杭州市北苑实验中学2018-2019年八年级上期末模拟数学试卷

合集下载

2018-2019学年浙江省杭州市八年级(上)期末数学试卷-普通用卷

2018-2019学年浙江省杭州市八年级(上)期末数学试卷-普通用卷

2018-2019学年浙江省杭州市八年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列各组数不可能是一个三角形的边长的是()A. 5,5,5B. 5,7,7C. 5,12,13D. 5,7,123.一次函数y=2x-1的图象经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限4.用不等式表示“a的一半不小于-7”,正确的是()A. B. C. D.5.已知△ABC是直角坐标系中任意位置的一个三角形,现将△ABC各顶点的纵坐标乘以-1,得到△A1B1C1,则它与△ABC的位置关系是()A. 关于x轴对称B. 关于y轴对称C. 关于直线对称D. 关于直线对称6.已知x>2,则下列变形正确的是()A. B. 若,则C. D. 若,则7.)A. B.C. D.8.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(-1,2),则关于x的不等式(k1-k2)x>-m+n的解是()A.B.C.D.9.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A. ①②B. ②③C. ①③D. ①②③10.如图,射线AB∥射线CD,∠CAB与∠ACD的平分线交于点E,AC=4,点P是射线AB上的一动点,连结PE并延长交射线CD于点Q.给出下列结论:①△ACE是直角三角形;②S四边形APQC=2S△ACE;③设AP=x,CQ=y,则y关于x的函数表达式是y=-x+4(0≤x≤4),其中正确的是()A. ①②③B. ①②C. ①③D. ②③二、填空题(本大题共6小题,共24.0分)11.已知正比例函数y=-2x,则当x=-1时,y=______.12.已知等腰三角形的一个内角是100°,则其余两个角的度数分别是______度,______度.13.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置,如果BC=2,那么线段BE的长度为______.14.已知点A是直线x=2上的点,且到x轴的距离等于3,则点A的坐标为______.15.已知2x+y=3,且x≥y.(1)x的取值范围是______;(2)若设m=3x+4y,则m的最大值是______.16.在△ABC中,∠BAC=α,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连结AD,AE,则∠DAE的度数为______.(用含α的代数式表示)三、计算题(本大题共1小题,共6.0分)17.解不等式组>,并求其整数解.四、解答题(本大题共6小题,共60.0分)18.如图,已知线段a,b和∠1,用直尺和圆规作△ABC,使AB=a,AC=b,∠A=∠1.(不写作法,保留作图痕迹)19.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.20.如图,把△ABC平移,使点A平移到点O.(1)作出平移后的△OB'C';(2)写出△OB'C'的顶点坐标,并描述这个平移过程.21.已知△ABC中,BC=m-n(m>n>0),AC=2,AB=m+n.(1)求证:△ABC是直角三角形;(2)当∠A=30°时,求m,n满足的关系式.22.已知y是关于x的一次函数,且点(0,-8),(1,2)在此函数图象上.(1)求这个一次函数表达式;(2)若点(-2,y1),(2,y2)在此函数图象上,试比较y1,y2的大小;(3)求当-3<y<3时x的取值范围.23.如图①,已知∠MON=Rt∠,点A,P分别是射线OM,ON上两定点,且OA=2,OP=6,动点B从点O向点P运动,以AB为斜边向右侧作等腰直角△ABC,设线段OB的长x,点C到射线ON的距离为y.(1)若OB=2,直接写出点C到射线ON的距离;(2)求y关于x的函数表达式,并在图②中画出函数图象;(3)当动点B从点O运动到点P,求点C运动经过的路径长.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:A、5+5>5,能构成三角形;B、5+7>7,能构成三角形;C、5+12>13,能构成三角形;D、7+5=12,不能构成三角形.故选:D.看哪个选项中两条较小的边的和不大于最大的边即可.本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.3.【答案】C【解析】解:在一次函数y=2x-1中,k=2>0,b=-1<0,∴一次函数y=2x-1的图象经过第一、三、四象限.故选:C.根据k=2>0、b=-1<0即可得出一次函数y=2x-1的图象经过第一、三、四象限.本题考查了一次函数图象与系数的关系,熟练掌握“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.4.【答案】A【解析】解:根据题干“a的一半”可以列式为:a;“不小于-7”是指“大于等于-7”;那么用不等号连接起来是:a≥-7.故选:A.抓住题干中的“不小于-7”,是指“大于”或“等于-7”,由此即可解决问题.此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.5.【答案】A【解析】解:∵△ABC各顶点的纵坐标乘以-1,得到△A1B1C1,∴△ABC与△A1B1C1的各顶点横坐标相同,纵坐标互为相反数,∴△A1B1C1与△ABC的位置关系是关于x轴对称.故选:A.纵坐标乘以-1变为原来的相反数再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.【答案】C【解析】解:A、两边乘以不同的数,故A不符合题意;B、x,y无法比较,故B不符合题意;C、两边都除以-2,不等号的方向改变,故C符合题意;D、x,y无法比较,故D不符合题意;故选:C.根据不等式的性质,可得答案.主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.7.【答案】B【解析】解:由表格发现:当0<x≤20时,y=1.20,当20<x≤40,y=2.40,当40<x≤60,y=3.60,故选:B.观察表格发现函数的解析式,然后确定正确的选项即可.本题考查了函数的图象,解题的关键是了解该函数为分段函数,且为常函数,难度不大.8.【答案】B【解析】解:由图形可知,当x>-1时,k1x+m>k2x+n,即(k1-k2)x>-m+n,所以,关于x的不等式(k1-k2)x>-m+n的解集是x>-1.故选:B.根据图形,找出直线l1在直线l2上方部分的x的取值范围即可.本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.9.【答案】D【解析】解:①两边及一边上的中线对应相等的两个三角形全等是真命题;②底边和顶角对应相等的两个等腰三角形全等是真命题;③斜边和斜边上的高线对应相等的两个直角三角形全等是真命题,故选:D.根据全等三角形的判定定理进行判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,掌握全等三角形的判定定理是解题的关键.10.【答案】A【解析】解:如图延长CE交AB于K.∵AB∥CD,∴∠BAC+∠DCA=180°,∵∠ACE=∠DCA,∠CAE=∠BAC,∴∠ACE+∠CAE=(∠DCA+∠BAC)=90°,∴∠AEC=90°,∴AE⊥CK,△AEC是直角三角形,故①正确,∵∠QCK=∠AKC=∠ACK,∴AC=AK,∵AE⊥CK,∴CE=EK,在△QCE和△PKE中,,∴△QCE≌△PKE,∴CQ=PK,S△QCE=S△PEK,∴S=S△ACK=2S△ACE,故②正确,四边形APQC∵AP=x,CQ=y,AC=4,∴AP+CQ=AP+PK=AK=AC,∴x+y=4,∴y=-x+4(0≤x≤4),故③正确,故选:A.①正确.由AB∥CD,推出∠BAC+∠DCA=180°,由∠ACE=∠DCA,∠CAE=∠BAC,即可推出∠ACE+∠CAE=(∠DCA+∠BAC)=90°,延长即可解决问题.②正确.首先证明AC=AK,再证明△QCE≌△PKE,即可解决问题.③正确.只要证明AP+CQ=AC即可解决问题.本题考查三角形综合题、全等三角形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.【答案】2【解析】解:x=-1时,y=-2×(-1)=2故答案为:2将x=-1代入正比例函数中即可求出答案.本题考查正比例函数的定义,解题的关键是将x=-1代入正比例函数中,本题属于基础题型.12.【答案】40 40【解析】解:已知等腰三角形的一个内角是100°,根据等腰三角形的性质,则其余两个角相等,当100°的角为顶角时,三角形的内角和是180°,所以其余两个角的度数是(180-100)×=40;当100°的角为底角时,此时不能满足三角形内角和定理,这种情况不成了.故填40.已知给出了一个内角是100°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.本题主要考查等腰三角形的性质以及三角形的内角和为180度.分类讨论是正确解答本题的关键.13.【答案】【解析】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=1,即△EDB是等腰直角三角形,∴BE=BD=,故答案为:.根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.14.【答案】(2,3)或(2,-3)【解析】解:∵点A是直线x=2上的点,且到x轴的距离等于3,∴点A的横坐标为2,纵坐标为±3,∴点A的坐标为(2,3)或(2,-3).故答案为:(2,3)或(2,-3).根据平行于y轴的直线上的点的横坐标相同求出点A的横坐标,点到x轴的距离等于纵坐标的绝对值求出纵坐标,然后写出点A的坐标即可.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.15.【答案】x≥1 7【解析】解:(1)∵2x+y=3,∴y=-2x+3,∵x≥y,∴x≥-2x+3,解得:x≥1,故答案为:x≥1;(2)∵y=-2x+3,∴m=3x+4y=3x+4(-2x+3)=3x-8x+12=-5x+12,∵x≥1,∴-5x≤-5,则-5x+12≤7,即m的最大值为7,故答案为:7.(1)由2x+y=3知y=-2x+3,依据x≥y得x≥-2x+3,解之可得;(2)将y=-2x+3代入m=3x+4y得m=-5x+12,结合x≥1可得答案.本题主要考查不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.16.【答案】2α-180°或180°-2α【解析】解:分两种情况:①如图所示,当∠BAC≥90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°-α,∴∠DAE=∠BAC-(∠BAD+∠CAE)=α-(180°-α)=2α-180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°-α,∴∠DAE=∠BAD+∠CAE-∠BAC=180°-α-α=180°-2α.故答案为:2α-180°或180°-2α.分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-α,再根据角的和差关系进行计算即可.本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.17.【答案】解:不等式组可化成>,①,②,解不等式①得x>2.5解不等式②得x≤4,∴不等式组的解集2.5<x≤4,整数解为4,3.【解析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.此题考查了一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【答案】解:如图所示,△ABC即为所求.【解析】可先用基本作图法作出∠A=∠1,然后在∠A的两边上分别截取线段AB,AC使得AB=a,AC=b,最后连接BC,得出三角形即可.本题考查的是运用基本作图知识来作复杂图的能力,本题中作图的理论依据是全等三角形判定中的边角边(SAS).19.【答案】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【解析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.20.【答案】解:(1)如图,△OB′C′即为所求;(2)由图可知,O(0,0),B′(-3,-2),C′(-1,-5).将△ABC先向左平移5个单位,再向下平移7个单位即可得到△OB′C′.【解析】(1)根据平移的性质画出平移后的△OB'C'即可;(2)根据各点在坐标系中的位置写出各点坐标,再由平移的方向和距离即可得出结论.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.21.【答案】解:(1)∵BC=m-n(m>n>0),AC=2,AB=m+n,∴AC2+CB2=(m-n)2+4mn=m2+n2-2mn+4mn=m2+n2+2mn=(m+n)2=AB2.∴∠C=90°.∴△ABC是为直角三角形;(2)∵∠A=30°,∴==,∴m=3n.【解析】(1)由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可;(2)根据直角三角形的性质即可得到结论.题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.22.【答案】解:(1)设该一次函数表达式为y=kx+b(k≠0),将(0,-8)、(1,2)代入y=kx+b,,解得:,∴该一次函数表达式为y=10x-8.(2)∵在一次函数y=10x-8中k=10>0,∴y随x的增大而增大.∵-2<2,∴y1<y2.(3)当-3<y<3时,有-3<10x-8<3,解得:0.5<x<1.1.∴当-3<y<3时x的取值范围为0.5<x<1.1.【解析】(1)由点的坐标利用待定系数法即可求出一次函数表达式;(2)由一次项系数k=10>0即可得出一次函数y=10x-8为单调递增函数,结合-2<2即可得出y1<y2;(3)将y=10x-8代入-3<y<3中即可得出关于x的一元一次方程,解之即可得出结论.本题考查了待定系数法求一次函数解析式、一次函数的性质以及解一元一次不等式,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)根据k=10>0找出该一次函数为单调递增函数;(3)根据y的取值范围找出关于x的一元一次不等式.23.【答案】解:(1)如图①中,∵OA=OB=2,∠AOB=90°,△ACB是等腰直角三角形,∴四边形OACB是正方形,∴点C到ON的距离为2.(2)如图③中,作CE⊥OA于E,CF⊥ON于F.∵∠ACB=∠ECF=90°,CA=CB,∠CEA=∠CFB=90°,∴△CEA≌△CFB,∴AE=CF,CE=CF,∵∠CEO=∠CFO=∠EOF=90°,∴四边形OECF是矩形,∵CE=CF,∴四边形OECF是正方形,∴CF=CE=OE=OF=y,∵AE=y-2,FB=x-y,∴y-2=x-y,∴y=x+1,可得函数图象如图②所示,(3)如图④中,∵CE=CF,∴OC平分∠MON,∴点C的运动轨迹是线段C′C,∵x=6,y=4,∴OC=4,OC′=,CC′=3∴点C运动经过的路径长为3.【解析】(1)OB=2时,四边形OACB是正方形,由此即可解决问题.(2)如图③中,作CE⊥OA于E,CF⊥ON于F.由△CEA≌△CFB,推出AE=CF,CE=CF,由∠CEO=∠CFO=∠EOF=90°,推出四边形OECF是矩形,由CE=CF,推出四边形OECF是正方形,根据AE=y-2,FB=x-y,可得y-2=x-y,即y=x+1(0≤x≤6),画出图象即可.(3)如图③中,由CE=CF,推出OC平分∠MON,推出点C的运动轨迹是线段CC,因为x=6,y=4,可得C′C=3.本题考查动点问题函数图象、一次函数的应用,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。

每日一学:浙江省杭州市江干区浙教版2018-2019学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省杭州市江干区浙教版2018-2019学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省杭州市江干区浙教版2018-2019学年八年级上学期数学期末考试试卷_压轴题解答答案浙江省杭州市江干区浙教版2018-2019学年八年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2019江干.八上期末) 如图,在平面直角坐标系中,O 是坐标原点,正方形OABC 的顶点A 、C 分别在x 轴与y 轴上,已知正方形边长为3,点D 为x 轴上一点,其坐标为(1,0),连接CD ,点P 从点C 出发以每秒1个单位的速度沿折线C→B→A 的方向向终点A 运动,当点P 与点A 重合时停止运动,运动时间为t 秒.(1) 连接OP ,当点P 在线段BC 上运动,且满足△CPO ≌△ODC 时,求直线OP 的表达式;(2) 连接PC ,求△CPD 的面积S 关于t 的函数表达式;(3) 点P 在运动过程中,是否存在某个位置使得△CDP 为等腰三角形,若存在,直接写出点P 的坐标,若不存在,说明理由.考点: 与一次函数有关的动态几何问题;~~ 第2题 ~~(2019江干.八上期末) 在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1) 将△ABC 关于x 轴对称得到△A B C ,画出△A B C ,并写出点B 的坐标;(2) 把△A B C 平移,使点B 平移到B (3,4),请作出△A B C 平移后的△A B C ,并写出A 的坐标;(3) 已知△ABC 中有一点D (a ,b ),求△A B C 中的对应点D 的坐标.~~ 第3题 ~~(2019江干.八上期末) 如图,在△ABC 中,P 是BC 上的点,作PQ ∥AC 交AB 于点Q ,分别作PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若PR=PS ,则下面三个结论:①AS=AR ;②AQ=PQ ;③△PQR ≌△CPS ;④AC ﹣AQ=2SC ,其中正确的是( )11111111111211122222222A . ②③④B . ①②C . ①④D . ①②③④浙江省杭州市江干区浙教版2018-2019学年八年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:答案:解析:~~ 第3题 ~~答案:B解析:。

浙江省杭州市江干区2018-2019学年八年级上期末教学质量检测数学试题含答案

浙江省杭州市江干区2018-2019学年八年级上期末教学质量检测数学试题含答案
2018 学年第一学期学业水平测试
八年级数学
各位同学: 1.本试卷分试题卷和答题卷两部分,考试时间 100 分钟,满分 120 分; 2.答题前,请在答题卡的密封区内填写学校、学籍号、班级和姓名; 3.不能使用计算器; 4.所有答案都必须做在答题卡规定的位置上,注意试题序号和答题序号相对应.
试题卷
一、仔细选一选(本题有 10 个小题,每小题 3 分,共 30 分)
13. 一根长为 1 的绳子恰好围成一个三角形,则这个三角形的最长边 x 的取值范围
是▲ .
14. 在△ABC ,AC=BC,∠ACB=90°, D 是 BC 的中点, D 关于△ABC 的斜边的对
称点 D , CD 5 ,则 AB 的长为 ▲ .
15. 在平面直角坐标系中,已知 A (2,3), B (-1,3), C (0,5),若△CAB 与 △DBA 全等,则点 D 的坐标为 ▲ .
1. 点(-3,-4)先向上平移 5 个单位,再向右平移 4 个单位后的坐标为
A.(2,0)
B.(-7,1)
2. 下列语句不.是1)
A.两点之间线段最短
B.作一条直线和已知直线垂直
C. 2 不是无理数
D. 定理都是真命题
3. 若 a b ,则下列式子一定成立的是
DG
C
(2)若 EG 是△CDE 的中线,探索△ABE 的形状(请写出完整过
E
程).
A FB
(第 21 题)
22.(本小题满分 12 分)如 图 1, 在 △ABC 中 , AB AC, D、E 是 BC 边 上 的
点 , 连 接 AD、AE , 以 △ADE 的 边 AE 所 在 直 线 为 对 称 轴 作 △ADE 的 轴 对 称 图 形 △������������′������, 连 接 DC , 若 BD CD ﹒

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

浙江省杭州市2018-2019学年八年级上期末测试卷数学试题(含答案)

浙江省杭州市2018-2019学年八年级上期末测试卷数学试题(含答案)

2018-2019 学年第一学期八年级期末测试数 学 试 题 卷一、选择题:本题有 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列各组数不可能是一个三角形的边长的是()A .5,5,5B .5,7,7C .5,12,13D .5,7,123.一次函数 y =2x -1 的图象经过的象限是()A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4.用不等式表示“a 的一半不小于-7”,正确的是()A . 1 a ≥-7B . 1 a ≤-7C . 1 a >-7D . 1 a <-722225.已知△ABC 是直角坐标系中任意位置的一个三角形,现将△ABC 各顶点的纵坐标乘以-1,得到△A 1B 1C 1,则它与△ABC 的位置关系是()A .关于 x 轴对称B .关于 y 轴对称C.关于直线 x =-1 对称D .关于直线 y =-1 对称6.已知 x >2,则下列变形正确的是()A .-x <2B .若 y >2,则 x -y >0C . - 1 x + 2 < 12D.若 y >2,则 x > 1y7.在国内投寄平信应付邮资如表所示,则 y 关于 x 的函数图象正确的是()A .B .C .D .8.如图,已知直线 y 1=k 1x +m 和直线 y 2=k 2x +n 交于点 P (-1,2),则关于 x 的不等式(k 1 - k 2 ) x > -m + n 的解是( )A .x >2B .x >-1C .-1<x <2D .x <-1第 7 题图第 8 题图9.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等, 其中属于真命题的是( )A .①②B .②③C .①③D .①②③10.如图,射线 AB ∥射线 CD ,∠CAB 与∠ACD 的平分线交于点 E ,AC =4.点 P 是射线 AB上的一动点,连结 PE 并延长交射线 CD 于点 Q .给出下列结论:①△ACE 是直角三角形;②S 四边形APQC = 2S △ACE ;③设AP =x ,CQ =y ,则y 关于x 的函数表达式是 y =-x +4(0≤x ≤4),其中正确的是( )A .①②③B .①②C .①③D .②③DAPB第 10 题图第 13 题图二、填空题:本题有 6 个小题,每小题 4 分,共 24 分.11.已知正比例函数 y =-2x ,则当 x =-1 时,y =.12.已知等腰三角形一个内角的度数为 100°,则其余两个内角的度数分别为.13.如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿着直线 AD 对折,点 C 落在点 E 的位置.如果 BC =2,那么线段 BE 的长度为 .14.已知点 A 是直线 x =2 上的点,且到 x 轴的距离等于 3,则点 A 的坐标为.15.已知 2x +y =3,且 x ≥y .(1)x 的取值范围是;(2)若设 m =3x +4y ,则 m 的最大值是.16.在△ABC 中,∠BAC =α.边 AB 的垂直平分线交边 BC 于点 D ,边 AC 的垂直平分线交边BC 于点 E ,连结 AD ,AE ,则∠DAE 的度数为 .(用含 α 的代数式表示)CQE⎪13三、解答题:本题有 7 小题,共 66 分.解答应写出文字说明或推演步骤.⎧5x - 2 > 3( x +1)17.(本小题满分 6 分)解不等式(组)⎪x -1 ≤ 7 -x ⎩ 22,并写出它的整数解.18.(本小题满分 8 分)如图,已知线段 a ,b 和∠1,用直尺和圆规作△ABC ,使 AB =a ,AC =b ,∠A =∠1.(不写作法,保留作图痕迹)a b19.(本小题满分 8 分)如图,在△ABC 中,点 D ,E 分别在边 AC ,AB 上,BD 与 CE 交于点 O .给出下列 3 个条件:①∠EBO =∠DCO ;②BE =CD ;③OB =O C .(1)上述 3 个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.20.(本小题满分 10 分)如图,把△ABC 平移,使点 A 平移到点 O .(1)作出平移后的△OB ʹC ʹ;(2)写出△OB ʹC ʹ的顶点坐标,并描述这个平移过程.21.(本小题满分 10 分)已知△ABC 中,BC =m -n (m >n >0),AC = 2AB =m +n .(1)求证:△ABC 是直角三角形.(2)当∠A =30°时,求 m ,n 满足的关系式.22.(本小题满分12 分)已知y 是关于x 的一次函数,且点(0,-8),(1,2)在此函数图象上.(1)求这个一次函数表达式;(2)若点(-2,y1),(2,y2)在此函数图象上,试比较y1,y2的大小;(3)求当-3<y<3 时x 的取值范围.23.(本小题满分12 分)如图①,已知∠MON=90°,点A,P 分别是射线OM,ON 上两定点,且OA=2,OP=6;动点B 从点O 向点P 运动,以AB 为斜边向右侧作等腰直角△ABC.设线段OB 的长x,点C 到射线ON 的距离为y.(1)若OB=2,直接写出点C 到射线ON 的距离;(2)求y 关于x 的函数表达式,并在图②中画出函数图象;(3)当动点B 从点O 运动到点P,求点C 运动经过的路径长.⎩2018-2019 学年第一学期八年级期末测试数学试题卷参考答案及评分建议一、选择题1—10.ADCAA CBBDA 二、填空题11.212.40°,40°13 .14.(2,3)或(2,-3)15.(1)x ≥1(2)716.当 α 为锐角时,∠DAE =180°-2α; 当 α 为钝角时,∠DAE =2α-180°三、解答题18. 图略19.(1)①②;①③(2)选择证明略20.(1)图略(2)O (0,0),Bʹ(-3,-2),Cʹ(-1,-5)平移过程:先向下平移 5 个单位,再向左平移 3 个单位。

模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)

模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷B 卷(河北)八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:冀教版八上全册。

第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2.16的算术平方根是( ) A .4B .±4C .±2D .23.在实数|-3|,-2,0,π中,最小的数是( ) A .|-3|B .-2C .0D .π4.要使得代数式12x x --在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠5.如果132x y x +=,那么yx的值为( ) A .12 B .23 C .13D .256.下列运算错误的是( ) A .532-=B .632÷=C .6332⨯=D .2333-=7.已知a 、b 、c 是三角形的三边长,如果满足2(6)8|10|0a b c -+-+-=,则三角形的形状是( ) A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形8.下列命题中,真命题的是( )A .相等的两个角是对顶角B .若a >b ,则|a |>|b |C .两条直线被第三条直线所截,内错角相等D .等腰三角形的两个底角相等9.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则 ∠CBE 的度数为( )A .80°B .70°C .40°D .30°10.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米11.数学课上,小丽用尺规这样作图:(1)以点O 为圆心,任意长为半径作弧,交OA ,OB 于D ,E 两点;(2)分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点C ;(3)作射线OC 并连数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE12.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC13.已知:如果二次根式28n是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2814.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R.若△PQR 周长最小,则最小周长是()A.6 B.12 C.16 D.2015.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0D.m>6且m≠816.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为__________.18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.19.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)计算下列各题:(1)03816(21)-++-;(2)211(3)||292----+-.21.(本小题满分9分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50 km,DA=20 km,CB=10 km,请你设计出E站的位置,并计算车站E距A点多远?数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)如图,△ABC 中,AB 的垂直平分线分别交AB ,BC 于D ,E ,AC 的垂直平分线分别交AC ,BC 于F ,G .(1)若△AEG 的周长为10,求线段BC 的长. (2)若∠BAC =128°,求∠EAG 的度数.23.(本小题满分9分)如图,在△ABC 中,∠BAC =90°,AC =AB ,点D 为BC 边上的一个动点(点D 不与B ,C 重合),以AD 为边作等腰直角△ADE ,∠DAE =90°,连接CE . (1)求证:△ABD ≌△ACE .(2)试猜想线段BD ,CD ,DE 之间的等量关系,并证明你的猜想.24.(本小题满分10分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少? 25.(本小题满分10分)如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G为EF 的中点.(1)若∠A =40°,求∠B 的度数; (2)试说明:DG 垂直平分EF .26.(本小题满分11分)如图1,△ABC 中,CD ⊥AB 于D ,且BD ∶AD ∶CD =2∶3∶4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40 cm 2,如图2,动点M 从点B 出发以每秒1 cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。

浙江省杭州市2018-2019学年第一学期八年级期末测试卷数学试题

浙江省杭州市2018-2019学年第一学期八年级期末测试卷数学试题
浙江省杭州市 2018-2019 学年第一学期八年级期末测试卷 数学试题
一、选择题(本大题共 10 小题,共 30.0 分) 1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A.
B.
C.
D.
【答案】A 【解析】解:A、是轴对称图形,故 A 符合题意; B、不是轴对称图形,故 B 不符合题意; C、不是轴对称图形,故 C 不符合题意; D、不是轴对称图形,故 D 不符合题意. 故选:A. 根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样 的图形叫做轴对称图形,这条直线叫做对称轴. 本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分 折叠后可重合.
3. 一次函数y = 2x − 1的图象经过的象限是( )
A. 第一、二、三象限
B. 第一、二、四象限
C. 第一、三、四象限
D. 第二、三、四象限
【答案】C 【解析】解:在一次函数y = 2x − 1中,k = 2 > 0,b = −1 < 0, ∴一次函数y = 2x − 1的图象经过第一、三、四象限.
4. 用不等式表示“a 的一半不小于−7”,正确的是( )
A.
1a ≥
2
−7
B.
1a
2
≤ −7
C.
1a
2
> −7
D.
1a <
2
−7
【答案】A
【解析】解:根据题干“a
的一半”可以列式为:1
2
a;
“不小于−7”是指“大于等于−7”;
那么用不等号连接起来是:1 a ≥ −7.
2
故选:A. 抓住题干中的“不小于−7”,是指“大于”或“等于−7”,由此即可解决问题. 此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含 义是解答本题的关键.

2018-2019学年沪科版八年级(上册)期末数学试卷(含答案)

2018-2019学年沪科版八年级(上册)期末数学试卷(含答案)

2018-2019学年沪科版八年级(上册)期末数学试卷(含答案)2018-201年八年级(上)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)1.如果最简二次根式与是同类二次根式,那么x的值是()A。

-1 B。

C。

1 D。

22.下列代数式中,+1的一个有理化因式是()A。

B。

C。

+1 D。

-13.如果关于x的方程ax^2-3x+2=0是一元二次方程,那么a取值范围是()A。

a>0 B。

a≥0 C。

a=1 D。

a≠04.下面说法正确的是()A。

一个人的体重与他的年龄成正比例关系B。

正方形的面积和它的边长成正比例关系C。

车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D。

水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系5.下列条件中不能判定两个直角三角形全等的是()A。

两个锐角分别对应相等B。

两条直角边分别对应相等C。

一条直角边和斜边分别对应相等D。

一个锐角和一条斜边分别对应相等6.如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A。

CM=BCB。

CB=ABC。

∠ACM=30°D。

CH·AB=AC·BC二、填空题(本题共12小题,每小题2分,满分24分)7.计算:=8.计算:=9.如果关于x的一元二次方程x^2+4x-m=0没有实数根,那么m的取值范围是。

10.在实数范围内分解因式x^2-4x-1=。

11.函数的定义域是。

12.如果正比例函数y=(k-3)x的图象经过第一、三象限,那么k的取值范围是。

13.命题“全等三角形的周长相等”的逆命题是。

14.经过已知点A和点B的圆的圆心的轨迹是。

15.已知直角坐标平面内两点A(-3,1)和B(1,2),那么A、B 两点间的距离等于。

16.如果在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC=。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。

人教版2018-2019年八年级上期末数学试卷含答案解析

人教版2018-2019年八年级上期末数学试卷含答案解析

八年级(上)期末数学试卷一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是()A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b 的值为( )A .﹣1B .2C .1D .011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a+b )2的值为( )A .49B .25C .13D .112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.B.C.D.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第象限.17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= .20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB∥CD,点P在AB、CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,如图③,则∠BPD﹑∠B﹑∠PDQ﹑∠BQD之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .B .C .D .【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第一象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b 的不等式,根据不等式的性质,可得b 的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A (﹣2,b )在第三象限,得b <0,两边都除以﹣1,得﹣b >0,4>0,B (﹣b ,4)在第 一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是 2 .【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s 2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是 80° .【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠PCD=∠P+∠PCB ,根据角平分线的定义可得∠PCD=∠ACD ,∠PBC=∠ABC ,然后整理得到∠PCD=∠A ,再代入数据计算即可得解.【解答】解:在△ABC 中,∠ACD=∠A+∠ABC ,在△PBC 中,∠PCD=∠P+∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= 4 .【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4 .【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键.25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;=AP•OB=,则AP=.设(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;。

浙江省杭州市下沙区2018~2019学年第一学期八年级数学期末测试题及答案

浙江省杭州市下沙区2018~2019学年第一学期八年级数学期末测试题及答案

2018-2019学年浙江省杭州市下沙区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列函数中是一次函数的是A. B. C. D.2.若,则下列变形正确的是A. B. C. D.3.下列说法中,正确的是A. 所有的命题都有逆命题B. 所有的定理都有逆定理C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题4.把点向下平移2个单位后得到点B,则点B的坐标是A. B. C. D.5.在中,,与的外角度数如图所示,则x的值是A. 60B. 65C. 70D. 806.如图,函数和的图象相交于点,则关于x的不等式的解集是A.B.C.D.7.以下列各组数为边长,能构成直角三角形的是A. 、、B. 、、C. 、、D. 、、8.已知a,b为实数,则解是的不等式组可以是A. B. C. D.9.在一次函数的研究过程中,甲、乙同学得到如下结论:甲认为当时,y随x的增大而减小;乙认为无论k取何值,函数必定经过定点则下列判断正确的是A. 甲正确,乙错误B. 甲错误,乙正确C. 甲乙都正确D. 甲乙都错误10.如图,在中,,,,将边AB沿AE翻折,使点B落在BC上的点D处,再将边AC沿AF翻折,使点C落在AD延长线上的点处,两条折痕与斜边BC分别交于点E,F,则线段的长为A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.将语句“比x的3倍小1的数小于x的2倍”用不等式表示为______.12.写出命题“对顶角相等”的逆命题______.13.已知函数,当时,,则______.14.若等腰三角形的一个内角为,则它的底角的度数为______.15.已知一个直角三角形的斜边与直角边相差8cm,有一条直角边长为12cm,斜边上的中线长为______.16.如图,已知点,直线与两坐标轴分别交于A,B两点点D,E分别是OB,AB上的动点,则周长的最小值是______.三、解答题(本大题共7小题,共66.0分)17.如图,已知,请按下列要求作出图形:用刻度尺画BC边上的高线.用直尺和圆规画的平分线.18.解下列不等式组:19.已知点.若点P在x轴上,求m的值.若点P到两坐标轴的距离相等,求P点的坐标.20.如图,已知,.若,求证: ≌ .取BC中点为G,连结FG,DG,求证:.21.现计划把一批货物用一列火车运往某地已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案?22.设一次函数b为常数,的图象过,两点.求该函数表达式;若点在该函数图象上,求a的值;设点P在x轴上,若,求点P的坐标.23.背景:在数学课堂上,李老师给每个同学发了一张边长为6cm的正方形纸片,请同学们纸片上剪下一个有一边长为8cm的等腰三角形,要求等腰三角形的三个顶点都落在正方形的边上,且其中一个顶点与正方形的顶点重合,最终,通过合作讨论,同学们一共提供了5种不同的剪法若剪下的三角形全等则视为同一种.注:正方形的每条边都相等,每个角都等于.如图1是小明同学率先给出的剪法,其中,,即为满足要求的等腰三角形,则小明同学剪下的三角形纸片的面积为______.如图2是小王同学提出的另一种剪法,其中,且,请帮助小王同学求出所得等腰的腰长;请在下列三个正方形中画出其余的三种剪法,并直接写出每种剪法所得的三角形纸片的面积注:每种情况的图和对应的面积都正确才得分面积______面积______面积______2018-2019学年浙江省杭州市下沙区八年级(上)期末数学试卷解析一、选择题(本大题共10小题,共30.0分)24.下列函数中是一次函数的是A. B. C. D.【答案】D【解析】解:A、是反比例函数,故此选项错误;B、是二次函数,故此选项错误;C、是二次函数,故此选项错误;D、是一次函数,故此选项正确;故选:D.根据形如k、b是常数的函数,叫做一次函数进行分析即可.此题主要考查了一次函数定义,关键是掌握一次函数解析式的结构特征:;自变量的次数为1;常数项b可以为任意实数.25.若,则下列变形正确的是A. B. C. D.【答案】B【解析】解:A、两边都乘以2,不等号的方向不变故A错误;B、两边都乘以13,不等号的方向改变,故B正确;C、两边都除以3,不等号的方向不变,故C错误;D、两边都加2,不等号的方向不变,故D错误;故选:B.根据不等式的性质:不等式的两边都加或减同一个数,不等号的方向不变,不等式的两边都乘以或除以同一个正数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向改变,可得答案.本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.26.下列说法中,正确的是A. 所有的命题都有逆命题B. 所有的定理都有逆定理C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题【答案】A【解析】解:A、每个命题都有逆命题,所以A选项正确;B、每个定理不一定有逆定理,所以B选项错误;C、真命题的逆命题不一定是真命题,所以C选项错误;D、假命题的逆命题不一定是假命题,所以D选项错误.故选:A.根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D进行判断.本题考查了命题与定理:断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式、有些命题的正确性是用推理证实的,这样的真命题叫做定理.27.把点向下平移2个单位后得到点B,则点B的坐标是A. B. C. D.【答案】B【解析】解:把点向下平移2个单位后得到点B,则点B的坐标是,即,故选:B.根据向右平移,横坐标加,向下平移,纵坐标减,进行计算即可.本题考查了点的坐标的平移,熟记左减右加,下减上加是解题的关键,是基础题,难度不大.28.在中,,与的外角度数如图所示,则x的值是A. 60B. 65C. 70D. 80【答案】C【解析】解:与相邻的外角,,解得.故选:C.根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.29.如图,函数和的图象相交于点,则关于x的不等式的解集是A.B.C.D.【答案】A【解析】解:函数和的图象相交于点,不等式的解集为.故选:A.以交点为分界,结合图象写出不等式的解集即可.此题主要考查了一次函数与一元一次不等式,关键是以交点为分界.30.以下列各组数为边长,能构成直角三角形的是A. 、、B. 、、C. 、、D. 、、【答案】C【解析】解:A、,不能构成直角三角形;B、,不能构成直角三角形;C、,能构成直角三角形,故本选项正确;D、,不能构成直角三角形.故选:C.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.31.已知a,b为实数,则解是的不等式组可以是A. B. C. D.【答案】D【解析】解:A、所给不等式组的解集为,那么a,b同号,设,则,解得,,解集都是正数;若同为负数可得到解集都是负数,故此选项错误;B、所给不等式组的解集为,那么a,b同号,设,则,解得,,解集都是正数;若同为负数可得到解集都是负数;故此选项错误;C、所给不等式组的解集为,那么a,b为一正一负,设,则,解得:,,原不等式组无解,同理得到把2个数的符号全部改变后也无解,故此选项错误;D、所给不等式组的解集为,那么a,b为一正一负,设,则,解得,,原不等式组有解,可能为,把2个数的符号全部改变后也如此,故此选项正确;故选:D.可根据不等式组解集为,分别分析每个不等式组,得到正确选项.此题考查了不等式的解集,学生的逆向思维,由解来判断不等式,是一道好题;用到的知识点为:大小小大中间找;大大小小无解.32.在一次函数的研究过程中,甲、乙同学得到如下结论:甲认为当时,y随x的增大而减小;乙认为无论k取何值,函数必定经过定点则下列判断正确的是A. 甲正确,乙错误B. 甲错误,乙正确C. 甲乙都正确D. 甲乙都错误【答案】C【解析】解:当时,,即y随x的增大而减小,故甲的说法正确;在中,当时,,即无论k取何值,函数必定经过定点,故乙的说法正确.故选:C.依据一次函数的性质以及一次函数图象上点的坐标特征,即可得到正确结论.本题考查了一次函数的性质,解答本题的关键是掌握:,y随x的增大而增大,函数从左到右上升;,y随x的增大而减小.33.如图,在中,,,,将边AB沿AE翻折,使点B落在BC上的点D处,再将边AC沿AF翻折,使点C落在AD延长线上的点处,两条折痕与斜边BC分别交于点E,F,则线段的长为A. B. C. D.【答案】A【解析】解:中,,,,将边AB沿AE翻折,使点B落在BC上的点D处,,,即在中,将边BC沿CF翻折,使点B落在CD的延长线上的点处,,且故选:A.由题意可得,根据,可得,根据勾股定理可求,由折叠可求,可得,即可求的长.本题考查了翻折变换,勾股定理,直角三角形的性质,熟练运用折叠的性质是本题的关键.二、填空题(本大题共6小题,共24.0分)34.将语句“比x的3倍小1的数小于x的2倍”用不等式表示为______.【答案】【解析】解:由题意得,该不等式为:.故答案为.比x的3倍小1的数即,x的2倍即2x,据此列不等式即可.本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.35.写出命题“对顶角相等”的逆命题______.【答案】如果两个角相等,那么这两个角是对顶角【解析】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.36.已知函数,当时,,则______.【答案】【解析】解:把,代入,可得:,解得:,故答案为:根据待定系数法得出函数解析式即可.本题考查了待定系数法求一次函数,代入解析式确定出b的值,是解答本题的关键.37.若等腰三角形的一个内角为,则它的底角的度数为______.【答案】或【解析】解:等腰三角形的一个内角为,若这个角为顶角,则底角为:,若这个角为底角,则另一个底角也为,其一个底角的度数是或.故答案为:或.由等腰三角形的一个内角为,可分别从的角为底角与的角为顶角去分析求解,即可求得答案.此题考查了等腰三角形的性质,比较简单,注意等边对等角的性质和分类讨论思想的应用.38.已知一个直角三角形的斜边与直角边相差8cm,有一条直角边长为12cm,斜边上的中线长为______.【答案】10cm或【解析】解:若直角三角形的斜边与12cm长的直角边相差8cm,则斜边长为20cm,斜边上的中线长为10cm;若直角三角形的斜边与xcm长的直角边相差8cm,则斜边长为,由勾股定理可得,,解得,斜边长为13cm,斜边上的中线长为;故答案为:10cm或.分两种情况讨论::直角三角形的斜边与12cm长的直角边相差8cm,直角三角形的斜边与xcm长的直角边相差8cm,依据勾股定理以及直角三角形斜边上中线的性质,即可得到结论.本题主要考查了直角三角形斜边上中线的性质,注意在直角三角形中,斜边上的中线等于斜边的一半.39.如图,已知点,直线与两坐标轴分别交于A,B两点点D,E分别是OB,AB上的动点,则周长的最小值是______.【答案】【解析】解:如图,作点C关于OB的对称点,作点C关于AB的对称点,连接,交AB 于点E,交OB于点D,直线与两坐标轴分别交于A,B两点点,点,且,,点C关于OB的对称点,点C关于AB的对称点,,点由轴对称的性质,可得,,当点,点E,点D,点共线时,的周长,此时的周长最小,在中,的周长最小值为故答案为:作点C关于OB的对称点,作点C关于AB的对称点,连接,交AB于点E,交OB于点D,此时周长最小,可以证明这个最小值就是线段,根据勾股定理可求周长的最小值.本题考查一次函数图象上点的坐标特征,轴对称最短问题等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.三、解答题(本大题共7小题,共66.0分)40.如图,已知,请按下列要求作出图形:用刻度尺画BC边上的高线.用直尺和圆规画的平分线.【答案】解:如图,AD为所作.如图,BE为所作.【解析】根据高的定义画图;利用基本作图作BE平分.本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.41.解下列不等式组:【答案】解:去括号,得,移项、合并同类项,得,系数化为,1得;,解得;解得,所以,不等式组的解集为.【解析】去括号,移项、合并同类项、系数化为1即可;先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到无解”.42.已知点.若点P在x轴上,求m的值.若点P到两坐标轴的距离相等,求P点的坐标.【答案】解:点在x轴上,,解得:;点P到两坐标轴的距离相等,,或,解得:或,或.【解析】直接利用x轴上点的坐标特点得出,进而得出答案;直接利用点P到两坐标轴的距离相等得出等式求出答案.此题主要考查了点的坐标,正确分类讨论是解题关键.43.如图,已知,.若,求证: ≌ .取BC中点为G,连结FG,DG,求证:.【答案】证明:,,,,,在和中,≌ ;,,和都是直角三角形,点G是BC边的中点,,,.【解析】根据题意和图形,可以得到和全等的条件,从而可以证明结论成立;根据直角三角形斜边和斜边上的中线的关系,即可证明结论成立.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.44.现计划把一批货物用一列火车运往某地已知这列火车可挂A,B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.设运送这批货物的总费用为y元,这列火车挂A型车厢x节,写出y关于x的函数表达式,并求出自变量x的取值范围;已知A型车厢数不少于B型车厢数,运输总费用不低于276000元,问有哪些不同运送方案?【答案】解:设用A型车厢x节,则用B型车厢节,总运费为y元,依题意,得;,的取值范围是且x为整数,函数关系式为且x为整数由题意得:,解得:,为整数,运送方案有:A型车厢20节,B型车厢20节;A型车厢21节,B型车厢19节;A型车厢22节,B型车厢18节.【解析】总费用型车厢节数型车厢节数.根据题意列出不等式组,进而解答即可.此题考查了一次函数的应用,解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.45.设一次函数b为常数,的图象过,两点.求该函数表达式;若点在该函数图象上,求a的值;设点P在x轴上,若,求点P的坐标.【答案】解:根据题意得:解得:函数表达式为点在该函数图象上,设点直线与x轴相交交点坐标为或点P坐标或【解析】根据一次函数b是常数,的图象过,两点,可以求得该函数的表达式;将点C坐标代入中的解析式可以求得a的值;由题意可求直线与x轴的交点坐标,根据三角形的面积公式可求点P坐标.本题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.46.背景:在数学课堂上,李老师给每个同学发了一张边长为6cm的正方形纸片,请同学们纸片上剪下一个有一边长为8cm的等腰三角形,要求等腰三角形的三个顶点都落在正方形的边上,且其中一个顶点与正方形的顶点重合,最终,通过合作讨论,同学们一共提供了5种不同的剪法若剪下的三角形全等则视为同一种.注:正方形的每条边都相等,每个角都等于.如图1是小明同学率先给出的剪法,其中,,即为满足要求的等腰三角形,则小明同学剪下的三角形纸片的面积为______.如图2是小王同学提出的另一种剪法,其中,且,请帮助小王同学求出所得等腰的腰长;请在下列三个正方形中画出其余的三种剪法,并直接写出每种剪法所得的三角形纸片的面积注:每种情况的图和对应的面积都正确才得分面积______面积______面积______【答案】16【解析】解:四边形ABCD是正方形,,,是等腰直角三角形,,故答案为16;根据题意得,,,,由勾股定理可得,设,则,中,,,解得,等腰的腰长为;如图所示,;如图所示,;如图所示,;故答案为:;;.依据是等腰直角三角形,,即可得到三角形纸片的面积;设,则,依据勾股定理可得中,,可得方程,进而得出等腰的腰长;依据等腰三角形的性质以及三角形面积计算公式,即可得到每种剪法所得的三角形纸片的面积.此题主要考查了应用与设计作图,本题需仔细分析题意,运用等腰三角形的性质以及勾股定理是解决问题的关键.。

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019 学年八年级(上)期末数学试卷一、选择题:(本大题共8 小题,每小题3 分,共24 分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2 B.2 C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5 B.3,4,5 C.5,6,7 D.6,7,84.点A(﹣3,2)关于x 轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3 7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD,则CE 的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE 的长为()A.3 B.1 C.2 D.4二、填空题:(共8 小题,每题3 分,共24 分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5 和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.1.函数y=kx 的图象过点(﹣1,2),那么k= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB 垂直平分CD,AD=4,BC=2,则四边形ACBD 的周长是.14.将函数y=2x 的图象向下平移3 个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3 上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x、y轴的正半轴上,OA=3,OB=4,D 为OB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,E 点坐标为.三、解答题(共10 小题,共102 分。

2018-2019学年浙江省杭州市西湖区八年级(上)期末数学试卷(解析版)

2018-2019学年浙江省杭州市西湖区八年级(上)期末数学试卷(解析版)

2018-2019学年浙江省杭州市西湖区八年级(上)期末数学试卷一.选择题(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案1.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r2.(3分)若P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A.(3,4)B.(﹣3,4)C.(﹣4,3)D.(4,3)3.(3分)下列命题是真命题的是()A.相等的角是对顶角B.一个角的补角是钝角C.如果ab=0,那么a+b=0D.如果ab=0,那么a=0或b=04.(3分)已知A(x1,3),B(x2,12)是一次函数y=﹣6x+10的图象上的两点,则下列判断正确的是()A.x1<x2B.x1>x2C.x1=x2D.以上结论都不正确5.(3分)若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2bC.1﹣a>1﹣b D.(1+c2)a>(1+c2)b6.(3分)已知△ABC的三边为a,b,c,下列条件能判定△ABC为直角三角形的是()A.a:b:c=1:1:B.a:b:c=1:1:C.a:b:c=2:2:3D.a:b:c=:2:7.(3分)不等式组的解为()A.x≥5B.x≤﹣1C.﹣1≤x≤5D.x≥5或x≤﹣1 8.(3分)如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC 的面积为16,则△BEF的面积是()A.2B.4C.6D.89.(3分)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=﹣cx﹣a的图象可能是()A.B.C.D.10.(3分)A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)()A.B.C.D.二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)已知一个直角三角形的两直角边长分别是1和2,则斜边长为.12.(4分)在平面直角坐标系中,把点A(﹣10,1)向上平移4个单位,得到点A′,则点A′的坐标为.13.(4分)等腰三角形的两边长分别为2和7,则它的周长是.14.(4分)三角形的三个内角分别为75°,80°,25°,现有一条直线将它分成两个等腰三角形,那么这两个等腰三角形的顶角的度数分别是.15.(4分)三个非负实数a,b,c满足a+2b=1,c=5a+4b,则b的取值范围是,c的取值范围是.16.(4分)如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若∠BDC=m°,∠BGC=n°,则∠A的度数为.(用m,n表示)三.解答题(本题有7个小题,共66分)解答应写出必要的文宇说明、证明过程或推理步骤如果觉得有的题目有点因难,那么把自己能写出的解答写出一部分也可以17.(6分)已知,等腰三角形的周长为24cm,设腰长为y(cm),底边长为x(cm)(1)求y关于x的函数表达式;(2)求x的取值范围.18.(8分)如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,求证:∠3=∠4.19.(8分)如图,已知,在Rt△ABC中,∠C=Rt∠,BC=6,AC=8.用直尺与圆规作线段AB的中垂线交AC于点D,连接DB.并求△BCD的周长和面积.20.(10分)已知直线y=kx+b(k≠0)经过点A(3,0),B(1,2)(1)求直线y=kx+b的函数表达式;(2)若直线y=x﹣2与直线y=kx+b相交于点C,求点C的坐标;(3)写出不等式kx+b>x﹣2的解.21.(10分)某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区已知一辆甲种货车同时可装蔬菜18吨,水果10吨:一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.(12分)如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并证明;(3)连结DE,若DE⊥BD,DE=6,求AD的长.23.(12分)平面直角坐标系xOy中,一次函数y1=﹣x+6的图象与x轴,y轴分别交于点A,B.坐标系内有点P(m,m﹣3).(1)问:点P是否一定在一次函数y1=﹣x+6的图象上?说明理由.(2)若点P在△AOB的内部(不含边界),求m的取值范围.(3)若y2=kx﹣6k(k>0),请比较y1,y2的大小.2018-2019学年浙江省杭州市西湖区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案1.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【解答】解:圆的周长计算公式是c=2πr,C和r是变量,2、π是常量,故选:B.【点评】本题主要考查了常量,变量的定义,是需要识记的内容.2.(3分)若P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为()A.(3,4)B.(﹣3,4)C.(﹣4,3)D.(4,3)【分析】应先判断出点P的横纵坐标的符号,进而根据到坐标轴的距离判断点P的具体坐标.【解答】解:∵P在第二象限,∴点P的横坐标小于0,纵坐标大于0;∵点P到x轴的距离是3,即点P的纵坐标为3,到y轴的距离为4,即点P的横坐标为﹣4,∴点P的坐标是(﹣4,3).故选:C.【点评】本题考查的是点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3.(3分)下列命题是真命题的是()A.相等的角是对顶角B.一个角的补角是钝角C.如果ab=0,那么a+b=0D.如果ab=0,那么a=0或b=0【分析】根据对顶角的性质、补角的概念、有理数的乘法法则判断即可.【解答】解:相等的角不一定是对顶角,A是假命题;钝角的补角不是钝角,B是假命题;如果ab=0,那么a=0或b=0,C是假命题,D是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(3分)已知A(x1,3),B(x2,12)是一次函数y=﹣6x+10的图象上的两点,则下列判断正确的是()A.x1<x2B.x1>x2C.x1=x2D.以上结论都不正确【分析】根据一次函数y=﹣6x+10图象的增减性,集合点A和点B的纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣6x+10的图象上的点y随着x的增大而减小,又∵点A(x1,3),B(x2,12)在直线上,6<12,∴x1>x2,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.5.(3分)若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2bC.1﹣a>1﹣b D.(1+c2)a>(1+c2)b【分析】根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行计算,即可选出正确答案.【解答】解:A、当m<0时,ma<mb,故此选项错误;B、当c=0时,c2a=c2b,故此选项错误;C、a>b,则1﹣a<1﹣b,故此选项错误;D、a>b,1+c2>0,则(1+c2)a>(1+c2)b,故此选项正确;故选:D.【点评】此题主要考查了不等式的基本性质,关键是熟练掌握不等式的性质.6.(3分)已知△ABC的三边为a,b,c,下列条件能判定△ABC为直角三角形的是()A.a:b:c=1:1:B.a:b:c=1:1:C.a:b:c=2:2:3D.a:b:c=:2:【分析】利用勾股定理的逆定理即可判断.【解答】解:A、设a=x,则b=x,c=x,∵(x)2+(x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;B、设a=x,则b=x,c=x,∵(x)2+(x)2=(x)2,∴此三角形是直角三角形,故本选项符合题意;C、设a=2x,则b=2x,c=3x,∵(2x)2+(2x)2≠(3x)2,∴此三角形不是直角三角形,故本选项不符合题意;D、设a=x,则b=2x,c=x,∵(x)2+(2x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;故选:B.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.(3分)不等式组的解为()A.x≥5B.x≤﹣1C.﹣1≤x≤5D.x≥5或x≤﹣1【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.【解答】解:解不等式2﹣x≥﹣3,得:x≤5,解不等式x﹣1≥﹣2,得:x≥﹣1,则不等式组的解集为﹣1≤x≤5,故选:C.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间. 8.(3分)如图,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且△ABC 的面积为16,则△BEF 的面积是( )A .2B .4C .6D .8【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高;同理,D 、E 、分别是BC 、AD 的中点,△EBC 与△ABC 同底,△EBC 的高是△ABC 高的一半;利用三角形的等积变换可解答.【解答】解:解:如图,点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF =EC ,高相等;∴S △BEF =S △BEC ,同理得,S △EBC =S △ABC ,∴S △BEF =S △ABC ,且S △ABC =16,∴S △BEF =4,即阴影部分的面积为4.故选:B .【点评】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.9.(3分)若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =﹣cx ﹣a 的图象可能是( )A .B .C.D.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∴﹣a>0,﹣c<0,∴函数y=﹣cx﹣a的图象经过二、一、四象限.故选:B.【点评】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.10.(3分)A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)()A.B.C.D.【分析】过A作河的垂线AH,要使最短,MN⊥直线a,AI=MN,连接BI即可得出N,作出AM、MN、BN即可.【解答】解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB 交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.易得四边形AINM是平行四边形,则AM∥IB,即AM∥BN.故选:D.【点评】本题考查了最短路线问题,垂线段最短,三角形的三边关系定理的应用,关键是如何找出M、N点的位置.二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)已知一个直角三角形的两直角边长分别是1和2,则斜边长为.【分析】利用勾股定理计算即可.【解答】解:∵直角三角形的两直角边长分别是1和2,∴斜边==,故答案为.【点评】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12.(4分)在平面直角坐标系中,把点A(﹣10,1)向上平移4个单位,得到点A′,则点A′的坐标为(﹣10,5).【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【解答】解:∵把点A(﹣10,1)向上平移4个单位,得到点A′,∴A′(﹣10,5),故答案为(﹣10,5)【点评】本题考查坐标与图形的变化﹣平移,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(4分)等腰三角形的两边长分别为2和7,则它的周长是16.【分析】题中没有指明哪个是底哪个腰,故首先分两种情况进行分析,然后利用三角形三边关系定理进行检验.【解答】解:当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为:16.【点评】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.14.(4分)三角形的三个内角分别为75°,80°,25°,现有一条直线将它分成两个等腰三角形,那么这两个等腰三角形的顶角的度数分别是130°、80°.【分析】首先在△ACB的内部做∠ACD=25°,从而可得到△ADC为等腰三角形,然后再证明△BDC为等腰三角形,从而可得到问题的答案.【解答】解:如图所示:∠A=25°,∠B=80°,∠ACB=75°.作∠ACD=∠A=25°,则三角形ADC为等腰三角形,且∠DCB=75°﹣25°=50°.由三角形的外角的性质可知∠BDC=∠A+∠ACD=50°.∴∠DCB=∠BDC,∴△BDC为等腰三角形.∴∠ADC=180°﹣50°=130°.∴两个等腰三角形的顶角分别为130°、80°.故答案为:130°、80°.【点评】本题主要考查的是等腰三角形的判定、三角形的外角的性质,熟练掌握相关知识是解题的关键.15.(4分)三个非负实数a,b,c满足a+2b=1,c=5a+4b,则b的取值范围是0≤b≤,c的取值范围是2≤c≤5.【分析】(1)根据a+2b=1,可得a=1﹣2b,再根据a≥0,求出b的取值范围即可.(2)根据已知条件用含a的代数式表示c,再根据a是非负实数,求出c的取值范围即可.【解答】解:∵a+2b=1,∴a=1﹣2b,∵a、b是非负实数,∴a≥0,b≥0,∴1﹣2b≥0,∴0≤b≤;∵a+2b=1,c=5a+4b,∴c﹣2=(5a+4b)﹣2(a+2b)=3a,∴c=3a+2,∵c是非负实数,∴a≥0,∴0≤a≤1,∴0≤3a≤3,2≤3a+2≤5,即2≤c≤5,故答案为:0≤b≤;2≤c≤5.【点评】此题主要考查了不等式的性质和应用,以及不等式的解法,要熟练掌握.16.(4分)如图,BF平分∠ABD,CE平分∠ACD,BF与CE交于G,若∠BDC=m°,∠BGC=n°,则∠A的度数为2n°﹣m°.(用m,n表示)【分析】根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【解答】解:连接BC.∵∠BDC=m°,∴∠DBC+∠DCB=180°﹣m°,∵∠BGC=n°,∴∠GBC+∠GCB=180°﹣n°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=180°﹣n°﹣180°+m°=m°﹣n°,∴∠ABC+∠ACB=180°﹣m°+2(m°﹣n°)=180°+m°﹣2n°,∴∠A=180°﹣(180°+m°﹣2n°)=2n°﹣m°.故答案为:2n°﹣m°.【点评】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.三.解答题(本题有7个小题,共66分)解答应写出必要的文宇说明、证明过程或推理步骤如果觉得有的题目有点因难,那么把自己能写出的解答写出一部分也可以17.(6分)已知,等腰三角形的周长为24cm,设腰长为y(cm),底边长为x(cm)(1)求y关于x的函数表达式;(2)求x的取值范围.【分析】利用等腰三角形的性质结合三角形三边关系得出答案.【解答】解:(1)∵等腰三角形的周长为24cm,设腰长为y(cm),底边长为x(cm),∴y关于x函数解析式为:y=12﹣0.5x,(2)自变量x的取值范围为:0<x<12.【点评】此题主要考查了等腰三角形的性质,根据实际问题列一次函数关系式,熟练应用三角形三边关系是解题关键.18.(8分)如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,求证:∠3=∠4.【分析】根据等腰三角形的判定得到AC=AD,然后由全等三角形的判定和性质即可得到结论.【解答】证明:∵∠1=∠2,∴AC=AD,在R t△ABC和R t△AED中,∴Rt△ABC≌Rt△AED(HL),∴∠3=∠4.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定,熟练掌握全等三角形的判定和性质是解题的关键.19.(8分)如图,已知,在Rt△ABC中,∠C=Rt∠,BC=6,AC=8.用直尺与圆规作线段AB的中垂线交AC于点D,连接DB.并求△BCD的周长和面积.【分析】根据中垂线的作法作图,设AD=x,则DC=8﹣x,根据勾股定理求出x的值,继而依据周长和面积公式计算可得.【解答】解:如图所示:设AD=x,则DC=8﹣x,则62+(8﹣x)2=x2,解得x=6.25,即AD=6.25.则CD=1.75,所以△BCD的周长为6+8=14,面积为×6×1.75=5.25.【点评】此题考查了复杂作图及中垂线的性质,熟悉勾股定理的性质是解题的关键.20.(10分)已知直线y=kx+b(k≠0)经过点A(3,0),B(1,2)(1)求直线y=kx+b的函数表达式;(2)若直线y=x﹣2与直线y=kx+b相交于点C,求点C的坐标;(3)写出不等式kx+b>x﹣2的解.【分析】(1)利用待定系数法求直线的解析式;(2)通过解方程组得C点坐标;(3)解不等式﹣x+3>x﹣2得不等式kx+b>x﹣2的解集.【解答】解:(1)根据题意得,解得,∴直线解析式为y=﹣x+3;(2)解方程组得,∴C点坐标为(,);(3)解不等式﹣x+3>x﹣2得x<,即不等式kx+b>x﹣2的解集为x<.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.21.(10分)某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区已知一辆甲种货车同时可装蔬菜18吨,水果10吨:一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?【分析】(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的蔬菜和水果数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)方法一:根据所付的费用等于两种车辆的燃油费之和列式整理,再根据一次函数的增减性求出费用的最小值;方法二:分别求出三种方案的燃油费用,比较即可得解.【解答】解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1600x+1200(16﹣x),=400x+19200,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,=400×5+19200=21200元;∴y最小方法二:当x=5时,16﹣5=11辆,5×1600+11×1200=21200元;当x=6时,16﹣6=10辆,6×1600+10×1200=21600元;当x=7时,16﹣7=9辆,7×1600+9×1200=22000元.答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是21200元.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,找出题中不等量关系,列出不等式组是解题的关键.22.(12分)如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并证明;(3)连结DE,若DE⊥BD,DE=6,求AD的长.【分析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,再证明△ADB≌△ADC,推出∠ADB=∠ADC即可解决问题.(2)结论:△ABE是等边三角形.只要证明△ABD≌△EBC即可.(3)首先证明△DEC是含有30度角的直角三角形,求出EC的长,理由全等三角形的性质即可解决问题.【解答】(1)解:∵BD=BC,∠DBC=60°,∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∴∠ADB=(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE,在△ABD和△EBC中,,∴△ABD≌△EBC(AAS),∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=DE=3,∵△ABD≌△EBC,∴AD=EC=3.【点评】本题考查全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.(12分)平面直角坐标系xOy中,一次函数y1=﹣x+6的图象与x轴,y轴分别交于点A,B.坐标系内有点P(m,m﹣3).(1)问:点P是否一定在一次函数y1=﹣x+6的图象上?说明理由.(2)若点P在△AOB的内部(不含边界),求m的取值范围.(3)若y2=kx﹣6k(k>0),请比较y1,y2的大小.【分析】(1)要判断点P(m,m﹣3)是否在函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可;(2)由题意可列0<m<6,0<m﹣3<6,m﹣3<﹣m+6,即可求m的取值范围;(3)分三种情况讨论可求解.【解答】解:(1)点P不一定在一次函数y1=﹣x+6的图象上,理由如下:当x=m时,y=﹣m+6,若﹣m+6=m﹣3∴m=∴当m=时,点P在直线一次函数y1=﹣x+6的图象上,当m≠时,点P不在直线一次函数y1=﹣x+6的图象上.(2)∵一次函数y1=﹣x+6的图象与x轴,y轴分别交于点A,B,∴点A(6,0),点B(0,6)∵点P在△AOB的内部(不含边界),∴0<m<6,0<m﹣3<6,m﹣3<﹣m+6∴3<m<(3)若y1=y2时,﹣x+6=kx﹣6k解得x=6,若y1>y2时,﹣x+6>kx﹣6k解得x<6若y1<y2时,﹣x+6<kx﹣6k解得x>6∴当x=6时,y1=y2;当x<6时,y1>y2;当x>6时,y1<y2;【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.。

浙江省杭州市江干区2018-2019学年八年级上期末教学质量检测数学试题

浙江省杭州市江干区2018-2019学年八年级上期末教学质量检测数学试题

2018学年第一学期八年级数学试题卷 第 1 页 共 6 页 2018学年第一学期学业水平测试
八年级数学
各位同学:
1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分;
2.答题前,请在答题卡的密封区内填写学校、学籍号、班级和姓名;
3.不能使用计算器;
4.所有答案都必须做在答题卡规定的位置上,注意试题序号和答题序号相对应.
试题卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
1. 点(-3,-4)先向上平移5个单位,再向右平移4个单位后的坐标为
A.(2,0)
B.(-7,1)
C. (1,-9)
D. (1,1)
2. 下列语句不是..
命题的是 A .两点之间线段最短 B .作一条直线和已知直线垂直
C
D . 定理都是真命题
3. 若a b >,则下列式子一定成立的是
A .33a b >-
B .22am bm >
C .1
11133
a b ->- D .22a b -<-+ 4. 若线段,AP AQ 分别是△ABC 边上的高线和角平分线,则
A .AP AQ >
B . AP AQ ≥
C . AP AQ <
D . AP AQ ≤
5. 一个等腰三角形一个内角是另一个内角的2倍,则这个三角形底.
角为 A . 72︒ 或45︒ B .45︒ 或36︒ C . 36︒或45︒ D . 72︒ 或90︒
6.若50ax -≥的解是 2.5x ≤-,则a 的值为。

浙江省杭州市名校2018-2019学年八上数学期末教学质量检测试题

浙江省杭州市名校2018-2019学年八上数学期末教学质量检测试题

浙江省杭州市名校2018-2019学年八上数学期末教学质量检测试题一、选择题1.化简22x y x y x y---的结果是( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.小明步行到距家2km 的图书馆借书,然后骑共享单车返家,骑车的平均速度比步行的平均速度每小时快8km ,若设步行的平均速度为xkm/h ,返回时间比去时省了20min ,则下面列出的方程中正确的是( )A .212103x x =⨯+ B .12238x x ⨯=+ C .21283x x +=+ D .21283x x-=+ 3.下列各式能用平方差公式计算的是( )①()()22x y y x -+; ②()()22x y x y ---;③()()22x y x y --+; ④()()22x y x y --+.A .①②B .②③C .①③D .③④4.当2y =时,下列各式的值为0的是( )A .22y - B .224y y +- C .224y y -- D .224y y -+ 5.下列运算结果为x 6的是( )A.x 3+x 3B.(x 3)3C.x·x 5D.x 12÷x 2 6.下列计算正确的是( )A.a •a 2=a 2B.(a 2)2=a 4C.3a+2a =5a 2D.(a 2b )3=a 2•b 3 7.已知点A (–7,9)与点B 关于x 轴对称,则点B 的坐标为( )A .(7,–9)B .(7,9)C .(–7,–9)D .(9,–7)8.点A (﹣5,4)关于y 轴的对称点A′的坐标为( )A .(﹣5,﹣4)B .(5,﹣4)C .(5,4)D .(﹣5,4) 9.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD//BE ,∠1=40°,则∠2的度数是( )A .70°B .55°C .40°D .35°10.如图,已知△ABC ≌△ADC ,∠B =30°,∠BAC =23°,则∠ACD 的度数为( )A.120°B.125°C.127°D.104°11.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 在同一直线上,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN ;④PC 平分∠APB ;⑤∠APD =60°,其中正确结论有()A.5个B.4个C.3个D.2个12.如图,是的角平分线,,垂足分别为点,若和的面积分别为和,则的面积为()A. B. C. D.13.如图,AD平分∠BAC,AE⊥BC,∠B=45°,∠C=73°,则∠DAE的度数是()A.62B.31C.17D.1414.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=56°,∠C=42°,则∠DAE 的度数为()A.3°B.7°C.11°D.15°15.已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4B.5C.6D.8二、填空题16.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=_____.17.如图,点A、O、C在同一直线上,OE平分∠AOB,OF平分∠BOC,则∠EOF= _________.18.当k取_____时,100x2﹣kxy+4y2是一个完全平方式.【答案】±4019.如图所示,把一张对面互相平行的纸条折成如图所示,EF 是折痕,若32FEG ∠=︒,则FGC ∠=______.20.如图,点D 是AB 边上的中点,将△ABC 沿过点D 的直线DE 折叠,使点A 落在BC 边上F 处,如果∠B=65°,则∠BDF=___________.三、解答题21.一项工程甲队单独完成所需天数是乙队单独完成这项工程所需天数的23;若由乙队先做45天,剩下的工程再由甲、乙两队合作54天可以完成。

杭州市北苑实验中学2014-2015年八年级上期末模拟数学试卷

杭州市北苑实验中学2014-2015年八年级上期末模拟数学试卷

杭州市北苑实验中学2014-2015学年上学期期末模拟八年级数学试卷一、仔细选一选(本题有10个小题, 每小题3分, 共30分)1.下列四组线段中,能组成三角形的是()A.2cm,3 cm,4 cm B.3 cm,4 cm,7 cmC.4 cm,6 cm,2 cm D.7 cm,10 cm,2 cm2.以下列各组数为边长,能构成直角三角形的是( )A.5,7,8 B.1,2,3 C.,,2 D.,,23.若关于x的一元二次方程的两根为x1=1,x2=2,则这个方程是A.x2+3x-2=0 B.x2-3x+2=0C.x2-2x+3=0 D.x2+3x+2=04.已知m=1+2,n=1-2,则代数式m2+n2-3mn的值为 ( ) A.9 B.±3 C.3 D. 55.下面说法中正确的是( )A.“同位角相等”的题设是“两个角相等”;B.“相等的角是对顶角”是假命题;C.如果,那么是真命题;D.“任何偶数都是4的倍数”是真命题.6.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A. ∠A=∠D;B. ∠E=∠C;C. ∠A=∠C;D. ∠1=∠2.7.在如图的网格中,在网格上找到点C,使△ABC为等腰三角形,这样的点有几个()A.8 B.9 C.10 D.118.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.若AB=15,AD=7,BC=5,则CE的长().A.4 B.3 C.D.9.如图,已知函数=3x+b和=ax-3的图象交于点P(-2,-5),则下列结论正确的是(▲)A.x<-2时,<B.C.x<-2时,>D.10.如图,在△ABC 中,AC =BC ,∠ACB =90°,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连接CD .下列结论:①BC +CE =AB ;②BD =12AE ;③BD =CD ;④∠ADC =45°;⑤AC +AB =2AM .其中不正确的结论有 ( )A .0个B .1个C .2个D .3个二、认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 根据数量关系列不等式,y 的3倍与6的和不大于1012.点P (2m -1,3)在第二象限,则的取值范围是13.直角三角形两条边长分别是5和12,则第三边上的中线长是 .14..若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为 15.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则A 等于 ▲ 度.16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③、④,……,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n -1 等于三、全面答一答 (本题有7个小题, 共66分)17.(本小题6分)解不等式(组)(1)(2) ⎩⎪⎨⎪⎧9x +5<8x +7,43x +2>1-23x 18.18.(本小题6分) (1)计算;(23-32)2+(2+3)(2-3).(2)化简:8-92-3+63+(3-2)0+(1-2)2. 19.解一元二次方程(本小题6分)(1) x(x-2)+x-2=0 (2) (2x-5)2-(x+4)2=020.(8分)如图,直线y=2x 3与x轴交于点A,与y轴交于点B.(1)求三角形AOB的面积;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求BP的解析式。

2018-2019学年浙江省杭州市江干区八年级(上)期末数学试卷

2018-2019学年浙江省杭州市江干区八年级(上)期末数学试卷

2018-2019学年浙江省杭州市江干区八年级(上)期末数学试卷-CAL-FENGHAI.-(YICAI)-Company One12018-2019学年浙江省杭州市江干区八年级(上)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)点(﹣3,﹣4)先向上平移5个单位,再向右平移4个单位后的坐标为()A.(2,0)B.(﹣7,1)C.(1,﹣9)D.(1,1)2.(3分)下列语句不是命题的是()A.两点之间线段最短B.作一条直线和已知直线垂直C.不是无理数D.定理都是真命题3.(3分)若a>b,则下列式子一定成立的是()A.3a>﹣3b B.am2>bm2C.a﹣1>b﹣1D.a﹣2<﹣2+b4.(3分)若线段AP,AQ分别是△ABC边上的高线和中线,则()A.AP>AQ B.AP≥AQ C.AP<AQ D.AP≤AQ5.(3分)一个等腰三角形一个内角是另一个内角的2倍,则这个三角形底角为()A.72°或45°B.45°或36°C.36°或45°D.72°或90°6.(3分)若ax﹣5≥0的解是x≤﹣2.5,则a的值为()A.a=B.a=﹣C.a=2D.a=﹣27.(3分)一次函数y=x+1与一次函数y=﹣3x+m的图象的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,PA⊥OA,PB⊥OB,垂足分别为A,B,AB交OP于点Q,且PA=PB,则下列结论:①OP平分∠AOB;②AB是OP的中垂线;③OP平分∠APB;④OP是AB的中垂线;⑤OQ=PQ;其中全部正确的序号是()A.①②③B.①②④C.①③④D.③④⑤9.(3分)等腰三角形的周长12,腰长为x,底边长为y,则y与x的函数关系式对应的图象是()A.B.C.D.10.(3分)如图,等腰三角形ABC纸片的底和腰分别为m和n(m<n),如图,作高线BD和AE,则下列错误的结论是()A.AE=B.CD=C.BD=D.AD=二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)写出命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题.该逆命题是命题(填“真”或“假”).12.(4分)不等式<2的负整数解是.13.(4分)一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是.14.(4分)在△ABC,AC=BC,∠ACB=90°,D是BC的中点,D关于△ABC的斜边的对称点D′,CD′=,则AB的长为.15.(4分)在平面直角坐标系中,已知A(2,3),B(﹣1,3),C(0,5),若△CAB与△DBA全等,则点D的坐标为.16.(4分)对于一次函数y=ax+b(a,b为常数,且a≠0),有以下结论:①若b=3﹣2a时,一次函数图象过定点(2,3);②若b=3﹣2a,且一次函数y=ax+b图象过点(1,a),则a=;③当a=b+1,且函数图象过一、三、四象限时,则0<a≤1;④若b=2﹣a,一次函数y=ax+b的图象可由y=ax+2向左平移1个单位得到;请选择正确的序号:.三、全面答一答(本题有7个小题,共66分)17.(6分)在△ABC中,AB=AC,点D,E分别在AB,AC上,BE,CD相交于点P,PB=PC.求证:AD=AE.18.(8分)如图,有6×6的正方形网格(每个小正方形的边长为1),按要求作图并计算:(1)在网络中画出平面直角坐标系,使点A(2,3),B(3,2),并写出点C的坐标;(2)作△ABC关于x轴对称的△A1B1C1.19.(8分)解不等式(组),并把第(1)小题的解集表示在数轴上.(1)5x﹣2≥2+3x;(2)20.(10分)设一次函数y=mx+n(m,n是常数,m≠0).(1)若它的图象过A(1,3),B(﹣1,﹣1),求该一次函数的表达式;(2)若n=1﹣2m,且一次函数图象不过第二象限,求m的取值范围.21.(10分)已知:如图,BD⊥AC,垂足为E,△ABE的中线EF的延长线交CD于点G,∠B=∠C.(1)求证:EG是△CDE的高线(即EG⊥CD).(2)若EG是△CDE的中线,探索△ABE的形状(请写出完整过程)22.(12分)如图1,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD =CD′.(1)求证:△ABD≌△ACD′;(2)如图2,若∠BAC=120°,探索BD,DE,CE之间满足怎样的数量关系时,△CD′E是正三角形;(3)如图3,若∠BAC=90°,求证:DE2=BD2+EC2.23.(12分)已知A,B两地相距120km,甲、乙两人沿同一条公路匀速从A地出发到B 地,甲骑摩托车,乙骑自行车,设乙行驶的时间为t(h),甲乙两人之间的距离为y (km),y与t的函数关系如图所示.请观察分析图象解决以下问题:(1)乙比甲先出发小时,甲骑摩托车的速度是km/h,第一次相遇的时间在乙出发小时.(2)求出线段BC所在直线的函数表达式;(3)当30≤y≤50时,求t的取值范围;(4)若甲到达B地后立即原路返回,返回途中甲乙何时相距10km2018-2019学年浙江省杭州市江干区八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)点(﹣3,﹣4)先向上平移5个单位,再向右平移4个单位后的坐标为()A.(2,0)B.(﹣7,1)C.(1,﹣9)D.(1,1)【分析】让点(﹣3,﹣4)的横坐标加4,纵坐标加5即可得到平移后点的坐标.【解答】解:点(﹣3,﹣4)先向上平移5个单位,再向右平移4个单位后的坐标为(﹣3+4,﹣4+5),即(1,1).故选:D.【点评】本题考查图形的平移变换,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.2.(3分)下列语句不是命题的是()A.两点之间线段最短B.作一条直线和已知直线垂直C.不是无理数D.定理都是真命题【分析】根据命题的定义对各选项进行判断.【解答】解:两点之间线段最短、不是无理数,定理都是真命题都是命题,而作一条直线和已知直线垂直为描叙性语言,不是命题.故选:B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.(3分)若a>b,则下列式子一定成立的是()A.3a>﹣3b B.am2>bm2C.a﹣1>b﹣1D.a﹣2<﹣2+b【分析】根据不等式的性质来解即可.【解答】解:由不等式的性质可作出判断:A:两边同时乘以的不是同一个数,无法作出判断,故A错误;B:当m=0时,两边都得0,故B错误;C:在a>b两边同时乘以,不等号方向不变,再同时减1不等号仍然不变,故C一定成立,故C正确;D:不等式两边都加﹣2,不等号方向不变,故D错误.故选:C.【点评】本题考查了不等式的性质,熟记不等式性质的内容,并会运用是本题解答的关键.4.(3分)若线段AP,AQ分别是△ABC边上的高线和中线,则()A.AP>AQ B.AP≥AQ C.AP<AQ D.AP≤AQ【分析】根据垂线段最短即可判断.【解答】解:如图,∵PA⊥BC,∴根据垂线段最短可知:PA≤AQ,故选:D.【点评】本题考查三角形的高,中线,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)一个等腰三角形一个内角是另一个内角的2倍,则这个三角形底角为()A.72°或45°B.45°或36°C.36°或45°D.72°或90°【分析】分两种情况:①设三角形底角为x,顶角为2x,②设三角形底角为2x,顶角为x,根据三角形的内角和即可得到结论.【解答】解:①设三角形底角为x,顶角为2x,则x+x+2x=180°,解得:x=45°,②设三角形底角为2x,顶角为x,则2x+2x+x=180°,解得:x=36°,∴2x=72°,综上所述,这个三角形底角为72°或45°,故选:A.【点评】本题考查了等腰三角形的性质,三角形的内角和,分类讨论思想的运用是解题的关键.6.(3分)若ax﹣5≥0的解是x≤﹣2.5,则a的值为()A.a=B.a=﹣C.a=2D.a=﹣2【分析】根据解集为x≤﹣2.5,列出关于a的方程,解方程求出a的值.【解答】解:∵ax﹣5≥0,∴ax≥5,∵ax﹣5≥0的解是x≤﹣2.5,∴a<0,=﹣2.5,∴a=﹣2,故选:D.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.7.(3分)一次函数y=x+1与一次函数y=﹣3x+m的图象的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质得到一次函数y=x+1的图象不经过第四象限,于是可判断两直线的交点不可能在第四象限.【解答】解:因为次函数y=x+1的图象经过第一、二、三象限,不经过第四象限.故选:D.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.8.(3分)如图,PA⊥OA,PB⊥OB,垂足分别为A,B,AB交OP于点Q,且PA=PB,则下列结论:①OP平分∠AOB;②AB是OP的中垂线;③OP平分∠APB;④OP是AB的中垂线;⑤OQ=PQ;其中全部正确的序号是()A.①②③B.①②④C.①③④D.③④⑤【分析】根据全等三角形的判定和性质一一判断即可.【解答】解:∵PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵PA=PB,OP=OP,∴Rt△PAO≌Rt△PBO(HL),∴OA=OB,∠POA=∠POB,∠APO=λBPO∴OP平分∠AOB,OP平分∠APB,故①③正确,∵PA=PB,OA=OB,∴OP垂直平分线段AB,故④正确,②错误,⑤错误,故选:C.【点评】本题考查全等三角形的判定和性质,角平分线的定义,线段的垂直平分线的判定等知识,解题的关键是正确寻找全等三角形解决问题.9.(3分)等腰三角形的周长12,腰长为x,底边长为y,则y与x的函数关系式对应的图象是()A.B.C.D.【分析】利用周长的定义得到y+2x=12,变形为y=﹣2x+12,然后利用三角形三边的关系得到y>0且2x>y,解不等式组可得3<x<6,于是得到底边长y关于腰长x的函数关系为y=﹣2x+12(3<x<6),所以其图象为线段(除端点),并且y随x的增大而减小.【解答】解:根据题意得y+2x=12,y=﹣2x+12,∵y>0且2x>y,∴﹣2x+12>0且2x>﹣2x+12,∴3<x<6,∴底边长y关于腰长x的函数关系为y=﹣2x+12(3<x<6).∵k=﹣2<0,∴y随x的增大而减小.故选:B.【点评】本题考查了等腰三角形的性质,一次函数的应用:根据实际问题列出一次函数关系,然后利用一次函数的性质解决问题.也考查了一次函数的图象.10.(3分)如图,等腰三角形ABC纸片的底和腰分别为m和n(m<n),如图,作高线BD和AE,则下列错误的结论是()A.AE=B.CD=C.BD=D.AD=【分析】A、根据等腰三角形的性质得到CE=m,根据勾股定理可求AE的长;C、根据三角形面积公式可求BD的长;B、根据勾股定理可求CD的长;D、根据线段的和差关系可求AD的长.【解答】解:A、CE=m,AE==,正确,不符合题意;C、BD=m×÷2×2÷n=,原来的计算错误,符合题意;B、CD==,正确,不符合题意;D、AD=n﹣=,正确,不符合题意.故选:C.【点评】考查了等腰三角形的性质,勾股定理,三角形面积,关键是熟练掌握并且灵活运用这些关系.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)写出命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题如果两个三角形的周长相等,那么这两个三角形全等.该逆命题是假命题(填“真”或“假”).【分析】交换原命题的题设和结论即可得到该命题的逆命题.【解答】解:“如果两个三角形全等,那么这两个三角形的周长相等.”写成它的逆命题:如果两个三角形的周长相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的周长相等,那么这两个三角形全等;假【点评】本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.12.(4分)不等式<2的负整数解是﹣1,﹣2.【分析】首先求出不等式的解集,然后求得不等式的负整数解.【解答】解:解不等式得,x>﹣3,∴不等式的负整数解是﹣1,﹣2,故答案为:﹣1,﹣2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.(4分)一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x的取值范围是≤x<.【分析】由围成两个三角形是全等三角形,可得两个三角形的周长相等,根据三角形三条边的关系,两边之和大于第三边,两边之差小于第三边可列出两个不等式,解不等式可出结论.【解答】解:设三角形的其他两边为:y,z,∵x+y+z=l,y+z>x∴可得x<,又因为x为最长边大于等于,∴≤x<;故答案为:≤x<.【点评】本题考查三角形三边关系,两边之和大于第三边,两边之差小于第三边,且最长边不能小于周长.14.(4分)在△ABC,AC=BC,∠ACB=90°,D是BC的中点,D关于△ABC的斜边的对称点D′,CD′=,则AB的长为2.【分析】连结BD′,DD′,D关于AB的对称点是D′,进而得到AB垂直平分DD′,BD=BD′,∠D′BD=90°,设BD′=x,则BC=2x,在Rt△BCD′中,利用勾股定理可得BC长,进而得到AB的长.【解答】解:连结BD′,DD′,∵AC=BC,∠ACB=90°,∴∠ABC=45°,∵D关于AB的对称点是D′,∴AB垂直平分DD′,∴BD=BD′,∠D′BD=90°,又∵D是BC的中点,∴BC=2BD=2BD′,设BD′=x,则BC=2x,∴在Rt△BCD′中,由勾股定理得:BD′2+BC2=CD′2,x2+(2x)2=()2,解得:x=1,∴BD′=1,CB=2,∴AB=2.【点评】此题考查了勾股定理,以及轴对称的基本性质,关键是掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.15.(4分)在平面直角坐标系中,已知A(2,3),B(﹣1,3),C(0,5),若△CAB与△DBA全等,则点D的坐标为(0,1)或(1,1)或(1,5).【分析】根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.【解答】解:如图所示,共有3个符合条件的点,∵△CAB与△DBA全等,∴AB=AB,BC=AD或BC=BD,∵A(2,3),B(﹣1,3),C(0,5),∴D1的坐标是(0,1),或(1,1)或(1,5).【点评】本题考查了全等三角形的性质和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解此题的关键.16.(4分)对于一次函数y=ax+b(a,b为常数,且a≠0),有以下结论:①若b=3﹣2a时,一次函数图象过定点(2,3);②若b=3﹣2a,且一次函数y=ax+b图象过点(1,a),则a=;③当a=b+1,且函数图象过一、三、四象限时,则0<a≤1;④若b=2﹣a,一次函数y=ax+b的图象可由y=ax+2向左平移1个单位得到;请选择正确的序号:①②.【分析】①解析式变形后即可判断;②解析式变形后倒入(1,a),求得a的值即可判断;③根据一次函数的性质即可判断;④根据平移的规律即可判断.【解答】解:①若b=3﹣2a时,则y=ax+3﹣2a=a(x﹣2)+3,∴一次函数图象过定点(2,3),故结论①正确;②若b=3﹣2a,则y=ax+3﹣2a,∵一次函数y=ax+b图象过点(1,a),∴a=a+3﹣2a,解得a=,故结论②正确;③当a=b+1时,则b=a﹣1,∴y=ax+a﹣1,∵函数图象过一、三、四象限,,解得a>1,故结论③错误;④若b=2﹣a,则y=ax+2﹣a=a(x﹣1)+2,∴一次函数y=ax+b的图象可由y=ax+2向右平移1个单位得到,故结论④错误;故正确的结论有①②,故答案为①②.【点评】本题考查了一次函数的性质以及一次函数图象与几何变换,熟练掌握一次函数的性质是解题的关键.三、全面答一答(本题有7个小题,共66分)17.(6分)在△ABC中,AB=AC,点D,E分别在AB,AC上,BE,CD相交于点P,PB=PC.求证:AD=AE.【分析】欲证明AD=AE,只要证明△ABE≌△ACD即可.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵BP=CP,∴∠PBC=∠PCB,∴∠ABE=∠ACD,∵∠A=∠A,AB=AC,∴△ABE≌△ACD(SAS),∴AD=AE.【点评】本题考查全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.18.(8分)如图,有6×6的正方形网格(每个小正方形的边长为1),按要求作图并计算:(1)在网络中画出平面直角坐标系,使点A(2,3),B(3,2),并写出点C的坐标;(2)作△ABC关于x轴对称的△A1B1C1.【分析】(1)先根据A的坐标确定两坐标轴,交写出点C的坐标;(2)直接作出△ABC关于x轴对称的△A1B1C1.【解答】解:(1)如图所示,点C(1,0);(2)△A1B1C1即为所求.【点评】此题主要考查了关于x轴对称的性质,坐标与图形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质作图.19.(8分)解不等式(组),并把第(1)小题的解集表示在数轴上.(1)5x﹣2≥2+3x;(2)【分析】(1)不等式移项合并,把x系数化为1,即可求出解集;(2)分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【解答】解:(1)移项合并得:2x≥4,解得:x≥2,(2),由①得:x≥1,由②得:x<10,则不等式组的解集为1≤x<10.【点评】此题考查了解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.(10分)设一次函数y=mx+n(m,n是常数,m≠0).(1)若它的图象过A(1,3),B(﹣1,﹣1),求该一次函数的表达式;(2)若n=1﹣2m,且一次函数图象不过第二象限,求m的取值范围.【分析】(1)将两点代入,运用待定系数法求解即可;(2)关键题意得到m>0,1﹣2m≤0,解得即可.【解答】解:(1)∵一次函数y=mx+n的图象经过两点A(1,3)、B(﹣1,﹣1),∴,解得,∴函数解析式为:y=2x+1;(2)把n=1﹣2m代入得y=mx+1﹣2m,∵y=m(x﹣2)+1,∴图象一定经过点(2,1),∵一次函数图象不过第二象限,∴m>0,1﹣2m≤0,∴m≥.【点评】本题考查待定系数法求一次函数解析式及一次函数的性质,关键是正确得出关于m的不等式.21.(10分)已知:如图,BD⊥AC,垂足为E,△ABE的中线EF的延长线交CD于点G,∠B=∠C.(1)求证:EG是△CDE的高线(即EG⊥CD).(2)若EG是△CDE的中线,探索△ABE的形状(请写出完整过程)【分析】(1)根据直角三角形的性质得到EF=BF=AB,得到∠B=∠BEF,求得∠EGC=90°,于是得到结论;(2)根据线段垂直平分线的性质得到DE=CE,求得∠A=45°,于是得到结论.【解答】解:(1)∵BD⊥AC,EF是△ABE的中线,∴EF=BF=AB,∴∠B=∠BEF,∵∠B=∠C,∴∠C+∠CEG=90°,∴∠EGC=90°,∴EG是△CDE的高线;(2)∵EG是△CDE的中线,EG⊥CD,∴EG是CD的垂直平分线,∴DE=CE,∵∠B=∠C=∠D=45°,∴∠A=45°,∴AE=BE,∴△ABE是等腰直角三角形.【点评】本题考查了直角三角形的性质,线段垂直平分线的判定和性质,正确的理解题意是解题的关键.22.(12分)如图1,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD =CD′.(1)求证:△ABD≌△ACD′;(2)如图2,若∠BAC=120°,探索BD,DE,CE之间满足怎样的数量关系时,△CD′E是正三角形;(3)如图3,若∠BAC=90°,求证:DE2=BD2+EC2.【分析】(1)由轴对称图形的性质得出AD=AD′,由SSS即可证得△ABD≌△ACD′;(2)由△ABD≌△ACD′得出∠BAD=∠CAD′,∠B=∠ACD′,由轴对称图形的性质得出∠DAE=∠EAD′,DE=ED′,则∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE =∠BAC=60°,由正三角形的性质得出CE=CD′=ED′,即可得出结论;(3)由等腰直角三角形的性质得出∠B=∠ACB=∠ACD′=45°,则∠ECD′=90°,由勾股定理得出ED′2=CD′2+EC2,即可得出结论.【解答】(1)证明:∵△ADE与△AD′E是关于AE的轴对称图形,∴AD=AD′,在△ABD和△ACD′中,,∴△ABD≌△ACD′(SSS);(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∠B=∠ACD′,∵△ADE与△AD′E是关于AE的轴对称图形,∴∠DAE=∠EAD′,DE=ED′,∴∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,∵△CD′E是正三角形,∴CE=CD′=ED′,∵BD=CD′,DE=ED′,∴BD=DE=CE;(3)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠ECD′=90°,∴ED′2=CD′2+EC2,∵BD=CD′,DE=ED′,∴DE2=BD2+EC2.【点评】本题是三角形综合题,考查了轴对称图形的性质、全等三角形的判定与性质、等边三角形的性质、等腰直角三角形的性质、勾股定理等知识,熟练掌握轴对称图形的性质,证明三角形全等是解题的关键.23.(12分)已知A,B两地相距120km,甲、乙两人沿同一条公路匀速从A地出发到B 地,甲骑摩托车,乙骑自行车,设乙行驶的时间为t(h),甲乙两人之间的距离为y (km),y与t的函数关系如图所示.请观察分析图象解决以下问题:(1)乙比甲先出发1小时,甲骑摩托车的速度是60km/h,第一次相遇的时间在乙出发0.5小时.(2)求出线段BC所在直线的函数表达式;(3)当30≤y≤50时,求t的取值范围;(4)若甲到达B地后立即原路返回,返回途中甲乙何时相距10km【分析】(1)根据题意列式计算即可求解;(2)利用待定系数法求函数解析式即可;(3)求出线段CD的解析式,再分别根据线段BC与CD的解析式求解即可;(4)根据题意列方程解答即可.【解答】解:(1)根据题意可知乙比甲先出发1小时,甲骑摩托车的速度是120÷(3﹣1)=60km/h,第一次相遇的时间在乙出发时间为:20÷(60﹣20)=0.5(小时).故答案为:1;60;0.5;(2)设线段BC所在直线的函数表达式为y=kt+b,∵线段BC所在直线经过点(1.5,0),(3,60),∴,解得,∴线段BC所在直线的函数表达式为y=40t﹣60;(3)点D的横坐标为:3+120÷(60﹣20)=6,设线段CD所在直线的函数表达式为y=k1t+b1,根据题意得:,解得,∴线段CD所在直线的函数表达式为y=﹣20t+120;当30≤y≤50时,30≤40t﹣60≤50,30≤﹣20t﹣120≤50,解得,;(4)根据题意得:60(t﹣1)+20t=240﹣10或60(t﹣1)+20t=240+10,解得或.答:甲到达B地后立即原路返回,返回途中t=小时或t=小时甲乙相距10km.【点评】本题考查了一次函数的应用,解决本题的关键是根据图象获取相关信息,利用待定系数法求函数解析式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭州市北苑实验中学2018-2019学年上学期期末模拟
八年级数学试卷
一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)
1.下列四组线段中,能组成三角形的是( )
A .2cm ,3 cm ,4 cm
B .3 cm ,4 cm ,7 cm
C .4 cm ,6 cm ,2 cm
D .7 cm ,10 cm ,2 cm
2.以下列各组数为边长,能构成直角三角形的是( )
A .5,7,8
B .1,2,3
C . 2
D ,2
3.若关于x 的一元二次方程的两根为x 1=1,x 2=2,则这个方程是 A .x 2+3x -2=0
B .x 2-3x +2=0
C .x 2-2x +3=0
D .x 2+3x +2=0
4.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为 ( )
A .9
B .±3
C .3 D. 5
5.下面说法中正确的是( )
A .“同位角相等”的题设是“两个角相等”;
B .“相等的角是对顶角”是假命题;
C .如果0=ab ,那么0=+b a 是真命题;
D .“任何偶数都是4的倍数”是真命题.
6.如图,AB=DB ,BC=BE ,欲证△ABE ≌△DBC ,则需补充的条件是( )
A. ∠A=∠D ;
B. ∠E=∠C ;
C. ∠A=∠C ;
D. ∠1=∠2.
7.在如图的网格中,在网格上找到点C ,使△ABC 为等腰三角形,这样的点有几个( )
A .8
B .9
C .10
D .11
8.如图,已知AC 平分∠BAD,CE⊥AB 于E ,CF⊥AD 于F ,且BC=CD .若AB=15,AD=7,BC=5,则CE 的长( ).
A .4
B .3
C . D
9.如图,已知函数1y =3x +b 和2y =ax -3的图象交于点P (-2,-5),则下列结论正确的是( ▲ )
A .x <-2时,1y <2y
B .0b <
C .x <-2时,1y >2y
D .0a <
10.如图,在△ABC 中,AC =BC ,∠ACB =90°,AE 平分∠BAC 交BC 于E ,
BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连接CD .下列结论:
①BC +CE =AB ;②BD =12AE ;③BD =CD ;④∠ADC =45°;
⑤AC +AB =2AM .其中不正确的结论有 ( )
A .0个
B .1个
C .2个
D .3个
二、认真填一填 (本题有6个小题, 每小题4分, 共24分)
12.点P (2m -1,3)在第二象限,则的取值范围是
13.直角三角形两条边长分别是5和12,则第三边上的中线长是 .
14..若关于x 的一元一次不等式组⎩
⎨⎧x -2m <0,x +m >2有解,则m 的取值范围为
15.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于 ▲ 度.
16.如图,图①是一块边长为1,周长记
为P 1的正三角形纸板,沿图①的底边剪
去一块边长为2
1的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的12
)后,得图③、④,……,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n -1 等于
三、全面答一答 (本题有7个小题, 共66分)
17.(本小题6分)解不等式(组)
(1)()5322x x >-+ (2) ⎩⎪⎨⎪⎧9x +5<8x +7,43
x +2>1-23x 18.18.(本小题6分)
(1)计算;(23-32)2+(2+3)(2-3).
(2)化简:8-92-3+63
+(3-2)0+(1-2)2. 19.解一元二次方程(本小题6分)
(1) x(x-2)+x-2=0 (2) (2x-5)2-(x+4)2=0
20.(8分)如图,直线y=2x 3与x轴交于点A,与y轴交于点B.
(1)求三角形AOB的面积;
且使OP=2OA,求BP的解析式。

21.(本小题10分)
【问题提出】
学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=
∠E,然后,对∠B进行分类,可以分为“∠B是直角、钝角、锐角”三种情况进行探究.
图①
【深入探究】
第一种情况:当∠B为直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据________,
可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B为钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝
角,求证:△ABC≌△DEF.
第三种情况:当∠B为锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你
用尺规在图③中作出△DEF,△DEF和△ABC不全等.(不写作法,保留作图痕迹).
(4)∠B还要满足什么条件,就可以使得△ABC≌△DEF,请直接填写结论:
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐
角,若________,则△ABC≌△DEF.
22.(10分)如图,∠ABC=90°,D,E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.
(1)求证:∠FMC=∠FCM;
(2)AD与MC垂直吗?并说明理由.
23.(10分)某物流公司要同时运输A、B两种型号的商品共13件,A型商品每件体积为2 m3,每件质量为1吨;B型商品每件体积为0.8 m3,每件质量为0.5吨,这两种型号商品的体积之和不超过18.8 m3,质量之和大于8.5吨.
(1)求A、B两种型号商品的件数共有几种可能?写出所有可能情况;
(2)若一件A型商品运费200元,一件B型商品运费为180元,则(1)中哪种情
况的运费最少?最少运费是多少?
24.(10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.
(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到
站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?。

相关文档
最新文档