专题07 函数的零点问题(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 专题07 函数的零点问题
一、题型选讲
题型一 、运用函数图像判断函数零点个数
可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上
⎩
⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 【答案】: 5
【解析】:因为f(x +4)=f(x),可得f(x)是周期为4的奇函数,先画出函
数f(x)在区间[2,4)上的图像,根据
奇函数和周期为4,可以画出f(x)在R 上的图像,由y =f (x )-log 5| x |=0,得f (x )=log 5| x |,分别画出y =f (x )和y =log 5|x |的图像,如下图,由f (5)=f (1)=1,而log 55=1,f (-3)=f (1)=1,log 5|-3|<1,而f (-7)=f (1)=1,而log 5|-7|=log 57>1,可以得到两个图像有5个交点,所以零点的个数为5.
解后反思 本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点.
例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧
12x -1,x <1,ln x x 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________. 【答案】:. 4 【解析】设g (x )=ln x x 2,则由g ′(x )=x -ln x ·2x x 4=1-2ln x x 3=0,可得x =e ,所以g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,当x →+∞时,g (x )→0,故g (x )在(1,+∞)上的最大值为g (e)=12e >18.在同一平面直角坐标系中画出y =|f (x )|与y =18的图像可得,交点有4个,即原函数零点有4个.