小学奥数举一反三三年级

合集下载

三年级奥数《举一反三》全的

三年级奥数《举一反三》全的

第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),( )【例题4】根据前面图形里的数的排列规律,填入适当的数。

(1)(3)练习4:(1)(3)【例题5(1)187,286,385,( ),( )(2) 练习5:(1)198,297,396,( ),( )(2)(3)(2)9437148428164(2)4892768287第2讲有余除法一、知识要点把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。

20XX最新小学奥数举一反三(三年级)全图文百度文库

20XX最新小学奥数举一反三(三年级)全图文百度文库

20XX最新小学奥数举一反三(三年级)全图文百度文库一、拓展提优试题1.兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这是兄妹俩人剩下的钱正好相等.哥哥带了元钱,妹妹带了元钱.2.小李、小华比赛爬楼梯,小李跑到第5层时,小华正好跑到第3层.照这样计算,小李跑到第25层时,小华跑到第层.3.观察下面两个算式,□、△各表示一个数字,□□、△△、□□□、△△△各表示一个两位数和三位数,这两个算式是和.□□□×□□×□=152625;△△△×△△×△=625152.4.如图有5个点,在两个点之间可以画出一条线段,画出的图形中共可以得到条线段.5.用2、4、12、40四个数各一次,可以通过这样的运算得到24.6.只许移动1根火柴棒,使等式成立.7.小王有8个1分币,4个2分币,1个5分币,他要拼出8分钱来,有种不同的拼法.8.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.3019.用同样长的小棒按如下方式摆三角形.那么,摆12个三角形要根小棒.10.一个不透明的布袋中有黑、白、黄三种颜色的筷子各10根,最少拿出根筷子就能保证有一双是同样颜色的筷子.11.1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆,豆腐3元1千克,豆油15元1千克,一批大豆共460千克,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.12.甲、乙、丙、丁获得了学校的前4名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙说:“我既不是第二,也不是第三”;丙:“我的名次和乙相邻”;丁:“我的名次和丙相邻”.现知道,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说谎的好学生,那么四位数=.13.有一种特殊的计算器,当输入一个数后.计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是45,那么,最开始输入的是.14.在一根绳子上依次穿入5颗红珠、4颗白珠、3颗黄珠和2颗蓝珠,并按照此方式不断重复,如果从头开始一共穿了2014颗珠子,那么第2014颗珠子的颜色是色.15.小明将买来的一筐桔子分别装入几个盘子中,如果每个盘子装10个,则多余2个,如果每个盘子装12个,则可以少用一个盘子,那么买来的一筐桔子共有多少只?【参考答案】一、拓展提优试题1.解:根据题意可得:他们的钱数差是:180﹣30=150(元);由差倍公式可得:妹妹带的钱数是:150÷(2﹣1)=150(元);哥哥带的钱数是:150×2=300(元).答:哥哥带了300元钱,妹妹带了150元钱.故答案为:300,150.2.解:(25﹣1)×[(3﹣1)÷(5﹣1)]+1,=24×+1,=12+1,=13(层),答:小李跑到第25层时,小华跑到第13层.故答案为:13.3.解:根据分析可得,□□□×□□×□=152625=5×5×5×3×11×37=5×55×555,所以,□□□×□□×□=5×55×555;△△△×△△×△=625152=64×11×888=8×8×11×888=8×88×888;故答案为:5×55×555,8×88×888.4.解:如图:4+3+3=10(条),答:图形中共可以得到10条线段;故答案为:10.5.解:40÷4+12+2,=10+12+2,=24;故答案为:40÷4+12+2.6.解:移动后为:故答案为:7.解:(1)8个1分,(2)4个2分币,(3)2个1分币,3个2分币,(4)4个1分币,2个2分币,(5)6个1分币,1个2分币,(6)3个1分币,1个5分币,(7)1个1分币,1个2分币,1个5分币;所以有7种不同的拼法;故答案为:7.8.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.9.解:一个三角形需要3根小棒,2个三角形需要3+2=5根小棒,3个三角形需要3+2×2=7根小棒,…12个三角形需要3+2×(12﹣1)=25根小棒.答:摆12个三角形要 25根小棒.故答案为:25.10.解:把三种颜色的筷子构造为三个抽屉,分别放黑、白、黄不同颜色的筷子.从最不利情况考虑,拿了3根,颜色各不同放到三个抽屉里,此时再任意拿1根,即可出现一个抽屉里能放了2根筷子.即出现一个抽屉里2根,另外两个抽屉里各1根筷子的情况,共计2+1+1=4根.故答案为:4.11.解:3×3=9(元)15÷6=2.5(元)(9×460﹣1800)÷(9﹣2.5)=2340÷6.5=360(千克)答:这批大豆中有 360千克被制成了豆油.故答案为:360.12.解:根据分析,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说谎的好学生,根据甲的话得知,甲只能是第三或第四,故后两名之一是甲,而乙的话得知,乙只能是第一或第四,若乙是第四名,则由丙的话得知,丙为第三,矛盾,故乙只能是第一,而丙为第二,丁为第三,甲为第四.故A=4,B=1,C=2,D=3,故答案是:=4123.13.解:逆运算,乘积的数字顺序颠倒后为:45﹣2=43,则,颠倒前为34,输入的两位数为:34÷2=17;答:最开始输入的是17.故答案为:17.14.解:5+3+4+2=14(个)2014÷14=143…12,所以第2014颗珠子是第144周期的第12个,是黄颜色;答:第2014颗珠子的颜色是黄色.故答案为:黄.15.解:(10+2)÷(12﹣10)=6(个)12×6=72(只)答:买来的一筐桔子共有72只.。

奥数典型题举一反三(小学3年级)

奥数典型题举一反三(小学3年级)

奥数典型题举一反三(小学3年级)
1、有两只猪,每只猪共有12只腿,那么这两只猪共有多少只腿?
即计算:有两只猪,每只猪共有12只腿,总共有24只腿。

2、有20本书,每本书都是100页,那么这20本书共有多少页?
即计算:有20本书,每本书都是100页,总共有2000页。

3、一个包子内有10颗米,如果有3个包子,那么共有多少颗米?
即计算:一个包子有10颗米,如果有3个包子,那么共有30颗米。

4、有18只小鸭子,共有几只脚?
即计算:有18只小鸭子,共有36只脚。

5、一个盒子里有25个苹果,如果有5个盒子,那么一共有多少个苹果?
即计算:一个盒子里有25个苹果,如果有5个盒子,那么一共有125个苹果。

6、有20个苹果,每个苹果有4颗籽,那么一共有多少颗籽?
即计算:有20个苹果,每个苹果有4颗籽,那么一共有80颗籽。

7、一箱子里有25只兔子,又有35只羊,那么总共有多少只动物?
即计算:一箱子里有25只兔子,又有35只羊,那么总共有60只动物。

8、8个小朋友,共吃了20个苹果,那么每个小朋友吃了多少个苹果?
即计算:8个小朋友,共吃了20个苹果,那么每个小朋友吃了2个苹果。

(完整版)小学三年级奥数举一反三习题

(完整版)小学三年级奥数举一反三习题

1. 鸡兔同笼,共5个头,16条腿,有几只鸡?有几只兔子?2. 鸡兔子同笼,有8个头,22条腿,有几只鸡?有几只兔?3. 鸡兔同笼,共有14个头,38条腿,有几只鸡?几只兔子?1. 一辆自行车有2个轮子,一辆三轮车有3个轮子,车棚里放着自行车和三轮车共10辆,共26个轮子自行车、三轮车各多少辆?2. 三轮货车和小轿车共有9 辆,有30 个轮子。

三轮货车和小轿车各有几辆?3. 停车场停着大汽车和小汽车一共14辆,达汽车有9 个轮子,小汽车有4个轮子,现在14辆汽车一共有72 个轮子。

问有几辆大汽车?有几辆小车?1. 辅导员老师带9名同学去种63棵树。

辅导员先种下1棵,然后全部同学动手种。

男同学每人种8 棵,女同学每人种 3 棵,这样刚好把树苗种完。

这9名同学中,男女同学各有多少人?2. 李老师带15名同学修理40 张桌椅,李老师修理5 张,男同学每人修2 张,女同学每人修3张,这15 名同学中,男同学几人?女同学几人?3. 小红买了1 枝钢笔和10枝铅笔共16元。

一枝钢笔10 元,一枝红铅笔9 角,一枝黄铅笔4 角。

算算10 枝铅笔中红、黄铅笔个几枝?1. 一根木料长10米,工人把他举城2 米长的小段,可以锯成多少段?要锯几次?2. 一根25厘米长的铁丝,把它剪成5 厘米长的小段,可剪几段?要锯几次?3•把一根6米长的电线,剪了2次,平均每段长多少米?4. 一根9米长的绳子,剪了2次,平均每段长多少米?5. —根12分米长的铁丝,剪了3次,平均每段长多少分米?6. —根绳子剪了2次后,平均每段长5厘米,这根绳子原来长多少厘米?1. 一根绳子被剪了3次后,平均每段长8厘米,这根绳子原来总长是多少厘米?2. —根铁丝被剪5次后,平均每段长6米,这根铁丝原来长多少米?3. 两根同样长的绳子重叠,被剪了3次后,平均每段长2米,你知道这两根绳子总长是多少米吗?1. 蓉蓉住的这栋楼共7层,每层楼梯20级,她家住在五楼,你知道蓉蓉走多少级楼梯才能到自己住的你一层吗?2. 小东住在大厦11层,他数了10层到11层有21级台阶,你能算出从底楼到小东家有多少级台阶吗?3. 王师傅家住在六楼,他从一楼到三楼要走40级台阶,那么他从一楼到六楼要走多少级台阶?4. 小明爬楼梯,每上一层要走12级台阶,一级台阶需走2秒,小明从一楼到四楼共要走多长时间?1. 在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了10面,这条道路有多长?2. 在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了18盆,这条走廊长多少米?3. 在一条20 米长的绳子上挂气球,从一端起,每隔5 米挂一个气球,一共可以过多少个气球?1. 在一条长32米长的公路一侧插彩旗,从起点到终点共插了5 面,相邻两面旗之间距离相等,相邻两面旗之间相距多少米?2. 在公园一条长 25 米的路的两侧放椅子, 从起点到终点共放了 12把椅子, 相邻两把椅子距离相等, 相 邻两把椅子之间相距多少米?3. 有一根木料,要锯成 8 段,每锯开一段需要 2分钟,全部锯完需要多少分钟?4. 一根木料,要锯成 4 段,每锯开一处要 5分钟,全部锯完要多少分钟?5. 一根圆木锯成 2 米长的小段,一共花了 15 分钟,已知每锯下一段要 3 分钟,这根圆木长多少米?1. 一个圆形跑道长 300米,沿跑道周围每隔 6米插一面红旗, 每两面红旗中间插一面黄旗, 跑道周围各 插了多少面红旗和黄旗?2. 有一个圆形花圃,周长是 30米,每隔 3 米栽一棵月季花,每两棵月季花之间栽一棵兰花。

三年级奥数举一反三

三年级奥数举一反三

三年级奥数举一反三概述本文档旨在介绍三年级奥数中的一种重要解题方法:举一反三。

通过举一反三的方法,学生可以从已解决的问题中总结出一般性的解题思路,从而应用于类似的问题。

举一反三的基本原则举一反三是通过观察和归纳,推广已有的解题方法和经验,以解决类似但稍有不同的问题。

以下是几个举一反三的基本原则:1. 发现问题的相似之处:在遇到新问题时,要仔细观察并找出与已解决问题的相似之处。

相似之处可以是问题的形式、特征、解题方法等。

2. 推广解题思路:在找到相似之处后,将已有的解题思路推广应用到新问题上。

也就是说,根据已解决问题的解题思路和方法,对新问题进行类似的操作。

3. 验证解题结果:完成推广后,要验证解题结果的正确性。

确保新问题的解答符合预期,并与已解决问题的解答一致。

举一反三的实践步骤举一反三是一个灵活的思维过程,以下是一般的实践步骤:1. 理解已解决问题:首先,要完全理解已解决问题的解题思路和方法。

弄清楚问题的关键特征和解题过程。

2. 寻找相似之处:然后,仔细观察新问题,寻找与已解决问题的相似之处。

可以考虑问题的形式、数据、求解目标等方面。

3. 推广解题思路:将已解决问题的解题思路和方法应用到新问题上。

进行类似的操作、推导或计算,以得到新问题的解答。

4. 验证解题结果:最后,要对新问题的解答进行验证。

确保解答正确,并与已解决问题的解答一致。

举一反三的优势和应用举一反三是提高问题解决能力和思维灵活性的重要方法。

以下是举一反三的一些优势和应用:1. 培养问题发现和归纳总结能力:通过举一反三,学生能够培养观察和发现问题相似之处的能力,并将其归纳总结为一般性的解题方法和思路。

2. 提高问题解决效率:举一反三能够帮助学生快速解决类似问题,避免从头开始思考和解决。

3. 拓展解题思路和方法:通过推广已有的解题思路,学生能够进一步拓展自己的解题思路和方法,提高问题解决的灵活性和多样性。

总结举一反三是三年级奥数中的一种重要解题方法,通过观察、总结和应用已解决问题的解题思路和方法,可以快速解决类似的问题。

小学奥数举一反三(全三年级)之欧阳地创编

小学奥数举一反三(全三年级)之欧阳地创编

第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。

(1)(3)练习4(1)(3)【例题(1)(2)练习5(1)198,297,396,(),()(2)(3)讲一、知识要点把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。

小学奥数举一反三:3年级

小学奥数举一反三:3年级

小学奥数举一反三:3年级
三年级是孩子们从小学开始学习奥数课程的开始。

在这个阶段,孩子们可以掌握许多基础的知识,如数字、算术、几何、逻辑思维能力等,建立起围绕着数学的世界观。

作为一名三年级的老师,要想让学生快速掌握和理解这些知识,“举一反三”是一个重要的技能。

从含义上讲,“举一反三”的意思是,从一个特定的概念出发,可以用少量的时间,通过寻找联系和关系,获得最大的知识收获。

这样可以帮助学生学习更有效率,更快速地掌握更多的知识。

要想让孩子们学会“举一反三”,首先要培养孩子们的数学思维。

让孩子们能够深入学习、思考问题,从而更好地把握知识的规律和特点,这样才能在学习中运用“举一反三”的技能。

另外,要想做到“举一反三”,孩子们要学会提问和分析问题。

在学习中,不要浅尝辄止,要发现知识的关键点,在理解知识的基础上,不断地提出新的问题,加深理解。

最后,在学习中,应注重理解知识,而不是死记硬背。

孩子们要学会从细节中抓住本质,总结概括,帮助他们深入理解知识,这样,才能更好地形成“举一反三”的能力。

让孩子在小学阶段学习奥数,有助于他们获得良好的数学思维能力和高效的学习方法,为他们今后的教育奠定坚实的基础。

“举一反三”的技能是三年级孩子学习奥数中最重要的一部分,作为老师,要秉持坚实的信念,为孩子们指明正确的方向,让他们在学习奥数的过程中,养成良好的习惯,从而获得良好的学习效果。

小学奥数举一反三(三年级)全修订版

小学奥数举一反三(三年级)全修订版

小学奥数举一反三(三年级)全修订版
简介
本文档是小学奥数举一反三(三年级)全修订版,旨在帮助三年级学生更好地掌握奥数举一反三的方法和技巧。

举一反三是指通过一个问题或例子,推导出类似的问题或原理。

这种思维方法可以培养学生的逻辑思维和创造力,提高解决问题的能力。

目标
- 掌握奥数举一反三的思维方法。

- 学会运用举一反三的方法解决数学问题。

- 培养逻辑思维和创造力。

内容
1. 举例法:通过具体的例子引导学生理解问题的本质和特点,从而推导出类似的问题。

例如,给出一道加法题,然后让学生找到规律并解决几个类似的题目。

2. 探究法:通过探究问题的规律和特点,引导学生发现相似问题的解决方法。

例如,给出一道几何题,让学生通过观察、试错和总结找到解决问题的方法。

3. 类比法:通过找到问题和已知问题之间的相似之处,推导出问题的解决方法。

例如,给出一道植树问题,然后引导学生将其类比为种花问题,通过解决种花问题来解决植树问题。

4. 反向思维法:通过反向思考问题,从已知的答案推导出问题的解决方法。

例如,给出一个结果,然后要求学生找到可以得到该结果的问题。

5. 创造法:通过自由发散的思维,引导学生创造出类似的问题或解决方法。

例如,给出一个问题后,让学生自己设计一道类似的问题,或者用不同的方法解决给定的问题。

结论
通过学习奥数举一反三的方法,三年级学生可以提高数学思维能力,培养逻辑思维和创造力。

这种方法可以帮助学生更好地理解
问题的本质和特点,从而解决各种数学问题。

希望本文档对三年级学生学习奥数举一反三有所帮助。

小学奥数举一反三(三年级)

小学奥数举一反三(三年级)

第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,⋯⋯双数列:2,4,6,8,⋯⋯我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题 1】在括号内填上合适的数。

(1)3, 6, 9, 12,(),()(2)1, 2, 4, 7, 11,(),()(3)2, 6, 18,54,(),()练习 1:在括号内填上合适的数。

(1)2, 4, 6, 8, 10,(),()(2)1, 2, 5, 10,17,(),()(3)2, 8, 32,128,(),()(4)1, 5, 25,125,(),()(5)12,1,10,1,8,1,(),()【例题 2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15, 6,(),()练习 2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3, 2, 9, 2, 27,2,(),()(3)18,3,15,4,12, 5,(),()(4)1, 15,3,13,5,11,(),()(5)1, 2, 5, 14,(),()【例题 3】先找出规律,再在括号里填上合适的数。

(1)2, 5, 14,41,()( 2)252, 124,60, 28,()(3)1, 2, 5, 13,34,()( 4)1,4,9,16,25, 36,()练习 3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22, 10,(),()(4)2,3,7,18, 47,(),()- 1 -【例题 4】根据前面图形里的数的排列规律,填入适当的数。

小学奥数举一反三三年级

小学奥数举一反三三年级

第一讲寻规填数举一反三(1-8)一1、8,12,16,20,24,(),()。

2、98,89,80,71,(),()。

二1、2,6,11,17,24,(),41。

2、1,6,16,(),51,76。

三1、1,2,1,5,18,1,()。

2、50,3,40,5,30,7,()。

四1、96,48,24,(),63 。

2,81,27,9,3,()。

五请写出斐波那契数列的第11,12项的数。

0,1,1,2,4,7,13,(),44。

六(34,16),(23,27),(15,35),(20,)。

(24,14),(86,76),(36,26),(,5)。

七略八1、81,82,83,81,82,83,81,(),832、72,62,52,72,62,52,()62,52拓展应用1按规律填数20,18,16,14,(),()95,90,85,(),75,()2按规律填数3,2,6,2,9,2,()7,4,6,6,5,8,(),103观察下面的数列,找出其中的规律,填空31,2,26,3,21,4,(),()4 按规律填数2,5,7,12,()31,505下列四个数种有一个与众不同,它是第()个A1,1,2,3,5,8,13,B0,2,2,4,6,10,16C1,3,4,7,11,18,D1,2,3,6,11,20,371有一组加法算式:4+2,5+8,6+14,7+20....按这样的规律排第20个加法算式是怎样的?1按规律填数(1,72 ),(2,36),(3,),(4,)(3,7),(6,14),(9,21),(12, )1按规律填数75,70,65,60,(),()45,() 320,160,80,40 ,(),(),()第二讲算式谜(一)(略)第三讲加减巧算举一反三191+464+536294+16+106举一反三2 876—280—376636-187-436举一反三3197+88847+602举一反三4807+4023789-498-201举一反三5729+413-429 563-197+37举一反三6 63645-63637 65996-65948举一反三7728-(594-72)454+(546-197)举一反三8503-197-83-101 205+204+196+202拓展应用用简便方法计算下面各题53+158+473427-809-191873-198-27397+79417-255+8363545-63537424-(165+224)271+152+129+248第四讲推理入门举一反三11·爸爸买回了3双袜子,其中2双是花袜子,1双是红袜子。

三年级奥数《举一反三》全的

三年级奥数《举一反三》全的

第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,( ),( )(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( )【例题4】根据前面图形里的数的排列规律,填入适当的数。

(1)(3) 练习4:找出排列规律,在空缺处填上适当的数。

(完整版)小学数学奥数举一反三(三年级)1-40讲完整版全

(完整版)小学数学奥数举一反三(三年级)1-40讲完整版全

第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。

(1)(3)练习4:找出排列规律,在空缺处填上适当的数。

(1)(3)【例题5】按规律填数。

小学三年级奥数举一反三10题

小学三年级奥数举一反三10题

小学三年级奥数举一反三10题
1.一只小猴子在树林里玩,它从树林的这头走到那头,走了10步,每步都走了2米,
这片树林有多长?
2.小明有12张邮票,小华有8张邮票,小明给小华多少张邮票,两人的邮票就一样多?
3.小华有10本故事书,小刚有8本故事书,小华给小刚多少本书,两人的书就一样多?
4.同学们栽树,栽了24行,每行40棵,一共有多少棵树?
5.小朋友们在花坛里捉迷藏,每轮游戏13人参加,共玩了3轮,一共有多少人参加了
游戏?
6.小朋友们在操场上做游戏,每组5人,共4组,一共有多少人?
7.小朋友们在操场上做游戏,每组6人,共5组,一共有多少人?
8.小朋友们在操场上做游戏,每组7人,共6组,一共有多少人?
9.小朋友们在操场上做游戏,每组8人,共7组,一共有多少人?
10.小朋友们在操场上做游戏,每组9人,共8组,一共有多少人?。

三年级数学奥数题及答案_小学奥数举一反三

三年级数学奥数题及答案_小学奥数举一反三

三年级数学奥数题及答案_小学奥数举一反三
1、5年前小芳的年龄是小英年龄的7倍,10年后小芳年龄是小英年龄的2倍,问今年小芳、小英两人各多少岁
2、6年前,母亲的年龄是儿子的5倍。

6年后母子年龄和是78岁。

问:母亲今年多少岁
查看答案:
1、5年前小芳的年龄是小英年龄的7倍,10年后小芳年龄是小英年龄的2倍,问今年小芳、小英两人各多少岁
解题思路:画线段图可以看出,因为10年后小芳的年龄是小英年龄的2倍,所以两人当时的年龄差为小英当时的年龄,即5+10+小英5年前的年龄。

因为5年前小芳的年龄是小英年龄的7倍,两人的年龄差为小英当时年龄的6倍。

所以15相当于小英5年前年龄的5倍,可求出小英5年前的年龄。

解:(10+5)÷(7-1-1)=3(岁)
小英年龄3+5=8(岁)
小芳年龄37+5=26(岁)
2、6年前,母亲的年龄是儿子的5倍。

6年后母子年龄和是78岁。

问:母亲今年多少岁
解题思路:6年后母子年龄和是78岁,可以求出母子今年年龄和是78-62=66(岁)。

6年前母子年龄和是66-62=54(岁)。

又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄。

解母子今年年龄和:78-62=66(岁)
母子6年前年龄和:66-62=54(岁)
母亲6年前的年龄:54÷(5+1)5=45(岁)母亲今年的年龄:45+6=51(岁)
答:母亲今年是51岁。

小学三年级奥数举一反三之 水壶谜

小学三年级奥数举一反三之 水壶谜

小学三年级奥数举一反三之水壶谜
1. 引言
奥数举一反三是小学生数学研究中常用的方法之一。

通过解决一个问题,可以推广到类似的其他问题中。

本文将介绍一个小学三年级的奥数题目——水壶谜,通过解决这个问题,我们可以培养学生的逻辑思维和问题解决能力。

2. 水壶谜题目
题目如下:
小明想用一个装满水的壶,倒出四杯水给他的朋友。

要求:
1. 每一杯水的容量必须相同;
2. 倒水时只允许任意两个壶之间互相倒水;
3. 不能通过其他工具进行辅助。

请问小明最多能装多少水?
3. 解决思路
解决这个问题的思路如下:
1. 首先,我们需要掌握杯子的容量信息。

在题目中没有给出具体的数值,我们暂时将其表示为x。

2. 因为小明要倒出四杯水,所以我们需要找到一个最大公约数y,使得4y=x。

3. 这样,每一杯水的容量就是y。

小明最多能装的水的容量为3y。

4. 结论
通过解决水壶谜题,我们可以得出小明最多能装的水的容量为3y,其中y是4和x的最大公约数。

这个问题培养了学生的逻辑思维和问题解决能力,同时提高了学生的数学应用能力和创造力。

5. 总结
小学三年级奥数举一反三之水壶谜是一道逻辑思维和问题解决的数学题目。

通过解决这个问题,学生可以锻炼自己的思维能力,并培养数学应用能力和创造力。

希望本文对小学三年级的奥数学习有所帮助。

小学奥数举一反三三年级优秀教案修订版

小学奥数举一反三三年级优秀教案修订版

小学奥数举一反三三年级优秀教案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数举一反三三年级一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,( ),( ) (2)2,4,10,28,82,( ),( )(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( )【例题4】根据前面图形里的数的排列规律,填入适当的数。

(1)(3)练习4:找出排列规律,在空缺处填上适当的数。

(1) (3)【例题5】(1)187,286,385,( ),( ) (2)练习5:根据规律,在空格内填数。

(1)198,297,396,( ),( ) (2)93 27 124 36 3612(2)9437148428164(2)4892768287(3)第2讲有余除法一、知识要点把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。

每次除得的余数必须比除数小,这就是有余数除法计算中特别要注意的。

解这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。

在有余数的除法中,要记住:(1)余数必须小于除数;(2)被除数=商×除数+余数。

二、精讲精练【例题1】 [ ]÷6=8……[ ],根据余数写出被除数最大是几?最小是几?【思路导航】除数是____,根据____________,余数可填_____________.根据____________,又已知商、除数、余数,可求出最大的被除数为6×8+5=53,最小的被除数为______________。

列式如下:________________________________________ 答:被除数最大是53,最小是______。

练习1:(1)下面题中被除数最大可填________,最小可填_______。

[ ]÷8=3……[ ](2)下面题中被除数最大可填________,最小可填_______。

[ ]÷4=7……[ ](3)下题中要使除数最小,被除数应为________。

[ ]÷[ ]=12 (4)【例题2】算式[ ]÷[ ]=8……[]中,被除数最小是几?【思路导航】题中只告诉我们商是8,要使被除数最小,那么只要除数和余数小就行。

余数最小为______,那么除数则为______。

根据这些,我们就可求出被除数最小为:8×______+______=_______。

练习2:(1)下面算式中,被除数最小是几?①[ ]÷[ ]=4……[]②[ ]÷[ ]=7……[]③[ ]÷[ ]=9……[](2)下面算式中商和余数相等,被除数最小是几?①[ ]÷[ ]=3……[]②[ ]÷[ ]=6……[](3)算式[ ]÷8=[ ]……[]中,商和余数都相等,那么被除数最大是几?【例题3】算式28÷[ ]=[ ]……4中,除数和商分别是______和______。

【思路导航】根据“被除数=商×除数+余数”,可以得知“商×除数=被除数-余数”,所以本题中商×除数=28-4=24。

这两个数可能是1和24,____和____,____和____,____和____,又因为余数为4,因此除数可以是24,12,8,6,商分别为____,____,____,____。

_________________________________________________________________ 答:除数和商分别是24,1;____,____;____,____;____,____。

练习3:(1)下面算式中,除数和商各是几?①22÷[ ]=[ ]......4 ②65÷[ ]=[ ] (2)③37÷[ ]=[ ]......7 ④48÷[ ]=[ ] (6)(2)149除以一个两位数,余数是5,请写出所有这样的两位数。

__________________________________________________________________________(3)算式[ ]÷4=[ ]……[ ]中,商和余数相等,被除数可以是哪些数?__________________________________________________________________________【例题4】算式[ ]÷7=[ ]……[ ]中,商和余数相等,被除数可以是哪些数?【思路导航】题目中告诉我们除数是7,商和余数相等,因为余数必须比除数小,所以余数和商可为1,2,3,4,5,6,这样被除数就可以求出来了。

7×1+1=8 7×2+2=16 7×3+3=247×4+4=32 7×5+5=40 7×6+6=48答:被除数可以是8,16,24,32,40,48。

练习4:(1) 下列算式中,商和余数相等,被除数可以是哪些数?①[ ]÷6=[ ]……[ ] ②[ ]÷5=[ ]……[ ]③[ ]÷4=[ ]……[ ] ④[ ]÷3=[ ]……[ ](2)一个三位数除以15,商和余数相等,请你写出五个这样的除法算式。

(3) 算式[ ]÷9=[ ]……[ ]中,商和余数相等,被除数最大是____。

【例题5】算式[ ]÷[ ]=[ ]……4中,除数和商相等,被除数最小是几?【思路导航】题目中告诉我们余数是4,除数和商相等,因为余数必须比除数小,所以除数必须比4大,但其中要求最小的被除数,因而除数应填_______,商也是______。

由算式____________________,所以被除数最小是__________。

练习5:下面算式中,除数和商相等,被除数最小是几?(1)[ ]÷[ ]=[ ]......6 (2)[ ]÷[ ]=[ ] (8)(3)[ ]÷[ ]=[ ]......3 (4)[ ]÷[ ]=[ ] (9)(5)[ ]÷[ ]=[ ] (7)第3讲配对求和一、知识要点被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。

小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。

数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1二、精讲精练【例题1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()练习1:速算。

(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100(3) 21+22+23+24+……+100【例题2】计算。

(1) 21+23+25+27+29+31 (2) 312+315+318+321+324练习2:计算。

(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?练习3:(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?【例题4】计算992+993+994+995+996+997+998+999。

练习4:计算。

(1) 95+96+97+98+99 (2) 2006+2007+2008+2009(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81练习5:计算。

(1) 1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1(2) 1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19(3) 2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16第4讲加减巧算一、知识要点在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。

相关文档
最新文档