-∞,0)时,f(P)=f(M)=(0,+∞)⇒①错;若P ∩M ≠∅⇒P ∩M={0}⇒0∈f(P)∩f(M)⇒f(P)∩f(M)≠∅⇒②正确;当f(x)=|x|,P=[0,+∞),M=(-∞,0)时,P ∪M=R,但f(P)∪f(M)=[0,+∞)⇒③错;假设f(P)∪f(M)=R ⇒∀x ∈R,都有x ∈f(P)∪f(M)⇒x ∈f(P)或x ∈f(M)⇒x ∈P 或-x ∈M ⇒x ∈P ∪M ⇒P ∪M=R,矛盾⇒④正确.故选(B). 8.解:由y=|log 2x|,令|log 2x|=0⇒x=1,令|log 2x|=2⇒x=41,4;作其图像知,区间[a,b]长度的最大值时,[a,b]=[41,4],区间[a,b]长度的最小值时,[a,b]=[41,1]⇒区间[a,b]长度的最大值与最小值的差=(4-41)-(1-41)=3. 9.解:由f(x)=kx ⇒-21x 2+x=kx ⇒x=0,2(1-k);作f(x)的图像知,m,n,k 的关系是n=0,m=2(1-k). 10.解:由f(x)=2x ⇒x 2-2|x|+2=2x(x>0)⇒x=2-2,2+2;令2x=1⇒x=21⇒(a,b)=(21,2+2). 11.解:①若a<b<0,则f(x)在[a,b]内单调递增⇒⎩⎨⎧==bb f a a f 2)(2)(⇒a,b 是方程f(x)=2x 的两根,f(x)=2x ⇒x 2+4x-13=0,而该方程无两负根;②若a<0≤b,则f(x)在[a,b]内的最大值=f(0)=213⇒b=413,此时f(b)=f(413)>0≠2a,所以只有f(a)=2a ⇒ a=-2-17;③若0≤a<b,则f(x)在[a,b]内单调递减⇒⎩⎨⎧==ab f ba f 2)(2)(⇒⎪⎩⎪⎨⎧=+=+13413422a b b a ,两式相减得:a+b=4⇒a 2-4a+3=0⇒a=1, 3⇒a=1,b=3. 12.解:(Ⅰ)由f(x+47)=f(47-x)⇒-a b 2=47⇒b=-27a ⇒f(x)=ax 2-27ax+a;又由f(x)=7x+a,即ax 2-(27a+7)x=0有等根⇒27a+7=0⇒a=-2⇒f(x)=-2x 2+7x-2; (Ⅱ)由f(x)=x3⇒-2x 2+7x-2=x3(x>0)⇒2x 3-7x 2+2x+3=0⇒x=1,3;又f max (x)=f(47)=833,令x3=833⇒x=118⇒m=118,n=3. 13.解:(Ⅰ)由f(1)=4,f '(1)=0⇒a=-6,b=9⇒f(x)=x 3-6x 2+9x ⇒f '(x)=3(x-1)(x-3)⇒f(x)在区间(-∞,1)和(3,+∞)内递增,在区间(1,3)内递减;(Ⅱ)由f(x)=x(x>0)⇒x=2,4,作图知,f(x)保值区间为[0,4].故不存在“正保值区间”.14.解:(Ⅰ)由f '(x)=x(x-1)e x ,①当-2<t ≤0时,单调增区间为[-2,t];②当0<t<1时,单调增区间为[-2,0],减区间为[0,t];(Ⅲ)假设函数()g x 存在保值区间[a,b].由g '(x)=(x+1)(x-1)e x ⇒g(x)单调递增⇒a,b 是方程g(x)=x,即(x-1)2e x=x 的两根⇒h(x)=(x-1)2e x -x 有两个大于1的零点;由h '(x)=(x 2-1)e x -1⇒h ''(x)=(x 2+2x-1)e x>0⇒h '(x)在(1,+∞)上单增⇒h '(x)存在唯一的零点x 0⇒h(x)在x 0处取得极小值;又h(1)=-1<0⇒h(x)在(1,+∞)上只有一个零点⇒不存在保值区间.(永定一中2014届高中毕业班适应性考试)已知函数2()()x f x ax bx c e =++在1x =处取得极小值,其图象过点(0,1)A ,且在点A 处切线的斜率为1-. (I)求()f x 的解析式;(II)设函数()g x 的定义域为D ,若存在区间[,]m n D ⊆,使得()g x 在[,]m n 上的值域也是[,]m n ,则称区间[,]m n 为函数()g x 的“保值区间”. ①请写出()f x 的一个“保值区间”(不必证明); ②证明:当1x >时,函数()f x 不存在“保值区间”.。
2010年全国 初中数学联赛(含答案)
12010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.若a ,b ,c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( )A .1B .2C .3D .4【答案】 B【解析】 因为()()10101a b a c ---=,而左边的两个加数都是非负整数,所以一个等于0,另一个等于1,也就是说,a ,b ,c 三个数中有两个相等,另一个和它们相差1.因此,所求的和式中,两项等于1,另一项等于2,结果为2.2.若实数a ,b ,c 满足等式3||6a b =,49||6a b c =,则c 可能取的最大值为( )A .0B .1C .2D .3【答案】 C【解析】 为了使c 尽量大,a 应该尽量大,b 应该尽量小.因为它们都是非负数,3a ,0b =,不难观察到所求答案为2.3.若a ,b 是两个正数,且1110,a b b a--++= 则( )2A .103a b <+≤B .113a b <+≤C .413a b <+≤D .423a b <+≤. 【答案】 C【解析】 去分母之后得到()()110a a b b ab -+-+=,即220a ab b a b ++--=.给定a 和b 是两个正数,那么如果让它们中的一个等于0,则另一个等于0或14.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( )A .13-B .9-C .6D .0【答案】 A【解析】 这需要使得前者是后者的因式,用综合除法可得,余式为()()33310a b x a c +++++,它应该等于0.所以两个系数都为0,特别地,()()333210a b a c ++-++,所以所求答案为13-.5.在ABC △中,已知60CAB ∠=︒,D ,E 分别是边AB ,AC 上的点,且60AED ∠=︒,ED DB CE +=,2CDB CDE ∠=∠,则DCB ∠= ( )A .15oB .20oC .25oD .30o【答案】 B【解析】 观察可得ADE △为正三角形,6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则312320092010a a a a a +++++=L ( )A .28062B .28065C .28067D .28068.【答案】 D【解析】 根据弃九法,它和1到2010的和被9除的余数相等.每连续9个自然数之和被9整除,2010被9除余3,1236++=,所以只有D 符合.二、填空题:(本题满分28分,每小题7分)1.已知实数x ,y 满足方程组33191x y x y ⎧+=⎨+=⎩,,则22x y += .【答案】 13【解析】 第一式除以第二式可得2219x xy y -+=,第二式平方可得2221x xy y ++=,那么所求答案就是()1921313⨯+÷=.2.二次函数2y x bx c =++的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知3AB ,30CAO ∠=︒,则c = .【答案】 19【解析】 观察可知A 必须在B 左边,否则B 会跑到x 轴负半轴上.设A 的横坐标为a ,则C 的纵坐标3,23AC =,2AB a =.因此,考虑两根之积,33a a ⨯,3a =319=. 3.在等腰直角ABC △中,5AB BC ==,P 是ABC △内一点,且5PA ,5PC =,则PB = .4【答案】 10【解析】 设()00B ,,()50A ,,()05C ,,根据熟知的勾三股四弦五,可观察到()31P ,,(另一个点在三角形外,不符合),所以10PB =.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放 个球.【答案】 15【解析】 也就是说,编号之差为6或11的两个球颜色相同.下面从1号球开始,依次写出颜色相同的球的编号:11261711516104159314821371→→→→→→→→→→→→→→→→→也就是说,如果有17个球,则全部同色;如果超过17个,则任何连续17个同色,也不行.如果有16个,则上面的圈去掉17号球仍然是一条链,仍然不行;如果有15个,则上面的圈去掉17号球和16号球后断成两部分,所以可以.第二试 (A )一.(本题满分20分)设整数()a b c a b c ≥≥,,为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长5不超过30的三角形的个数.【解析】 由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤, 所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.6⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)已知等腰三角形ABC △中,AB AC =,C ∠的平分线与AB 边交于点P ,M 为ABC △的内切圆I e 与BC 边的切点,作MD AC ∥,交I e 于点D .证明:PD 是I e 的切线.【解析】 过点P 作I e 的切线PQ (切点为Q )并延长,交BC 于点N .因为CP 为ACB ∠的平分线,所以ACP BCP ∠=∠.又因为PA 、PQ 均为I e 的切线,所以APC NPC ∠=∠.IP QNB7又CP 公共,所以ACP NCP △≌△,所以PAC PNC ∠=∠.由NM QN =,BA BC =,所以QNM BAC △≌△,故NMQ ACB ∠=∠,所以MQ AC ∥.又因为MD AC ∥,所以MD 和MQ 为同一条直线.又点Q 、D 均在I e 上,所以点Q 和点D 重合,故PD 是I e 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点()1P a ,,()210Q a ,. ⑴ 如果a ,b ,c 都是整数,且8c b a <<,求a ,b ,c 的值.⑵ 设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C .如果关于x 的方程20x bx c +-=的两个根都是整数,求ABC △的面积.【解析】 点()1P a ,、()210Q a ,在二次函数2y x bx c =+-的图象上,故1b c a +-=,4210a c a +-=,解得93b a =-,82c a =-.⑴ 由8c b a <<知8293938a a a a -<-⎧⎨-<⎩,,解得13a <<.又a 为整数,所以2a =,9315b a =-=,8214c a =-=.⑵ 设m ,n 是方程的两个整数根,且m n ≤,旗开得胜8由根与系数的关系可得39m n b a +=-=-,28mn c a =-=-,消去a ,得98()6mn m n -+=-,两边同时乘以9,得8172()54mn m n -+=-,分解因式,得(98)(98)10m n --=.所以9819810m n -=⎧⎨-=⎩,,或982985m n -=⎧⎨-=⎩,,或9810981m n -=-⎧⎨-=-⎩,,或985982m n -=-⎧⎨-=-⎩,,解得12m n =⎧⎨=⎩,,或109139m n ⎧=⎪⎪⎨⎪=⎪⎩,,或2979m n ⎧=-⎪⎪⎨⎪=⎪⎩,,或19323m n ⎧=⎪⎪⎨⎪=⎪⎩,,又m ,n 是整数,所以后面三组解舍去,故1m =,2n =.因此,()3b m n =-+=-,2c mn =-=-,二次函数的解析式为232y x x =-+.易求得点A 、B 的坐标为()10,和()20,,点C 的坐标为()02,, 所以ABC △的面积为1(21)212⨯-⨯=.第二试 (B )旗开得胜9一.(本题满分20分)设整数a ,b ,c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).【解析】 不妨设a b c ≥≥,由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤,旗开得胜10所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )11一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数2(1)4y x px k p =+++-的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.【解析】 由题意知,方程2(1)40x px k p +++-=的两根1x ,2x 中至少有一个为整数.由根与系数的关系可得12x x p +=-,12(1)4x x k p =+-,从而有()()()()12121222241x x x x x x k p ++=+++=- ①⑴ 若1k =,则方程为22(2)0x px p ++-=,它有两个整数根2-和2p -.⑵ 若1k >,则10k ->.因为12x x p +=-为整数,如果1x ,2x 中至少有一个为整数,则1x ,2x 都是整数.又因为p 为质数,由①式知1|2p x +或2|2p x +.不妨设1|2p x +,则可设12x mp +=(其中m 为非零整数),则由①式可得212k x m-+=,12故()()12122k x x mp m -+++=+,即1214k x x mp m-++=+. 又12x x p +=-,所以14k p mp m--+=+, 即1(1)4k m p m-++= ② 如果m 为正整数,则(1)(11)36m p ++⨯=≥,10k m->, 从而1(1)6k m p m-++>,与②式矛盾. 如果m 为负整数,则(1)0m p +<,10k m-<, 从而1(1)0k m p m-++<,与②式矛盾. 因此,1k >时,方程2(1)40x px k p +++-=不可能有整数根.综上所述,1k =.旗开得胜13。
北京市初中数学竞赛试题分类解析
北京市初中历年竞赛试题分类解析(一)绝对值【竞赛热点】1、 利用绝对值的几何意义求代数式的取值范围2、 利用绝对值的非负性解特殊方程3、 利用绝对值的定义去绝对值符号【知识梳理】绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:1.去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 3.绝对值的几何意义从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 、数b 的两点间的距离.【试题汇编】1、代数意义1、(2010•第2题)已知:三个数a b c 、、的积为负数,和为正数,且a b c ab ac bc x a b c ab ac bc=+++++,则x 的值为( )A .1B .-1C .0D .与a ,b ,c 的值有关2、(2008•第9题)若x x =--2)1(1,则x 的取值范围是_____________。
3、(2007•第1题)已知|a |=3,|b |=,31且ab <0,则ba 的值是( )A. 9B. 91-C.-9D. 914、(2007•第11题)已知实数a 满足|2006-a |+2007-a =a ,那么a -20062的值是 ;5、(2007•第13题)已知对所有的实数x ,都有211--≥-++x m x x 恒成立,则m 可以取得的最大值为6、(2005•第2题)方程1735=--+x x 的解的个数有( )个A. 1 B . 2 C. 3 D.无数7、(2004•第9题)已知0)1(42=++-y x ,则20063y x =________________。
2010年北京市中学生数学竞赛高一年级初赛试题及参考解答
A B C 内 一点 , 且满 足 2 PA +
∋
&& ∋
3 P B + 6 PC = 0, 试 确 定 P CA 的面积之比. 6. 如图 5, 凸四边形 A B CD 中, ( B A D + ( A D C = 240 ), E 和 F 分 别是边 A D 、 B C 的中点 , EF =
) ] , 而已知这个函数是奇函数 , 其必要 2 = k ,所
条件是在 0 点的函数值为 0, 即 3 以 的最小值是 6 .
2 . 答: ( B) . b 理由 为直线 O P 的斜率, 其最小值为 a b O C 的斜率 , 其最大值为 OA 的斜率, 所以 的 a p q 最大值为 , 最小值为 . m n 3 . 答 : ( C) . 理由 在 A BC 所在平面上取一点 O , ∗ + + 即 P A + P B + PC = 2 A B ,
2010 年 7 月上
第 397 期 ( 高中 )
数 学 竞 赛 之 窗
S PC 1 A 1 , 6# 2 + S PA B . S PB C . S PCA = 6 . 2 . 3 . 6. 答: 28 . 解 延长 B A 、 CD 相交于点 P , 由 ( BA D + ( A D C = 240 ) , 得 ( BP C = 60 ). 连接 BD , 取 BD 的中点 G, 连接 EG, FG, 则 由三角形中位线定理, 知 GE / BP, GF / PC, 所 1 1 以 ( EGF = 120 ), EG = A B, FG = CD. 2 2 在 E GF 中, 由余弦定理得 E F 2 = EG 2 + F G 2 - 2EG FG cos 120 ) AB 2 CD 2 AB CD = + + , 2 2 2 2 2 2 AB CD AB CD 即 + + 2 2 2 2 S
2010年北京市中考数学试题及答案
2010年北京市高级中等学校招生考试数 学 试 卷学校___________________ 姓名___________________ 准考证号___________________一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的.1. 2-的倒数是A. 12- B. 12 C. 2- D. 22. 2010年6月3日,人类首次模拟火星载人航天飞行试验“火星—500”正式启动,包括中国志愿者王跃在内的6名志愿者踏上了为期12 480小时的“火星之旅”.将12 480用科学记数法表示应为A. 312.4810⨯ B. 50.124810⨯ C. 41.24810⨯ D. 31.24810⨯3. 如图,在ABC △中,点D E 、分别在AB AC 、边上,DE BC ∥,ED CB A若:3:4AD AB =,6AE =,则AC 等于A. 3B. 4C. 6D. 84. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为A. 20B. 16C. 12D. 105. 从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是A. 15B. 310 C. 13D. 126. 将二次函数223y x x =-+化为()2y x h k =-+的形式,结果为 A. ()214y x =++ B. ()214y x =-+ C. ()212y x =++ D. ()212y x =-+7. 10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为x 甲,x 乙,身高的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是 A. x x =乙甲,22S S >乙甲 B. x x =乙甲,22S S <乙甲 C. x x >乙甲,22S S >乙甲 D. x x <乙甲,22S S <乙甲8. 美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个....符合上述要求,那么这个示意图是二、填空题(本题共16分,每小题4分)9. 若二次根式 则x 的取值范围是___________.10. 分解因式:34m m -=_____________________.11. 如图,AB 为O ⊙的直径,弦CD AB ⊥,垂足为点E ,连结OC ,若5OC =,8CD =,则AE =___________. 12. 右图为手的示意图,在各个手指间标记字母A B C D ,,,.请你按图中箭头所指方向(即A B C D C B A B →→→→→→→ C →→…的方式)从A 开始数连续的正整数1234,,,,…,当数到12时,对应的字母是________;当字母C 第201次出现时,恰好数到的数是_________;当字母C 第21n +次出现时(n 为正整数),恰好数到的数是_____________(用含n 的代数式表示).FEDB A C三、解答题(本题共30分,每小题5分) 13.计算:112010tan 603-⎛⎫-+--︒ ⎪⎝⎭.14. 解分式方程312422x x x -=--. 15. 已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =.求证:ACE DBF ∠=∠.16. 已知关于x 的一元二次方程2410x x m -+-=有两个相等的实数根,求m 的值及方程的根. 17. 列方程或方程组解应用题:2009年北京生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米. 18. 如图,直线23y x =+与x 轴交于点A ,与y 轴交于点B . (1)求A B ,两点的坐标;(2)过B 点作直线BP 与x 轴交于点P ,且使2OP OA =,求ABP △的面积.四、解答题(本题共20分,每小题5分) 19. 已知:如图,在梯形ABCD 中,AD BC ∥,2AB DC AD ===,4BC =.求B ∠的度数及AC 的长.20. 已知:如图,在ABC △中,D 是AB 边上一点,O ⊙过D B C 、、三点,290DOC ACD ∠=∠=︒.12(1)求证:直线AC是O⊙的切线;(2)如果75ACB∠=︒,O⊙的半径为2,求BD的长.21. 根据北京市统计局公布的2006-2009年空气质量的相关数据,回执统计图如下:(1)有统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_________年,增加了_______天;(2)表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%);表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表(3)根据表1中的数据将十个城市划分为三组,百分比不低于95%的为A组,不低于85%且低于95%的为B组,低于85%的为C组.按此标准,C组城市数量在这十个城市中所占的百分比为_____%;请你补全右边的扇形统计图.22. 阅读下列材料:小贝遇到一个有趣的图2图1问题:在矩形ABCD 中,8cm AD =,6cm AB =.现有一动点P按下列方式在矩形内运动:它从A 点出发,沿着与AB 边夹角为45︒的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45︒的方向作直线运动,并且它一直按照这种方式不停地运动,即当P 点碰到BC 边,沿着与BC 边夹角为45︒的方向作直线运动,当P 点碰到CD 边,再沿着与CD 边夹角为45︒的方向作直线运动,…,如图1所示.问P 点第一次与D 点重合前...与边相碰几次,P 点第一次与D 点重合时...所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD 折叠,得到矩形11A B CD .由轴对称的知识,发现232P P P E =,11P A PE =.请你参考小贝的思路解决下列问题:(1)P 点第一次与D 点重合前与边相碰______次;P 点从A 点出发到第一次与D 点重合时...所经过的路径地总长是_______________cm ;(2)进一步探究:改变矩形ABCD 中AD AB 、的长,且满足AD AB >.动点P 从A 点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上.若P 点第一次与B 点重合前与边相碰7次,则:AB AD 的值为_________.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 已知反比例函数ky x =的图象经过点()1A . (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30︒得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由;(3)已知点()6P m +也在此反比例函数的图象上(其中0m <),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得OQM △的面积是12,设Q 点的纵坐标为n ,求29n -+的值.24. 在平面直角坐标系xOy 中,抛物线22153244m m y x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点()2B n ,在这条抛物线上.(1)求B 点的坐标;(2)点P在线段OA上,从O点出发向A点运动,过P点作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED PE=,以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动).①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;②若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FM QF=,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点、N点也随之运动).若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.25. 问题:已知ABC△中,2BAC ACB∠=∠,点D是ABC△内的一点,且AD CD=,BD BA=.探究DBC∠与ABC∠度数的比值.请你完成下列探究过程:C B A内部使用用毕收回先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当90BAC ∠=︒时,依问题中的条件补全右图. 观察图形,AB 与AC 得数量关系为________; 当退出15DAC ∠=︒时,可进一步推出DBC ∠的度数为_______; 可得到DBC ∠与ABC ∠度数的比值为_________.(2)当90BAC ∠≠︒时,请你画出图形,研究DBC ∠与ABC∠度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.2010年北京市高级中等学校招生考试 数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:112010|tan 603-⎛⎫-+-- ⎪⎝⎭°31=-+…………………4分2=+.……………………………………………………………… 5分 14.(本小题满分5分)解:去分母,得322x x -=-.…………………………………………… 2分整理,得35x =. 解得53x =.…………………………………………………………… 4分经检验,53x =是原方程的解. 所以原方程的解是53x =.………………………………………………5分 15.(本小题满分5分)证明:∵AB DC =,∴AC DB =.…………………………………………………………1分∵EA AD ⊥,FD AD ⊥,FE∴90A D ∠=∠=°.…………………………2分 在EAC △与FDB △中,∴EAC FDB △≌△.………………………4分 ∴ACE DBF ∠=∠.……………………… 5分16.(本小题满分5分)解:由题意可知0∆=.即()()24410m ---=. 解得5m =.………………………………………………………………………3分当5m =时,原方程化为2440x x -+=. 解得122x x ==.所以原方程的根为122x x ==.…………………………………………………5分 17.(本小题满分5分)解法一:设生产运营用水x 亿立方米,则居民家庭用水()5.8x -亿立方米.… 1分依题意,得5.830.6x x -=+.………………………………………………2分解得1.3x =.…………………………………………………………………3分5.8 5.8 1.3 4.5x -=-=.…………………………………………………… 4分答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.…………………5分解法二:设生产运营用水x 亿立方米,居民家庭用水y 亿立方米.………………1分依题意,得5.830.6x y y x +=⎧⎨=+⎩……………………………………………………2分解这个方程组,得1.34.5.x y =⎧⎨=⎩,………………………………………………4分答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.…………………5分 18.(本小题满分5分)解:(1)令0y =,得32x =-. ∴A点坐标为302⎛⎫- ⎪⎝⎭,.…………………………………………………1分令0x =,得3y =. ∴B点坐标为()03,.……………………………………………………2分(2)设P 点坐标为()0x ,.依题意,得3x =±.∴P 点坐标分别为()130P ,或()230P -,.……………………………3分∴1132733224ABP S ⎛⎫=⨯+⨯=⎪⎝⎭△;213933224ABP S ⎛⎫=⨯-⨯= ⎪⎝⎭△.∴ABP △的面积为274或94.…………………5分 四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解法一:分别作AF BC ⊥,DG BC ⊥,F 、G 是垂足.…………………1分∴90AFB DGC ∠=∠=°.∵AD BC ∥, ∴四边形AFGD 是矩形.∴AF DG =. ∵AB DC =,∴Rt Rt AFB DGC △≌△. ∴BF CG =.∵2AD =,4BC =, ∴1BF =. 在Rt AFB △中,∵1cos 2BF B AB ==, ∴60B ∠=°.图1GFDBAC∵1BF =,∴AF . ∵3AC =,由勾股定理,得AC = ∴60B ∠=°,AC =5分解法二:过A 点作AE DC ∥交BC 于点E .………………1分∵AD BC ∥,∴四边形AECD 是平行四边形. ∴AD EC =,AE DC =. ∵2AB DC AD ===,4BC =, ∴AE BE EC AB ===.可证BAC △是直角三角形,ABE △是等边三角形.∴90BAC ∠=°,60B ∠=°.在Rt ABC △中,tan 60AC AB =⋅=° ∴60B ∠=°,AC =………………………………………5分20.(本小题满分5分)(1)证明:∵OD OC =,90DOC ∠=°,图2EDBAC∴45ODC OCD ∠=∠=°. ∵290DOC ACD ∠=∠=°, ∴45ACD ∠=°. ∴90ACD OCD OCA ∠+∠=∠=°.∵点C 在O 上, ∴直线AC 是O的切线.………………2分(2)解:∵2OD OC ==,90DOC ∠=°,可求CD =.∵75ACB ∠=°,45ACD ∠=°, ∴30BCD ∠=°. 作DE BC ⊥于点E . ∴90DEC ∠=°.∴sin30DE DC =⋅=° ∵45B ∠=°, ∴2DB =.………………………………………………………5分21.(本小题满分5分)解:(1)2008;28;…………………………………………………………2分(2)78%;…………………………………………………EABCDO……………3分(3)30;…………………………………………………………………4分C 组30%B 组50%A 组20%……………………………………5分 22.(本小题满分5分)解:(1)5,;…………………………………………………………3分(2)4:5.………………………………………………………………5分解题思路示意图:五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分)解:(1)由题意得1=解得k =.∴反比例函数的解析式为y =.………………1分 (2)过点A 作x 轴的垂线交x 轴于点C .在Rt AOC △中,OC =,1AC =. 可得2OA =,30AOC ∠=°.…………………2分 由题意,30AOB ∠=°,2OB OA ==, ∴60BOC ∠=°.过点B 作x 轴的垂线交x 轴于点D . 在Rt BOD △中,可得BD =1OD =. ∴B点坐标为(1-.……………………………………………3分将1x =-代入y =中,得y =.∴点(1B -在反比例函数y =的图象上.………………4分 (3)由y =得xy =∵点()6P m +在反比例函数y =的图象上,其中0m <,∴)6m +=.……………………………………………5分∴210m ++=. ∵PQ x ⊥轴,∴Q 点的坐标为()m n ,. ∵OQM △的面积是12, ∴1122OM QM ⋅=.∵0m <,∴1mn =-.………………………………………………………6分∴22220m n n ++=.∴21n -=-.∴298n -+=.……………………………………………7分24.(本小题满分8分)解:(1)∵抛物线22153244m m y x x m m -=-++-+经过原点,∴2320m m -+=. 解得11m =,22m =. 由题意知1m ≠, ∴2m =.∴抛物线的解析式为21542y x x =-+. ∵点()2B n ,在抛物线21542y x x =-+上, ∴4n =. ∴B点的坐标为()24,.……………………………………………2分(2)①设直线OB 的解析式为1y k x =.求得直线OB 的解析式为2y x =.∵A 点是抛物线与x轴的一图1个交点,可求得A 点的坐标为()100,.设P 点的坐标为()0a ,,则E 点的坐标为()2a a ,. 根据题意作等腰直角三角形PCD ,如图1. 可求得点C 的坐标为()32a a ,. 由C 点在抛物线上,得()21523342a a a =-⨯+⨯. 即2911042a a -=.解得1229a =,20a =(舍去). ∴229OP =.………………………………………………………………4分② 依题意作等腰直角三角形QMN . 设直线AB 的解析式为2y k x b =+.由点()100A ,,点()24B ,,求得直线AB 的解析式为152y x =-+. 当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:第一种情况:CD 与NQ 在同一条直线上,如图2所示.可证DPQ △为等腰直角三角形.此时OP 、DP 、AQ 的长可依次表示为t 、4t 、2t 个单位.∴4PQ DP t ==.∴4210t t t ++=. ∴107t =. 第二种情况:PC 与MN 在同一条直线上,如图3所示.可证PQM △为等腰直角三角形.此时OP 、AQ 的长可依次表示为t 、2t 个单位. ∴102OQ t =-.∵F 点在直线AB 上, ∴FQ t =. ∴2MQ t =.∴2PQ MQ CQ t ===. ∴2210t t t ++=. ∴2t =.第三种情况:点P 、Q 重合时,PD 、QM 在同一条直线上,如图4所示.此时OP 、AQ 的长可依次表示为t 、2t 个单位.∴210t t +=. ∴103t =. 综上,符合题意的t 值分别为107,2,103. …………………………8分 25.(本小题满分7分)图4解:(1)相等;…………………………………1分15°;………………………………………2分1:3. (3)分(2)猜想:DBC ∠与ABC ∠度数的比值与(1)中结论相同.证明:如图2,作KCA BAC ∠=∠, 过B 点作BK AC ∥交CK 于点K ,连结DK .∵90BAC ∠≠°,∴四边形ABKC 是等腰梯形. ∴CK AB =. ∵DC DA =, ∴DCA DAC ∠=∠. ∵KCA BAC ∠=∠, ∴3KCD ∠=∠. ∴KCD BAD △≌△. ∴24∠=∠,KD BD =. ∴KD BD BA KC ===. ∵BK AC ∥, ∴6ACB ∠=∠. ∵2KCA ACB ∠=∠, ∴5ACB ∠=∠.图2654321K AB CD∴56∠=∠.∴KC KB=.∴KD BD KB==.∴60∠=°.KBD∵6601°,∠=∠=-∠ACB∴212021BAC ACB°.∠=∠=-∠∵()()∠+-∠+-∠+∠=°°°,1601120212180∴221∠=∠.∴DBC∠与ABC∠度数的比值为1:3.……………………………………7分。
2010年全国高中数学联赛试题参考答案
2010年全国高中数学联合竞赛一试试题(A 卷)考试时间:2010年10月17日 8:00—9:20一、填空题(本题满分64分,每小题8分)1.函数()f x =的值域是______________.2.已知函数2(cos 3)sin y a x x =-的最小值为3-,则实数a 的取值范围是_____________.3.双曲线221x y -=的右半支与直线100x =围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是___________.4.已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122533,1,,3a b a b a b ====,且存在常数,αβ使得对每一个正整数n 都有log n n a b αβ=+,则αβ+=____________.5. 函数2()32(0,1)x x f x a a a a =+->≠在区间[1,1]x ∈-上的最大值为8,则它在这个区间上的最小值是___________________.6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率为_________________.7.正三棱柱111ABC A B C -的9条棱长都相等,P 是1CC 的中点,二面角11B A P B α--=,则sin α=_____________.8.方程2010x y z ++= 满足x y z ≤≤的正整数解(,,)x y z 的个数是_____________.二、解答题(本题满分56分)9.(本小题满分16分)已知函数32()(0)f x ax bx cx d a =+++≠,当01x ≤≤时,|()|1f x '≤,试求a 的最大值.10. (本小题满分20分)已知抛物线26y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值.11. (本小题满分20分)证明:方程32520x x +-=恰有一个实根r ,且存在唯一的严格递增正整数列{}n a ,使得31225a a a r r r =+++.2010年全国高中数学联合竞赛加试试题(A 卷)考试时间:2010年10月17日 9:40—12:10一、(本题满分40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK MN ⊥,则,,,A B D C 四点共圆.二、(本题满分40分)设k 是给定的正整数,12r k =+.记()()f r f r r r ==⎡⎤⎢⎥(1),(1)()(()),2l l f r f f r l -=≥().证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如11,112⎡⎤==⎡⎤⎢⎥⎢⎥⎢⎥.三、(本题满分50分)给定整数2n >,设正实数12,,,n a a a 满足1k a ≤,1,2,,k n =,记12,1,2,,.k k a a a A k n k +++==求证:1112n n k k k k n a A ==--<∑∑.四、(本题满分50分)一种密码锁的密码设置是在正n 边形12n A A A 的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:这种密码锁共有多少种不同的密码设置.2010年全国高中数学联合竞赛一试试题参考答案与评分标准说明:1.评阅试卷时,请依据本评分标准。
2010年全国初中数学竞赛获奖名单
徐建 红
76
46 程玄玲
海原西安 中学
马卫 林
75
48 李 杰
海原西安 中学
马卫 林
75
50 曹成翔
海原西安 中学
方建 永
74
52 卢 焱 贺兰四中
何丽 娟
74
54 郭文涛
中卫市第 三中学
黄鸿 文
73
56 侯泽成
石嘴山惠 农中学
董学 英
73
58 王
萌
中卫市第 五中学
段学 英
73
60 徐伟润
石嘴山九 中
航
银川外国 语学校
徐建 红
65
165 樊 璟
隆德二中
王升 利
65
166 李怀翔
中卫市第 四中学
王玉 珍
65
167 刘 浩
平罗四中
张文 兵
65
168 马
政
银川外国 语学校
吴晓 灵
65
169 孟嘉诚
银川唐中 (西)
王丽 敏
65
170 任兴华
中卫市第 四中学
张国 华
65
171 孙 阳
银川景博 中学
张杭 婷
62
226 杜佳欣
银川景博 中学
谭晓 露
62
227 龚俊峰
中卫市东 月学校
刘志 艳
62 228 郭 恺 贺兰四中
何丽 娟
62
229 郭禹辰
银川唐中 (西)
王丽 敏
62
230 季
亮
石嘴山十 五中学
张云 宾
62
231 贾梦霄 银川外国 吴晓 62 232 蒋超达 中卫市第 刘荣 62
2010年全国初中数学竞赛历年竞赛试题以及参考答案
b
c
bc
(A) 11 21
(B) 21 11
(C) 110 21
(D) 210 11
解: D
由题设得
a
b
a b
1
20 1
210
.
b c 1 c 1 1 11
b 10
2.若实数 a,b 满足 1 a ab b2 2 0 ,则 a 的取值范围是 (
).
2
(A)a 2 (B)a 4 (C)a≤ 2 或 a≥4 (D) 2 ≤a≤4
因此满足 2000 n0 3000 的正整数 k 的最小值为 9 .
4
三、解答题(共 4 题,每题 20 分,共 80 分)
11.如图,△ABC 为等腰三角形,AP 是底边 BC 上的高,点 D 是线段 PC 上的一点,BE
和 CF 分别是△ABD 和△ACD 的外接圆直径,连接 EF. 求证: tan PAD EF . BC
了货车;又过了 5 分钟,小轿车追上了客车;再过 t 分钟,货车追上了客车,则 t
=
.
解:15
设在某一时刻,货车与客车、小轿车的距离均为 S 千米,小轿车、货车、客
车的速度分别为 a,b,c (千米/分),并设货车经 x 分钟追上客车,由题意得
10a b S ,
①
15a c 2S ,
②
xb c S .
分别交 BE,BN 于点 F,C,过点 C 作 AM 的垂线 CD,垂足为 D.若 CD=CF,则 AE AD
.
解: 5 1 2
见题图,设 FC m, AF n .
(第 9 题)
因为 Rt△AFB∽Rt△ABC,所以 AB2 AF AC .
又因为 FC=DC=AB,所以 m2 n(n m),即
2010年北京市高级中等学校招生考试数学试卷及答案
2010年北京市高级中等学校招生考试(题WORD 答扫描)数学试卷学校 姓名 准考证号考生须知1. 本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的 1. -2的倒数是 (A) -21 (B) 21(C) -2 (D) 2。
2. 2010年6月3日,人类首次模拟火星载人航天飞行试验 “火星-500”正式启动。
包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的 “火星之旅”。
将12480用科学记数法表示应为 (A) 12.48⨯103 (B) 0.1248⨯105 (C) 1.248⨯104 (D) 1.248⨯103。
3. 如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于 (A) 3 (B) 4 (C) 6 (D) 8。
4. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为 (A) 20 (B) 16 (C) 12 (D) 10。
5. 从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出 的数是3的倍数的概率是 (A)51 (B) 103 (C ) 31 (D) 21。
6. 将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为 (A) y =(x +1)2+4 (B) y =(x -1)2+4(C) y =(x +1)2+2 (D) y =(x -1)2+2。
7. 10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,身高的方差依次为2甲S ,2乙S ,则下列关系中完全正 确的是(A) 甲x =乙x ,2甲S >2乙S (B) 甲x =乙x ,2甲S <2乙S (C) 甲x >乙x ,2甲S >2乙S (D) 甲x <乙x , 2甲S >2乙S 。
2010年北京市中学生数学竞赛(初二)
2010年北京市中学生数学竞赛(初二)
2010年北京市中学生数学竞赛(初二)主要由北京市教育委员会
主办,旨在激发学生的学习兴趣,提高学生的数学素养。
本届比赛分为A组和B组,A组为初二学生,B组为初三学生。
比赛内容包括:数学思维能力测试、数学模拟训练、数学知识应用等。
比赛时间安排:
报名时间:2010年3月1日至3月20日
初赛时间:2010年4月1日
复赛时间:2010年4月18日
决赛时间:2010年5月8日
参赛选手需要提交报名表,并交纳报名费,报名费用为A组
30元/人,B组50元/人。
比赛奖励:
A组:一等奖1名,二等奖2名,三等奖3名,优胜奖10名;
B组:一等奖1名,二等奖2名,三等奖3名,优胜奖15名。
比赛期间,学校将为参赛学生提供住宿、餐饮等服务。
2010年北京高级中等学校招生考试数学试卷
2010年北京市高级中等学校招生考试数学试卷考 生须 知1. 本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
-、选择题(本题共 32分,每小题4分) 下面各题均有四个选项,其中只有一个 是符合题意的. 1. -2的倒数是11A. B. - C. -2D. 22 22. 2010年6月3日,人类首次模拟火星载人航天飞行试验“火星一500”正式启动,包括中国志愿者王跃在内的 6名志愿者踏上了为期 12 480小时的“火星之旅”.将12 480用科学记数法表示应为_ 2 26. 将二次函数y 二x -2x 3化为y 二x 「h - k 的形式,结果为2 2 2A. y=x1 4B. y =x —14 C. y=x1 27. 10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:队员1队员2 队员3 队员 4 队员5 甲队 177 176 175 172 175 乙队170175173174183设两队队员身高的平均数依次为x 甲, x 乙,身高的方差依次为 S 甲, S 2,则下列关系中完全正确的是A.焉=x 乙, S 甲 S 乙B. x 甲=x 乙 , S 甲::S 乙C. x 甲 x 乙 , S 甲 S 乙D. x 甲::x 乙,S 甲::S 乙3A. 12.48 10 5B. 0.124 8 10543C. 1.248 10D. 1.248 103. 如图,在 △ ABC 中,点D 、E 分别在 AB AC 边上,DE II BC , 若AD: AB =3:4 , AE =6,贝V AC 等于A. 3B. 4C. 6D. 84. 若菱形两条对角线的长分别为6和8,则这个菱形的周长为A. 20B. 16C. 125.从1, 2, 3, 4, 5, 6, 7, 8, 9, 10这十个数中随机取出一个数,取出的数是 3的倍数 的概率是 A.C.- 3D.美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开, 用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个 符合上述要求, 那么这个示意图是3 x 1.2x -4 x -2 2已知:如图,点 A 、B 、C 、D 在同一条直线上, EA_AD , FD_AD , AE =DF , AB =DC .求证: ACE = DBF •已知关于x 的一元二次方程 x 2-4x m -1 =0有两个相等的实数根,求 m 的值及方程的 根.8. 、9. 10. 11. 12. 三、 13. 14.15. 16.填空题(本题共 16分,每小题4分) 若二次根式72x-1有意义, 则x 的取值范围是 _______________ .分解因式: m 3_4m = ______________________. 如图,AB 为O O 的直径,弦 CD_AB ,垂足为点 E ,连结0C ,若 0C =5 , CD =8,贝U AE 二 ___________ • 右图为手的示意图,在各个手指间标记字母A ,B ,C ,D •请你按图中箭头所指方向(即A — Br C — D — C —B — A > B>C 、…的方式)从A 开始数连续的正整数1, 2, 3, 4,…,当数 到12时,对应的字母是 ______________ ;当字母C 第201次出现时,恰 好数到的数是 __________ ;当字母C 第2n 1次出现时(n 为正整 数),恰好数到的数是 _______________ (用含n 的代数式表示)• 解答题(本题共 30分,每小题5分)计算:-2010°-4 3 -tan60 •解分式方程 B(1)有统计图中的信息可知, 北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是 __________ 年,增加了 _______ 天;(2 )表1是根据《中国环境发展报告 (2010)》公布的数据绘制的2009年十个城市空气 质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部17.列方程或方程组解应用题:2009年北京生产运营用水和居民家庭用水的总和为 5.8亿立方米,其中居民家庭用水比生产运营用水的 3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.18.如图,直线y =2x 与x 轴交于点(1 )求A , B 两点的坐标; (2 )过B 点作直线BP 与x 轴交于点 求厶ABP 的面积.四、解答题(本题共 20分,每小题5 分)19. 已知:如图,在梯形 ABCD 中,AD II BC , AB =DC =AD =2 , BC =4 .求乙B 的度数 及AC的长.20. 已知:如图,在厶ABC 中,D 是AB 边上一点,O O 过D 、B 、三点,/DOC =2/ACD =90 • (1) 求证:直线AC 是O O 的切线;(2) 如果./ACB =75 , O O 的半径为2,求BD 的长.21•根据北京市统计局公布的 2006-2009年空气质量的相关数据,回执统计图如下:C2006 —2009年北京全年市区空气质量达到二级和好于二级的天数统计图分补充完整(精确到1%);表 1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表城市 北京 上海 天津 昆明 杭州广州 南京 成都 沈阳 西宁 百分比91% 84%100% 89%95% 86%86%90%77%(3)根据表1中的数据将十个城市划分为三组, 百分比不低于95%的为A 组,不低于85%且低于95%的 为B 组,低于85%的为C 组.按此标准,C 组城 市数量在这十个城市中所占的百分比为 __________________ % ; 请你补全右边的扇形统计图.22. 阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD 中,AD =8cm , AB =6cm .现有一动点P 按下列方式在矩形内运动: 它从A 点出发,沿着与AB 边 夹角为45的方向作直线运动,每次碰到矩形的一边,就会改 变运动方向,沿着与这条边夹角为45的方向作直线运动,并且它一直按照这种方式不停地运动, 即当P 点 碰到BC 边,沿着与BC 边夹角为45的方向作 直线运动,当P 点碰到CD 边,再沿着与CD 边 夹角为45的方向作直线运动,…,如图 1所径的总长是多少.小贝的思考是这样开始的:如图2,将矩形 ABCD 沿直线CD 折叠,得到矩形ABQD •由轴对称的知识,发现 P2B=P2E , RA = RE . 请你参考小贝的思路解决下列问题:(1) _____________________________________ P 点第一次与D 点重合前与边相碰 次;P 点从A 点出发到第一次与 D 点重合时所经过的路径地总长是 _________________ cm ;(2) 进一步探究:改变矩形 ABCD 中AD 、AB 的长,且满足 AD AB •动点P 从A 点 出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD 相邻的两边上.若P 点第一次与B 点重合前与边相碰 7次,则AB: AD 的值为 ______________ .五、解答题(本题共 22分,第23题7分,第24题8分,第25题7 分)示•问P 点第一次与D 点重合前与边相碰几次, P 点第一次与D 点重合时所经过的路2009年十个城市空气质量达到 二级和好于二级的天数占全年天数百分比分组统计图B 图 1 P1 C图223. 已知反比例函数y=k的图象经过点A _.3, 1 .x 7(1)试确定此反比例函数的解析式;(2)点0是坐标原点,将线段OA绕0点顺时针旋转30得到线段0B,判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, J3m+6)也在此反比例函数的图象上(其中m<:0),过P点作x轴的垂线,交x轴于点M .若线段PM上存在一点Q ,使得△ OQM的面积是-,设Q2 点的纵坐标为n,求n2-2 . 3n • 9的值.24. 在平面直角坐标系xOy中,抛物线y = _d^x2•• m2「3m - 2与x轴的交点分别为4 4原点O和点A,点B 2 , n在这条抛物线上.(1 )求B点的坐标;(2)点P在线段OA上,从O点出发向A点运动,过P点作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED =PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动).①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;②若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AB交于点F ,延长QF到点M,使得FM =QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点、N点也随之运动).若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.25.问题:已知△ ABC中,• BAC=2・ ACB,点D是厶ABC内的一点,且AD=CD , BD=BA .探究Z DBC与ZABC度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1 )当• BAC =90时,依问题中的条件补全右图.观察图形,AB与AC得数量关系为 __________ ;当退出NDAC=15°时,可进一步推出ZDBC的度数为 ___________可得到N DBC与NABC度数的比值为__________ .(2)当• BAC=90时,请你画出图形,研究• DBC与.ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.2010年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1 •为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考 生将主要过程正确写出即可.2 •若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3•评分参考中所注分数,表示考生正确做到此步应得的累加分数.题号1 2 3 4 5 6 7 8 答案A CDABDBB题号91011 12 答案 1x > —2+2 ( m -2) 2B6036n +313. (本小题满分5分)A 〒 解:20100 | V 3|-tan60=3 -1 4 .3 - .3 ................................................................................. 4 分=2 3 3 . ............................................................................................ 5 分14. (本小题满分5分)解:去分母,得 3-2x =x -2 . ................................................................... 2分整理,得3x =5 .经检验,X 」是原方程的解.3 所以原方程的解是x 二315. (本小题满分5分)证明:••• AB =DC ,二 AC =DB ....................••• EA _ AD , FD _ AD ,A - - D =90° .. ........在厶EAC 与厶FDB 中, I EA ^FD ,A 二 D , AC =DB••• △ EAC FDB . ••…••• NACE ZDBF .……16 .(本小题满分5分)解:由题意可知厶=0 .内部使用 用毕收回即(_4 j _4(m )=0 .解得m =5 . ............................................................................................. 3分 当m =5时,原方程化为x 2「4x 亠4 =0 . 解得 x 1 =x 2 2 .所以原方程的根为 论=x 2 =2 . ......................................................................... 5分17. (本小题满分5分) 解法一:设生产运营用水x 亿立方米,则居民家庭用水 5.8 _x亿立方米.… 1分依题意,得 5.8_x=3x 0.6. .................................................................... 2分解得x =1.3. ..................................................................................... 3分5.8—x=5.8—1.3=4.5 . .................................................................... 4 分答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米 ............... 5分解法二:设生产运营用水 x 亿立方米,居民家庭用水 y 亿立方米. ............. 1分依题意,得 x •八5.8 ............................................................................ 2分y =3x +0.61^—1 3解这个方程组,得X 」.3,................................................................. 4分 |y =4.5.答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米. ............... 5分18. (本小题满分5分)解: (1)令 y =0,得 令 x =0 ,得 y =3 .• B 点坐标为0,3 .…(2)设P 点坐标为x , 0 . 依题意,得x= 3 .• P 点坐标分别为 P(3 , 0 )或F2(—3 ,0).1 |'勺 \27• S A ABR33 =\/A /.\X 」.2虫,0.V 2丿A 点坐标为 27 ; 4 3=9 . 4••• △ ABP 的面积为27或9.…4 4△ ABR2 23 S A ABP , =_3 ——22 2四、解答题(本题共 20分,每小题5分)19 .(本小题满分5分) 解法一:分别作 AF _ BC , DG _ BC , F 、G 是垂足 .... 1分O1 p、5分••• . AFB =/DGC =90° . ••• AD II BC ,•四边形AFGD 是矩形. • AF =DG . ••• AB =DC ,• Rt A AFB 也 Rt △ DGC . •- BF =CG .AD = 2 , BC =4 , • BF =1 .在 Rt A AFB 中,o BF 1-cos B _ ■ AB 2•/B =60° .••• BF =1 ,• AF 二 3 .••• AC =3 ,由勾股定理,得AC =2. 3 . •厶B=60° , AC=2V3 ...... .............解法二:过 A 点作AE II DC 交BC 于点E .••• AD II BC ,•四边形AECD 是平行四边形. • AD 二 EC , AE 二 DC .I AB = DC = AD = 2 , BC = 4 , • AE =BE =EC =AB .可证△BAC 是直角三角形, • Z BAC =90°, Z B=60° 在 Rt A ABC 中,AC =AB • Z B =60° , AC =2寸3 .20.(本小题满分5分)(1) 证明:••• OD =OC ,/DOC =90° ,• ZODC =NOCD =45°. ••• • DOC =2. ACD =90° , • ZACD=45° .• . ACD . OCD = OCA =90° . •••点C 在LI O 上,•直线AC 是LI O 的切线. .......(2) 解:••• OD =OC =2,可求CD =2 2 .••• /ACB =75° , • BCD =30° . 作DE _BC 于点 • ■ DEC =90° .• DE = DC sin30 ••• B =45° ,• DB =2 ...........△ ABE 是等边三角形. tan60°2 .3 . DOC =90° , /ACD =45° ,2分21.(本小题满分5分) 解:(1) 2008 ; 28; ................................................ 2 分 (2) 78% ; .................................................... 3 分(3) ................................................................................................................30; .......................................................... 4 分B组50%22.(本小题满分5分)解:(1)5, 24.2 ; ••…(2)4:5 ................解题思路示意图:五、23.A组20%C组30% .................................................................. 5 分解答题(本题共22分,第23题7分,第24题8分,第25题7 分)本小题满分7分)解:(1)由题意得1 =k.解得k - - 3 .•••反比例函数的解析式为y = —一•x(2)过点A作x轴的垂线交x轴于点C . 在Rt A AOC 中,OC , AC =1 .可得OA F OC2 AC2=2 ,.AOC =30°.由题意,ZAOB=30°, OB=OA = 2 ,•. BOC =60°.过点B作x轴的垂线交x轴于点D .在Rt A BOD 中,可得BD = .3 , OD =1 .• B点坐标为-1, .3 . ••…将x ~ -1代入y = -——中,得x•点B -1,•- 3在反比例函数洛一(3)由y = -——得xy - - 3xy」的图象上.x•••点P m, ■■ 3m 6在反比例函数y = -的图象上,其中m:::0,x•- m L- 3m 6 = - 3 .• m2 2 .3m 1 =0 .•/ PQ _x 轴,• Q点的坐标为m , n .2 2T m ::0 ,二 mn = _1 • ............................................................................ 6 分 m 2n 2 亠2 .. 3mn 2 亠 n 2 =0 . ••• n 2 一2 丿3n = -1 .••• n 2 -2 3n 9 =8 . ............................................................................ 7 分24.(本小题满分8分)解:(1)v 抛物线y =—匹!^2 •• m 2 —3m • 2经过原点, 44. 2…m —3m 亠2 =0 . 解得 m 1 =1 , m 2 = 2 . 由题意知m=1 , •- m =2.•抛物线的解析式为 y - 一1%2,5X .4 2•.•点 B 12 , n j 在抛物线 y - _1x ^H ,5 x 上, • n =4 .• B 点的坐标为 2 , 4 . ................................................................ 2分(2)①设直线OB 的解析式为y =k1X .求得直线OB 的解析式为y =:2x . ••• A 点是抛物线与x 轴的一个交点, 可求得A 点的坐标为10 , 0 .设P 点的坐标为 a , 0,则E 点的坐标为 a , 2a . 根据题意作等腰直角三角形 PCD ,如图1.可求得点C 的坐标为3a , 2a .由C 点在抛物线上,1 2 5得 2a 3a - 3a .4 2即—a —U a =0 .解得 a<i = 22 , a 2 =0 (舍去). 4 2 9• OP 二229设直线AB 的解析式为y =k 2x b .由点A 10, 0,点B 2, 4,求得直线 AB 的解析式为y = -丄x • 5 .2当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上, 有以下三种情况:第一种情况:CD 与NQ 在同一条直线上,如图 2所示. 可证△ DPQ 为等腰直角三角形.此时OP 、DP 、AQ 的长可依次表示为t 、4t 、2t 个单位. • PQ =DP =4t .②依题意作等腰直角三角形 QMN . ••• △ OQM 的面积是1 ,2• 1 1••— OM QM 二一• DM 1N AQ1P x图2二t 4t 2t =10 •7第二种情况:PC与MN在同一条直线上,如图3所示. 可证△ PQM为等腰直角三角形.此时OP、AQ的长可依次表示为•OQ =10 _2t .••• F点在直线AB上,•FQ =t .t、2t个单位.••• MQ =2t .••• PQ 二MQ 二CQ =2t .•- t 2t 2t =10 •• t =2 .第三种情况:点P、Q重合时,线上,如图4所示.此时OP、AQ的长可依次表示为•- t 2t =10 .10…t3 PD、QM在同一条直t、2t个单位.综上,符合题意的t值分别为1°7 ,2, 103•…8分25 .(本小题满分7分)解:(1)相等; ........................... 1分15° ................................................... 2 分1:3 . ................................................... 3 分(2)猜想:ZDBC与ZABC度数的比值与(1)中结论相同. 证明:如图2,作.KCA=/BAC,过B点作BK II AC交CK于点K,连结DK .v Z BAC 式90°,•四边形ABKC是等腰梯形.•CK =AB .v DC =DA,•. DCA = . DAC .v Z KCA ZBAC ,•KCD .•△KCD BAD .•2=/4 , KD =BD .•KD 二BD 二BA 二KC .v BK II AC ,•ACB 6 .v KCA =2 ACB ,• 5 = ACB .•5= 6 .•KC =KB .•KD 二BD =KB .•Z KBD =60°.CM ENA OBF1 Q P43y*DE1AQM QFN 1P••• . ACB=/6=60° 1 ,••• . BAC=2. ACB =120°_ 2 1 .••• . 1 60°/1 厂[120° -2. 1 . 2 =180°,• . 2=2 1.• . DBC与.ABC度数的比值为1:3 . ..................................................... 7分。
101近3年来高中竞赛获奖情况统计
101近3年来高中竞赛获奖情况统计所以信息数据均来自于101官网的新闻(不排除在统计整理时遗漏)统计原则:1)官网竞赛新闻数据比较多(如有许多英语,创新等方面的信息)这里仅统计数学,物理,化学,生物,信息五科情况。
2)详做信息统计,略做数据分析。
数据时间说明:1)以下统计时间以学校信息公布时间为准(因为无法一一查实实际竞赛举办时间)。
2)统计时间段:2008年1月1日至今一,101近3年来高中竞赛获奖情况4月2011-4-21北京高中生物竞赛高二年级一等奖5人二等奖7人三等奖6人(共18人)2011-4-19北京高中化学竞赛高二年级一等奖3人二等奖6人三等奖9人(共18人)3月-----------2月-----------1月-----------12月2010-12-23信息学奥林匹克竞赛全国高中组一等奖2人(高3一人,初2一人)二等奖1人(高2一人)(共3人)2011-12-212010年全国高中学生化学竞赛(省级赛区)一等奖1人(高3)二等奖3人(高三2人,高二1人)三等奖2人(高二2人)(共6人)11月2010-11-172010年全国高中数学联赛二等奖5人(高三3人,高二2人)三等奖3人(高三1人,高二2人)(共8人)10月2010-10-252010年海淀区信息学奥林匹克竞赛(高中组)一等奖1人(高2)二等奖2人(高二1人,高一1人)三等奖2人(高二1人,高一1人)(共5人)9月2010-9-102010年全国中学生生物学联赛一等奖1人(高3)二等奖2人(高三2人)三等奖12人(高三10人,高二2人)(共15人)8月----------7月----------6月2010-6-132010年全国数学联赛北京赛区(高一)一等奖2人二等奖2人三等奖4人(共8人)5月2010-5-31第五届全国高中应用物理知识竞赛决赛(高二)一等奖2人二等奖3人三等奖4人(共7人)2010-5-312010年北京市高中化学竞赛(高二)二等奖2人三等奖6人(共8人)2010-5-252010年北京市高中化学竞赛(高一)一等奖4人二等奖14人三等奖21人(共39人)4月----------3月2010-3-30第23届全国高中学生化学竞赛决赛银牌1人(高3)2月----------1月2010-1-82009年海淀区中小学生信息学奥林匹克竞赛一等奖1人(高1)二等奖1人(高1)(共2人)2010-1-82009年北京市中小学生信息学奥林匹克竞赛二等奖1人(高2)三等奖1人(初3)(共2人)12月11月2009-11-192009年全国高中学生化学竞赛(省级赛区)一等奖2人(高3)二等奖5人(高3)三等奖1人(高3)(共8人)10月----------9月----------8月2009-8-17第26届全国青少年信息学奥林匹克竞赛金牌1人(收到清华大学的预录通知书)7月2009-7-3第22届北京市高一物理(北京四中杯)竞赛海淀区预赛一等奖9人,二等奖23人,三等奖18人(共50人)6月2009-6-26第四届全国高中应用物理知识竞赛(高一)一等奖4人,二等奖4人,三等奖3人(共11人)2009-6-23第二十二届北京市高一物理(力学)竞赛决赛二等奖5人,三等奖7人(共12人)2009-6-222009年北京市高一数学竞赛(决赛)二等奖2人(共2人)2009-6-152009年4月的北京市高中学生化学竞赛(高二)一等奖4人,二等奖7人,三等奖3人(共14人)2009-6-12北京市化学会高一化学竞赛一等奖2人;二等奖8人;三等奖18人(共28人)2009-6-3加拿大计算机竞赛(Canadian Computing Competition,简称CCC)决赛银奖1人(高2)进入“信息学奥林匹克”北京队的最终10人大名单中5月2009-5-272009年第二十届“希望杯”全国数学邀请赛(高一)三等奖4人优胜奖5人(共9人)2009年第二十届“希望杯”全国数学邀请赛(高二)二等奖1人,三等奖1人优胜奖2人(共4人)2009-5-222009年北京市高一数学竞赛(初赛)一等奖33人;二等奖4人;(共37人)2009-5-222009年“希望杯”全国数学竞赛(高一)三等奖4人;(共4人)4月----------3月----------2月----------1月----------12月2008-12-222008年全国青少年信息学奥林匹克联赛(高中组)一等奖2人(高2);二等奖1人(高2);三等奖1人(初2)(共4人)11月2008-11-122008年全国高中数学联赛(北京赛区)高三年级一等奖1人;二等奖1人;三等奖3人(共5人)2008-11-122008年全国高中数学联赛(北京赛区)高二年级三等奖2人(共2人)10月2008-10-29第25届全国中学生物理竞赛复赛一等奖2人;二等奖6人;三等奖2人(共10人)9月2008-9-12第25届全国中学生物理竞赛预赛一等奖5人;二等奖6人;三等奖6人(共17人)8月----------7月----------6月第二十一届北京市高一物理(力学)竞赛决赛一等奖4人;二等奖8人;三等奖4人(共16人)2008-6-19北京市中学生数学竞赛一等奖1人(高1);二等奖6人(高一2人,高二4人)(共7人)2008-6-19第十一届高中数学应用知识竞赛竞赛一等奖1人(高2);二等奖1人(高1);三等奖4人(高一1人,高二3人)(共6人)论文一等奖2人(高一1人,高二1人);三等奖2人(高二2人)(共4人)2008-6-3第二十一届北京市高一物理竞赛预赛一等奖15人;二等奖34人;三等奖48人(共97人)5月2008-5-23在刚结束的北京市高一化学竞赛一等奖7人;二等奖4人;三等奖14人(共25人)4月2008-4-26在刚结束的北京市高二化学竞赛一等奖3人;二等奖8人;三等奖11人(共22人)2008-4-24第三届全国高中应用物理知识竞赛预赛10人获得决赛资格3月-----------2月-----------1月------------二,统计说明与分析:1)从竞赛级别看:海淀区级,北京市级,全国级,每级又分预赛和决赛(全国还有总竞赛)区级比赛特别是区级或市级比赛的预赛,101获奖同学较多(最多97人)2008-6-3第二十一届北京市高一物理竞赛预赛一等奖15人;二等奖34人;三等奖48人(共97人)2009-7-3第22届北京市高一物理(北京四中杯)竞赛海淀区预赛一等奖9人,二等奖23人,三等奖18人(共50人)一般到了决赛阶段,101获奖同学多在十几名或几名之间。
2010全国高中数学联赛加试试题及评分标准
即 K 为 BC 的中点,矛盾!从而 A, B, D, C 四点共圆.
注 1:“ PK P 的幂(关于⊙O) K 的幂(关于⊙O)”的证明:延长 PK 至点 F,使
2
得
PK KF AK KE ,
则 P,E,F,A 四点共圆,故
④
PFE PAE BCE ,
j 0
2j n 2 i 1 . Cn 2i 2
②
代入①式中,得
4
i 0 n
n 2
n 2i n n 2 2 2 2i 2j 2 i n 2 i 1 C C 4 C 2 2 Cn2i 2n2i n n 2 i n j 0 i 0 i 0 n
由梅内劳斯(Menelaus)定理,得
①
NB DE AQ 1, BD EA QN
MC DE AP 1. CD EA PM
由①,②,③可得
②
③
NB MC , BD CD
所以
(30 分)
ND MD , 故△DMN ∽ △DCB, 于是 DMN DCB , 所以 BC∥MN, 故 OK⊥BC, BD DC
1 ( v 1) 经过 f 的 v 次迭代得到整数,由①知, f (r ) 是一 2
(40 分)
给定整数 n 2 ,设正实数 a1 , a2 , , an 满足 ak 1, k 1, 2, , n ,记
Ak
求证:
a1 a2 ak , k 1, 2, , n . k
k nk k nk Cn 2 Cn 2 (1) k (2 1) n (2 1) n k 0 k 0
2010年北京市初二数学竞赛试卷
2010年北京市初二数学竞赛试卷一、选择题(每小题5分,共25分)1.(5分)设x,y为实数,满足,则x2+y2的值是()A.2B.3C.4D.52.(5分)如图,直线a∥b,∠4﹣∠3=∠3﹣∠2=∠2﹣∠1=d>0,其中∠3<90°,∠1=50°,则∠4的最大可能的整数值是()A.107°B.108°C.109°D.110°3.(5分)设P是质数,若有整数对(a,b)满足|a+b|+(a﹣b)2=P,则这样的整数对(a,b)共有()A.3对B.4对C.5对D.6对4.(5分)设△ABC的三边长分别为BC=2,CA=3,AB=4,h a,h b,h c分别表示边BC、CA、AB上的高,则=()A.B.C.D.5.(5分)如图,正方形ABCD被直线OE分成面积相等的两部分,已知线段OD、AD的长都是正整数,.则满足上述条件的正方形ABCD面积的最小值是()A.324B.331C.354D.361二、填空题(每小题7分,共35分)6.(7分)如图,已知AB=2,BC=AE=6,CE=CF=7,BF=8,则四边形ABDE与△CDF 面积的比值是.7.(7分)已知,,则k=.8.(7分)如图,在四边形ABCD中,设∠BAD+∠ADC=270°,且E、F分别为AD、BC 的中点,EF=4,阴影部分分别是以AB、CD为直径的半圆,则这两个半圆面积的和是(圆周率为π).9.(7分)计算:=.10.(7分)如图,在边长为10的正方形ABCD中,内接六个大小相同的正方形,P、Q、M、N是落在大正方形边上的顶点.则这六个小正方形的面积和是.三、解答题(共40分)11.(10分)如图,在凸五边形ABCDE中,连接AC,BE,AB=BC=CD=DE=EA,∠ABC =2∠DBE.求证:∠ABC=60°.12.(15分)能否2010写成k个互不相等的质数的平方和?如果能,试求k的最大值;如果不能,请简述理由.13.(15分)某次初二数学竞赛,共有99所学校中学报名参加,每校参赛者中既有男选手,也有女选手,证明:存在其中的50所学校的男选手总数不小于全部男选手总数的一半,且其参赛的女选手总数也不小于全部女选手总数的一半.2010年北京市初二数学竞赛试卷参考答案与试题解析一、选择题(每小题5分,共25分)1.(5分)设x,y为实数,满足,则x2+y2的值是()A.2B.3C.4D.5【分析】根据x+y=1,得出x2+y2=1﹣2xy,再利用x4+y4=,得出(1﹣2xy)2﹣2x2y2=,进而求出xy的值,即可得出答案.【解答】解:∵x+y=1,∴x2+y2+2xy=1,∴x2+y2=1﹣2xy,∵x4+y4=,∴(x2+y2)2﹣2x2y2=,∴(1﹣2xy)2﹣2x2y2=,整理得出:2x2y2﹣4xy+1=,解得:xy=1±,∴x2+y2=1﹣2(1+1.5)=﹣4(不合题意舍去)或x2+y2=1﹣2(1﹣1.5)=2.故选:A.【点评】此题主要考查了完全平方公式的应用以及一元二次方程的解法,熟练地应用完全平方公式得出xy=1±是解决问题的关键.2.(5分)如图,直线a∥b,∠4﹣∠3=∠3﹣∠2=∠2﹣∠1=d>0,其中∠3<90°,∠1=50°,则∠4的最大可能的整数值是()A.107°B.108°C.109°D.110°【分析】利用∠4﹣∠3=∠3﹣∠2=∠2﹣∠1=d>0变形得到∠4=2∠3﹣∠2,2∠2=∠3+50°,于是得到2∠4=3∠3﹣50°,而∠3<90°,则∠4<110°,即可得到4的最大可能的整数值.【解答】解:∵∠4﹣∠3=∠3﹣∠2,∴∠4=2∠3﹣∠2,又∵∠3﹣∠2=∠2﹣∠1,∠1=50°,∴2∠2=∠3+50°,∴2∠4=4∠3﹣2∠2=4∠3﹣∠3﹣50°=3∠3﹣50°,∴∠3=,而∠3<90°,∴<90°,∴∠4<110°,∴∠4的最大可能的整数值是109°.故选:C.【点评】本题考查了直线平行的性质:两直线平行同位角相等.3.(5分)设P是质数,若有整数对(a,b)满足|a+b|+(a﹣b)2=P,则这样的整数对(a,b)共有()A.3对B.4对C.5对D.6对【分析】因为都是整数,所以|a+b|与(a﹣b)2的奇偶性相同,所以P为偶数,偶数中只有2是质数,所以P=2,因为|a+b|与(a﹣b)2都是非负数,(a﹣b)2是完全平方数所以(a﹣b)2只能为0或者1.【解答】解:因为|a+b|与(a﹣b)2的奇偶性相同,推出|a+b|+(a﹣b)2=P必为偶.在质数中,唯一的偶质数只有2一个,故P=2.则|a+b|+(a﹣b)2=2,可知:任何整数的平方最小是0,然后是1,4,9…所以此处的(a﹣b)2只有0和1两个选择:①当(a﹣b)2=0,则|a+b|=2,解得:a=b,所以|2b|=2,|b|=1,则a=b=±1;②(a﹣b)2=1,则|a+b|=1,解得:a﹣b=±1,a+b=±1,组成4个方程组:a﹣b=1a+b=1,解之得:a=1,b=0;a﹣b=1a+b=﹣1,解之得:a=0,b=﹣1;a﹣b=﹣1a+b=1,解之得:a=0,b=1;a﹣b=﹣1a+b=﹣1,解之得:a=﹣1,b=0.综上,符合条件的整数对(a,b)共有6对:(1,1)(﹣1,﹣1)(1,0)(0,﹣1)(0,1)(﹣1,0).故选:D.【点评】解答本题的关键是判断出P的值,再依次推导出|a+b|和(a﹣b)2的值即可.4.(5分)设△ABC的三边长分别为BC=2,CA=3,AB=4,h a,h b,h c分别表示边BC、CA、AB上的高,则=()A.B.C.D.【分析】根据三角形的面积公式列出关于h a,h b,h c间的关系式BC•h a=CA•h b=AB •h c,然后求得它们之间的数量关系,将这种数量关系代入化简后的代数式并求值.【解答】解:∵△ABC的三边长分别为BC=2,CA=3,AB=4,h a,h b,h c分别表示边BC、CA、AB上的高,∴BC•h a=CA•h b=AB•h c,即2h a=3h b=4h c;故设2h a=3h b=4h c=t(t>0),则h a=,h b=,h c=,∴=(++)(++)=•=,即=.故选:B.【点评】本题考查了三角形的面积.解答此类题目,可以利用比例的基本性质将h a,h b,h c间的数量关系解答出来.5.(5分)如图,正方形ABCD被直线OE分成面积相等的两部分,已知线段OD、AD的长都是正整数,.则满足上述条件的正方形ABCD面积的最小值是()A.324B.331C.354D.361【分析】根据直线将正方形分成面积相等的两部分,可见OE必过正方形ABCD的中心O′,设BE=a,OD=m,表示出O′的坐标,将坐标代入OE的解析式y=kx,求出m 的值,再根据线段OD、AD的长都是正整数,求出a的最小值.【解答】解:OE一定过正方形ABCD的中心O′.不妨设BE=a,OD=m.∴CE=20a,正方形边长为21a;∴O′(m+10.5a,10.5a),E(m+21a,20a),设OE解析式为y=kx,∴k(m+10.5a)=10.5a,k(m+21a)=20a,∴=,化简得:m=a,∵线段OD、AD的长都是正整数,∴m,21a都是正整数,∴21a的最小值为19,此时m=1.此时正方形ABCD的最小面积为(21a)2=192=361.故选:D.【点评】本题考查了一次函数与正方形的性质,找到OE一定过正方形ABCD的中心O′并设出心O′的坐标是解答此类题目的关键.二、填空题(每小题7分,共35分)6.(7分)如图,已知AB=2,BC=AE=6,CE=CF=7,BF=8,则四边形ABDE与△CDF 面积的比值是1.【分析】由题意得AC=CB+BA=8,可得AC=BF,利用SSS可证得△AEC≌△BCF,从而可得S△AEC=S△BCF,也就得出S△CDF+S△CDB=S ABDE+S△CDB,这样可求出四边形ABDE 与△CDF面积的比值.【解答】解:由题意得AC=CB+BA=8,∴AC=BF,在△AEC和△BCF中,∴△AEC≌△BCF,∴S△AEC=S△BCF,故可得S△CDF+S△CDB=S ABDE+S△CDB⇒S ABDE=S△CDF,∴四边形ABDE与△CDF面积的比值是1.故答案为:1.【点评】本题考查了面积及等积变换的知识,难度一般,根据题意证明△AEC≌△BCF 是解答本题的关键,另外要注意等量代换在解答数学题目中的运用.7.(7分)已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.8.(7分)如图,在四边形ABCD中,设∠BAD+∠ADC=270°,且E、F分别为AD、BC 的中点,EF=4,阴影部分分别是以AB、CD为直径的半圆,则这两个半圆面积的和是8π(圆周率为π).【分析】连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EM∥AB,FM∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根据勾股定理求出ME2+FM2=16,根据圆的面积公式求出阴影部分的面积即可.【解答】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,∵∠BAD+∠ADC=270°,∴∠ABC+∠C=360°﹣270°=90°,∵E、F、M分别是AD、BC、BD的中点,∴EM=AB,FM=CD,EM∥AB,FM∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°﹣90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2=42=16,∴阴影部分的面积是:π+=π×(ME2+FM2)=π×16=8π.故答案为:8π.【点评】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解此题的关键.9.(7分)计算:=.【分析】把前面2010个分数的和看作被减数,后面2009个分数的和的看作减数,本题就是求它们的差.由于被减数中每一个分数的分子都是1,分母都是2个数的乘积,且这两个数的和为1+2010=2+2009=…=2010+1=2011,所以将每一个分数改写成两个分数的和,==(+),==(+),依此类推,=(+);同理,减数中每一个分数也可以改写成两个分数的和,=(+),=(+),…,=(+),然后根据运算法则及乘法的分配律计算即可.【解答】解:=(++++…++)﹣×(++++…++)=(++++…++﹣﹣﹣﹣﹣…﹣﹣)=(+)=×=.故答案为:.【点评】本题考查了有理数的混合运算,属于竞赛题型,难度较大.关键是通过观察,发现分数之间的特点,从而将每一个分数改写成两个分数的和.10.(7分)如图,在边长为10的正方形ABCD中,内接六个大小相同的正方形,P、Q、M、N是落在大正方形边上的顶点.则这六个小正方形的面积和是.【分析】如图,过点Q作QF⊥AD,垂足为F,可以得到△BQP∽△FQN,再根据相似三角形对应边成比例的性质列式求解即可得到QB和DN,根据勾股定理可求QN的长,从而求出六个小正方形的面积和.【解答】解:如图所示:∵正方形ABCD边长为10,∴∠A=∠B=90°,AB=10,过点Q作QF⊥AD,垂足为F,则∠4=∠5=90°,∴四边形AFQB是矩形,∴∠2+∠3=90°,QF=AB=10,∵六个大小完全一样的小正方形如图放置在大正方形中,∴∠1+∠2=90°,∴∠1=∠PQB,∴△BQP∽△FQN,∴==,∴=,∴QB=2.∴AF=2.同理DN=2.∴NF=AD﹣DN﹣AF=6.∴QN===2,∴小正方形的边长为,则六个小正方形的面积和是6×()2=.故答案为:.【点评】考查了面积及等积变换,本题主要利用相似三角形的判定和相似三角形对应边成比例的性质和勾股定理,综合性较强,有一定的难度.三、解答题(共40分)11.(10分)如图,在凸五边形ABCDE中,连接AC,BE,AB=BC=CD=DE=EA,∠ABC =2∠DBE.求证:∠ABC=60°.【分析】等腰三角形的底角相等,一个角是60°的等腰三角形是等边三角形.【解答】证明:∵AE=AB,∴∠ABE=∠AEB,同理∠CBD=∠CDB.∵∠ABC=2∠DBE,∴∠ABE+∠CBD=∠DBE,∵∠ABE=∠AEB,∠CBD=∠CDB,∴∠AEB+∠CDB=∠DBE,∴∠AEB+∠CDB=180°﹣∠BED﹣∠BDE,∴∠AEB+∠BED+∠CDB+∠BDE=180°,∴∠AED+∠CDE=180°,∴AE∥CD,∵AE=CD,∴四边形AEDC为平行四边形.∴DE=AC=AB=BC.∴△ABC是等边三角形,所以∠ABC=60°【点评】本题考查等腰三角形的性质,等腰三角形的底角相等,以及等边三角形的判定定理.12.(15分)能否2010写成k个互不相等的质数的平方和?如果能,试求k的最大值;如果不能,请简述理由.【分析】先把2010分解成分解为几个质数的平方和的形式,再求出k的值即可.【解答】解:∵22+32+72+132+172+232+312=2010;22+32+72+112+132+172+372=2010.∴k=7.【点评】本题考查的是质数与合数,能把2010分解为几个互不相等的质数的平方和的形式是解答此题的关键.13.(15分)某次初二数学竞赛,共有99所学校中学报名参加,每校参赛者中既有男选手,也有女选手,证明:存在其中的50所学校的男选手总数不小于全部男选手总数的一半,且其参赛的女选手总数也不小于全部女选手总数的一半.【分析】根据题意通过假设的方法依次进行论证.【解答】解:(1)如果有50所学校的男选手总数大于或等于全部男选手总数的一半,那就无需证明成立了,(2)如果有50所学校的男选手总数小于全部男选手总数的一半,那么剩下的49所学校的男选手总数就应该超过全部男选手总数的一半,因此,这49所学校的男选手数再任加1所学校的男选手数,其总数也必超过男选手总数的一半,同样道理,可证参赛的女选手总数也不小于全部女选手总数的一半.【点评】本题主要考查了推理与论证的方法,需要考虑周全,比较简单.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010北京市中学生数学竞赛(初二)
姓名______________
一、选择题(每小题5分,共25分)
1、设y x ,为实数,满足2
7,144=+=+y x y x ,则22y x +的值是( ) A 、2 B 、3 C 、4 D 、5
2、如图1,直线a ∥b ,∠4-∠3=∠3-∠2=∠2-∠1=0>d ,
其中∠3090<,∠1=0
50,则∠4的最大可能的整数值是( )
A 、0107
B 、0108
C 、0109
D 、0110
3、设p 是质数,则满足p b a b a =-++2)(的整数对(b a ,)共有( )对。
A 、3 B 、4 C 、5 D 、6
4、设△ABC 的三边长分别为BC =2,CA =3,AB =4,c b a h h h ,,分别表示边BC 、CA 、AB 上的高,则=++++)111)((c
b a
c b a h h h h h h ( )。
A 、641 B 、439 C 、538 D 、7
38 5、如图2,正方形ABCD 被直线OE 分成面积相等的两部分, 已知线段OD 、AD 的长都是正整数,
20=BE CE 。
则满足上述 条件的正方形ABCD 面积的最小值是( )
A 、324
B 、331
C 、354
D 、361
二、填空题(每小题7分,共35分)
1、如图3,已知AB =2, BC =AE =6,CE =CF =7,BF =8,
则四边形ABDE 与△CDF 面积的比值是__________。
2、已知, 25251
4141
4+=-++
+k ,则k =_________。
3、如图4,在四边形ABCD 中,设∠BA D +∠ADC =0
270,
且E 、F 分别为AD 、BC 的中点,EF =4,阴影部分分别是以
AB 、CD 为直径的半圆,则这两个半圆面积的和是_________(圆周率为π)。
4、计算:
-⨯++⨯+⨯120101200921201011 )1
20091200821200911(20112010⨯++⨯+⨯ =_________。
5、如图5,在边长为10的正方形ABCD 中,内接六个大小
相同的正方形,P 、Q 、M 、N 是落在大正方形边上的顶点。
则这六个小正方形的面积和是_________。
三、解答题(共40分)
1、(10分)如图6,在凸五边形ABCDE 中,AB =BC =CD =DE =EA ,
∠ABC =2∠DBE 。
求证:∠ABC =0
60。
2、(15分)能否2010写成k 个互不相等的质数的平方和?如果能,试求k 的最大值;如果不能,请简述理由。
3、(15分)某次初二数学竞赛,共有99所学校中学报名参加,每校参赛者中既有男选手,也有女选手,证明:存在其中的50所学校的男选手总数不小于全部男选手总数的一半,且其参赛的女选手总数也不小于全部女选手总数的一半。