济宁市2018届高三5月份第二次模拟考试试题(数学理)
山东省济宁市2018届高考第二次模拟考理科数学试题及答案
2018年济宁市高三模拟考试理科数学试题2018.05本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.设复数z 满足1z i z=+(i 为虚数单位),则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.设集合(){}1ln 2,2,2x A x y x B x A B ⎧⎫⎪⎪⎛⎫==-=<⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭则A .{}1x x <-B .{}2x x <C .{}12x x -<<D .{}2x x -1<≤3.设R θ∈,则“sin θ=是“tan 1θ=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.从1,2,3,4,5这5个数中任取2个数,则所取2个数之积能被3整除的概率是A .25B .310C .35D .455.已知,αβ是平面,m ,n 是直线,下列命题中不正确的是A .,,//m m αβαβ⊥⊥若则B .//,,m n m n αα⊥⊥若则C .//,,//m n m n ααβ⋂=若则D .,,m m αβαβ⊥⊂⊥若则6.已知双曲线2221y x b -=的虚轴长是实轴长的2倍,则其顶点到渐近线的距离为A 35B 25C 5D 57.()61211xx ⎛⎫+- ⎪⎝⎭的展开式中的常数项是A .11-B .5-C .7D .138.九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.要将九连环中的九个圆环全部从框架上解下或套上,需要遵循一定的规律.解下或者套上所需要的最少移动次数可由右图所示的程序框图得到.执行该程序框图,输出的结果为A .170B .256C .341D .6829.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象A .关于点,012π⎛⎫ ⎪⎝⎭对称B .关于点,012π⎛⎫- ⎪⎝⎭对称C .关于直线12x π=对称D .关于直线12x π=-对称10.某组合体的三视图如图所示(其中侧视图中的弧线为半圆),则该几何体的体积为A .22π+B .43π+C .4433π+D .423π+11.设非零向量,,a b c 满足0,2a b c a ++==,,120b c <>= ,则b 的最大值为A .1B 23C 43D .212.已知(),,122x y f x ππ⎛⎫∈-=- ⎪⎝⎭为奇函数,()()tan 0f x f x x '+>,则不等式()cos f x x >的解A .,02π⎛⎫- ⎪⎝⎭B .,04π⎛⎫- ⎪⎝⎭C .0,4π⎛⎫ ⎪⎝⎭D .0,2π⎛⎫ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)13.已知变量,x y 满足约束条件10310,2310x y x y z x y x y +-≤⎧⎪-+≥=-⎨⎪--≤⎩则的最大值为▲.14.2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是 ▲ .15.如图,在平面四边形ABCD 中,45,60A B ∠=∠= ,150,D AB∠=,则四边形ABCD 的面积为 ▲ .16.抛物线()220y px p =>的焦点为F ,A ,B 为抛物线上的两点,以AB 为直径的圆过点F ,过AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN MF的最大值为 ▲ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知数列{}n a 满足2113,44412n n n a a a a +==+-.(I)证明:1lg 2n a ⎧⎫⎛⎫+⎨⎬ ⎪⎝⎭⎩⎭是等比数列;(II)记12111222n n R a a a ⎛⎫⎛⎫⎛⎫=+⋅+⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求n R .18. (本小题满分12分)如图,四边形ABCD 是矩形,沿对角线AC 将ACD ∆折起,使得点D 在平面ABC 上的射影恰好落在边AB 上.(I )求证:平面ACD ⊥平面BCD ;(II )若直线AB 与平面BCD 所成角为30 时,求二面角D AC B --的余弦值.19.(本小题满分12分)某单位计划组织200名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为1%,且每个人血检是否呈阳性相互独立.(I)根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机分成20组,每组10人,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.设进行化验的总次数为X ,试求X 的数学期望;(Ⅱ)若该疾病的患病率为0.5%,且患该疾病者血检呈阳性的概率为99%,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:0.9910=0.904,0.9911=0.895,0.9912=0.886.)20.(本小题满分12分)已知椭圆()222210x y C a b a b +=>>:的右焦点为F x 轴的直线交椭圆于A ,B 两点,且AF BF +=(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得EM EN ⋅ 是定值?若存在,请求出该点的坐标;若不存在,请说明理由.21.(本小题满分12分)已知函数()2ln f x x t x =-+.(I)讨论()f x 的单调性;(Ⅱ)当1t =时,若对任意(]1,0m ∈-,关于x 的方程()(]003f x ax m +-=在,内总有两个不同的根,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xoy 中,曲线121cos :4sin x C x y C y αα=+⎧+=⎨=⎩,曲线:(α为参数),过坐标原点O 的直线l 交曲线1C 于点A ,交曲线2C 于点B(点B 不是原点).(I)以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,写出曲线1C 和2C 的极坐标方程;(Ⅱ)求OB OA的最大值.23.[选修4—5:不等式选讲](本小题满分10分)设函数()21f x x =-.(I)设()()15f x f x ++<的解集为A ,求集合A ;(Ⅱ)已知m 为(I)中集合A 中的最大整数,且a b c m ++=(其中,,a b c 为正实数),求证:1118a b c a b c---⋅⋅≥.。
山东省济宁市2018届高考第二次模拟考理科数学试题有答案
2018年济宁市高三模拟考试理科数学试题2018.05本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的. 1.设复数z 满足1zi z=+(i 为虚数单位),则z 在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.设集合(){}1ln 2,2,2xA x y xB x A B ⎧⎫⎪⎪⎛⎫==-=<⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭则A .{}1x x <-B .{}2x x <C .{}12x x -<<D .{}2x x -1<≤3.设R θ∈,则“2sin θ=tan 1θ=”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.从1,2,3,4,5这5个数中任取2个数,则所取2个数之积能被3整除的概率是 A .25B .310C .35D .455.已知,αβ是平面,m ,n 是直线,下列命题中不正确的是 A .,,//m m αβαβ⊥⊥若则B .//,,m n m n αα⊥⊥若则C .//,,//m n m n ααβ⋂=若则D .,,m m αβαβ⊥⊂⊥若则6.已知双曲线2221y x b-=的虚轴长是实轴长的2倍,则其顶点到渐近线的距离为A .5B .255C .55D .5107.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是A .11-B .5-C .7D .138.九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.要将九连环中的九个圆环全部从框架上解下或套上,需要遵循一定的规律.解下或者套上所需要的最少移动次数可由右图所示的程序框图得到.执行该程序框图,输出的结果为 A .170 B .256 C .341 D .6829.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭,其图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象 A .关于点,012π⎛⎫⎪⎝⎭对称B .关于点,012π⎛⎫-⎪⎝⎭对称 C .关于直线12x π=对称D .关于直线12x π=-对称10.某组合体的三视图如图所示(其中侧视图中的弧线为半圆),则该几何体的体积为 A .22π+B .43π+C .4433π+D .423π+11.设非零向量,,a b c 满足0,2a b c a ++==,,120b c <>=,则b 的最大值为 A .1B 23C 43D .212.已知(),,122x y f x ππ⎛⎫∈-=- ⎪⎝⎭为奇函数,()()tan 0f x f x x '+>,则不等式()cos f x x >的解 A .,02π⎛⎫- ⎪⎝⎭B .,04π⎛⎫-⎪⎝⎭C .0,4π⎛⎫⎪⎝⎭D .0,2π⎛⎫⎪⎝⎭第Ⅱ卷(非选择题 共90分)13.已知变量,x y 满足约束条件10310,2310x y x y z x y x y +-≤⎧⎪-+≥=-⎨⎪--≤⎩则的最大值为▲ .14.2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是 ▲ .15.如图,在平面四边形ABCD中,45,6A B ∠=∠=,150,24D AB BC ∠===,则四边形ABCD 的面积为 ▲ .16.抛物线()220y px p =>的焦点为F ,A ,B 为抛物线上的两点,以AB 为直径的圆过点F ,过AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MNMF的最大值为 ▲ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 已知数列{}n a 满足2113,44412n n n a a a a +==+-. (I)证明:1lg 2n a ⎧⎫⎛⎫+⎨⎬ ⎪⎝⎭⎩⎭是等比数列; (II)记12111222n n R a a a ⎛⎫⎛⎫⎛⎫=+⋅+⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求n R .18. (本小题满分12分)如图,四边形ABCD 是矩形,沿对角线AC 将ACD ∆折起,使得点D在平面ABC 上的射影恰好落在边AB 上.(I )求证:平面ACD ⊥平面BCD ;(II )若直线AB 与平面BCD 所成角为30时,求二面角D AC B --的余弦值.19.(本小题满分12分)某单位计划组织200名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为1%,且每个人血检是否呈阳性相互独立.(I)根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机分成20组,每组10人,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.设进行化验的总次数为X ,试求X 的数学期望;(Ⅱ)若该疾病的患病率为0.5%,且患该疾病者血检呈阳性的概率为99%,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:0.9910=0.904,0.9911=0.895, 0.9912=0.886.)20.(本小题满分12分)已知椭圆()222210x y C a b a b +=>>:的右焦点为F 6x 轴的直线交椭圆于A ,B 两点,且26AF BF +=(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得EM EN ⋅是定值?若存在,请求出该点的坐标;若不存在,请说明理由.21.(本小题满分12分) 已知函数()2ln f x x t x =-+.(I)讨论()f x 的单调性;(Ⅱ)当1t =时,若对任意(]1,0m ∈-,关于x 的方程()(]003f x ax m +-=在,内总有两个不同的根,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xoy 中,曲线121cos :4sin x C x y C y αα=+⎧+=⎨=⎩,曲线:(α为参数),过坐标原点O 的直线l交曲线1C 于点A ,交曲线2C 于点B(点B 不是原点).(I)以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,写出曲线1C 和2C 的极坐标方程; (Ⅱ)求OBOA的最大值.23.[选修4—5:不等式选讲](本小题满分10分) 设函数()21f x x =-.(I)设()()15f x f x ++<的解集为A ,求集合A ;(Ⅱ)已知m 为(I)中集合A 中的最大整数,且a b c m ++=(其中,,a b c 为正实数), 求证:1118a b ca b c---⋅⋅≥.11。
2018年高考数学命题角度5.2直线与椭圆位置关系大题狂练理
命题角度5.2 :直线与椭圆位置关系1.已知椭圆 的两个焦点为且经过点 ⑴求椭圆•的方程; ⑵过 的直线与椭圆-交于| ■两点(点」位于 轴上方),若人 ;,且—■:: ,求直线的斜率的取值范围.£十几1 並【答案】(1);( 2).【解析】试题分析:(2)联立直线与椭圆的方程,结合韦达定理得到关于实数 £斜率 的取值范围是k=.试题解析;⑴由椭圆定义2。
= |阴| + |跖| = 4,有a = 2f c =从而W +-w 3(y =+1) ⑵设直线=比& + i)(A >0),有|兰+邑=]设百0") 玖%y)有% = -久仏y 1y 3=^(y 1+y 3)S 讐二戏戶人#一ST2 <A<3f注洁訂》解得0C 冬乎.3^4Jt==a, A = +y,由已矢皿=¥・2.已知椭圆C 的中心在原点,焦点在 x 轴上,离心率e 2 •以两个焦点和短轴的两个端点2为顶点的四边形的周长为 8,面积为2^3 •(I)求椭圆C 的方程;(n)若点P X o ,y 。
为椭圆C 上一点,直线I 的方程为3x °x • 4y °y -12=0,求证:直线I 与椭圆C 有且只有一个交点.(1)由题意可得 , i — -- + —,—则椭圆方程为k 的不等式,求解不等式可得直线的J 整理得任+斗a+^fc 2 ■【来源】【全国市级联考】广西桂林 ,百色,梧州,北海,崇左五市2017届高三5月联合模拟理 科数学试题2 2【答案】(I )- y 1 ;( II )详见解析•4 3【解析】试题分析:2 2(1) 利用题意求得b 「3, c =1,椭圆C 的方程为 —1 .4 3(2) 首先讨论当y 。
=0的情况,否则联立直线与椭圆的方程, 结合直线的特点整理可得直线 I 与 椭圆C 有且只有一个交点.试题解析:(I >依题意,设椭圆c 的方程为4 + = 焦距为丸,由题设条件知,4^=8, “2,2x 丄x 2c xb= 2-^5 , b 1= / = 4』所以“省,c = b 或— C = j3 (经检验不合题意舍去), 故椭圆。
2018届高三数学一模考试质量分析
2018届高三数学一模考试质量分析一、试题总体评价:注重基础、突出能力、难度稍大本试题紧扣教材、《考试大纲》和《考试说明》,在注重基础的同时更加突出了对考生(运算、迁移、应变等)能力的考查,符合当前高考命题基本原则与发展趋势。
试题比较全面地考查了学生通过一轮复习后对基础知识与基本能力的掌握情况,充分体现了既注重基础又突出能力的特点。
试题在全面覆盖了高中数学绝大多数高考考点的同时,对高中数学主干知识进行了重点考查,但由于我校一轮复习没有结束,而本试题有37分的试题学生没有复习到,对他们来说难度就大,且大部分题目来源于各省高考试题,难度较大。
二、学生答题情况分析:基础不牢,能力不强, 缺乏策略1、学生基础知识不牢,解题能力较差:如试卷的第1题、第5题、第6题、第8题、第13题、第17题都是一些常规题,解题思路存在一定问题。
2、运算能力不强:具体表现在试卷第15、20题的运算,尤其是解题思路和方法对的学生由于计算复杂而没有结果,很让人遗憾。
3、审题不清:如试卷第1题、第12题均存在审题不清的问题。
4、推理归纳能力和数形结合解决问题能力差:如试卷第11、12、13、16、19、22题等题尤为明显。
5、解答策略缺乏,抓分意识不强:根据学生考卷,考后教师与部分学生交谈,了解到部分学生心理素质较差,情绪不够稳定,考试过程中有些心慌意乱,碰到某些棘手题乱了阵脚,在一些选择题,填空题上花费了较长时间,致使后面某些有能力做出的解答题因无时间而白白丢掉。
三、下阶段的教学措施1、要认真回顾和反思“一轮”复习中各个环节的得失,认真分析和总结“一模”测试中学生存在的不足,科学规划和严密组织后阶段的各项备考工作。
⑴高三第一轮复习将于3月底结束,这轮复习主要是:梳理知识、构建网络、训练技能和兼顾能力。
根据学生实际与教学要求精心设计练习引领学生主动参与知识构建和技能训练,并把课前、课堂和课后进行有机整合,使学生对数学的基本知识、基本技能和重要的数学思想方法能经历恢复记忆、加深理解到巩固熟练的过程。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
山东省济宁市2018届高三第一次模拟考试数学理试题 含
2018年济宁市高三模拟考试数学(理工类)试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}11M x x =-≤≤,{}2log 1N x x =<,则M N = A.{10}x x -≤< B .{01}x x <≤ C .{12}x x ≤< D .{12}x x -≤<2.若复数20182(1i)i z =-(i 为虚数单位),则z 的共轭复数z = A .1i + B .i C .12i - D.12i 3.设变量x ,y 满足约束条件02390210x x y x y ≥⎧⎪+-≥⎨⎪--≤⎩,则目标函数2z x y =+的取值范围是A .[6,)+∞B .[5,)+∞C .[0,6]D .[0,5]4.已知命题p :存在实数α,β,sin()sin sin αβαβ+=+;命题q :2log 2log 2a a +≥(2a >且1a ≠).则下列命题为真命题的是A .p q ∨B .p q ∧C.()p q ⌝∧ D .()p q ⌝∨5.执行下列程序框图,若输入的n 等于7,则输出的结果是A .2B .13 C.12- D .3- 6.将函数()2sin()13f x x π=--的图象向右平移3π个单位,再把所有的点的横坐标缩短到原来的12倍(纵坐标不变),得到函数()y g x =的图象,则g()y x =的图象的一个对称中心为A .(,0)3πB .(,0)12π C.(,1)3π- D .(,1)12π- 7.如图所示,圆柱形玻璃杯中的水液面呈椭圆形状,则该椭圆的离心率为A .12 C.2D 8.已知函数()f x 是(,)-∞+∞上的奇函数,且()f x 的图象关于1x =对称,当[0,1]x ∈时,()21x f x =-,则(2017)(2018)f f +的值为A .2-B .1- C.0 D .19.已知O 是ABC ∆的外心,4AB =,2AC =,则()AO AB AC ⋅+=A .10B .9 C.8 D .610.圆周率是圆的周长与直径的比值,一般用希腊字母π表示.我们可以通过设计下面的实验来估计π的值:从区间[0,1]随机抽取200个实数对(,)x y ,其中两数能与1构成钝角三角形三边的数对(,)x y 共有56个.则用随机模拟的方法估计π的近似值为 A .227 B .257 C.7225 D .782511.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为A .8πB .16πC.32πD .64π12.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos cos 3a Bb Ac -=,则tan()A B -的最大值为A .5B .5 C.3D 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.双曲线2212x y -=的渐近线方程为 . 14.观察下列各式:3211=332113+=33321236++=⋅⋅⋅⋅⋅⋅照此规律,第n 个等式可为 .15.在24(23)x x --的展开式中,含有2x 项的系数为 .(用数字作答)16.如图所示,已知Rt ABC ∆中,AB BC ⊥,D 是线段AB 上的一点,满足2AD CD ==,则ABC ∆面积的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足123111223n b b b b n n+++⋅⋅⋅+=*()n N ∈ (1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2n S .18. (本小题满分12分)如图,在以A ,B ,C ,D ,E 为顶点的多面体中,90ACB ︒∠=,面ACDE 为直角梯形,//DE AC ,90ACD ︒∠=,23AC DE ==,2BC =,1DC =,二面角B AC E --的大小为60︒.(1)求证:BD ⊥平面ACDE ;(2)求平面ABE 与平面BCD 所成二面角(锐角)的大小;19. (本小题满分12分)为缓解某地区的用电问题,计划在该地区水库建一座至多安装4台发电机的水电站.为此搜集并整理了过去50年的水文数据,得如下表:将年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)在以上四段的频率作为相应段的概率,并假设各年得年入流量相互独立.(1)求在未来3年中,至多1年的年入流量不低于120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 的限制,并有如下关系:已知某台发电机运行,则该台发电机年利润为5000万元;某台发电机未运行,则该台发电机年亏损1500万元,若水电站计划在该水库安装2台或3台发电机,你认为应安装2台还是3台发电机?请说明理由.20. (本小题满分12分)已知抛物线E :22x py =的(2)p >焦点为F ,点M 是直线y x =与抛物线E 在第一象限内的交点,且5MF =.(1)求抛物线E 的方程;(2)不过原点的直线l 与抛物线E 相交于两点A ,B ,与y 轴相交于点Q ,过点A ,B 分别作抛物线E 的切线,与x 轴分别相交于两点C ,D .判断直线QC 与直线BD 是否平行?直线QC 与直线QD 是否垂直?并说明理由.21. (本小题满分12分) 已知函数()ln 2a f x x x x=++()a R ∈. (1)求函数()f x 的单调区间;(2)若函数2g()()(2)2a x xf x x x =-+-在其定义域内有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312x x e ⋅>(e 为自然对数的底数).(二)选考题:共10分。
2018届高考数学(理)二轮专题复习:规范练5-2-4 含答案
大题规范练(四)(满分70分,押题冲刺,70分钟拿到主观题高分)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本小题满分12分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积S 满足S =12[c 2-(a -b )2].(1)求cos C ;(2)若c =4,且2sin A cos C =sin B ,求b 的长.解:(1)由S =12[c 2-(a -b )2]=12[-(a 2+b 2-c 2)+2ab ]=-ab cos C +ab ,又S =12ab sin C ,于是12ab sin C =-ab cos C +ab ,即sin C =2(1-cos C ),结合sin 2C +cos 2C =1,可得5cos 2C -8cos C +3=0,解得cos C =35或cos C =1(舍去),故cos C =35.(2)由2sin A cos C =sin B 结合正、余弦定理,可得2·a ·a 2+b 2-c 22ab=b ,即(a -c )(a +c )=0,解得a =c ,又c =4,所以a =4,由c 2=a 2+b 2-2ab cos C ,得42=42+b 2-2×4×35b ,解得b =245.2.(本小题满分12分)如图,在三棱柱ABC A 1B 1C 1中,B 1B =B 1A =AB =BC ,∠B 1BC =90°,D 为AC 的中点,AB ⊥B 1D .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)求直线B 1D 与平面ACC 1A 1所成角的正弦值. 解:(1)取AB 的中点O ,连接OD ,OB 1. 因为B 1B =B 1A ,所以OB 1⊥AB .又AB ⊥B 1D ,OB 1∩B 1D =B 1,所以AB ⊥平面B 1OD , 因为OD ⊂平面B 1OD ,所以AB ⊥OD .由已知,BC ⊥BB 1,又OD ∥BC ,所以OD ⊥BB 1,因为AB ∩BB 1=B ,所以OD ⊥平面ABB 1A 1. 又OD ⊂平面ABC ,所以平面ABC ⊥平面ABB 1A 1.(2)由(1)知,OB ,OD ,OB 1两两垂直,以O 为坐标原点,OB →的方向为x 轴的正方向,|OB →|为单位长度1,建立如图所示的空间直角坐标系O xyz .由题设知B 1(0,0,3),D (0,1,0),A (-1,0,0),C (1,2,0),C 1(0,2,3). 则B 1D →=(0,1,-3),AC →=(2,2,0),CC 1→=(-1,0,3).设平面ACC 1A 1的法向量为m =(x ,y ,z ),则m ·AC →=0,m ·CC 1→=0,即x +y =0,-x +3z =0,可取m =(3,-3,1).设直线B 1D 与平面ACC 1A 1所成角为θ,故cos 〈B 1D →,m 〉=B 1D →·m|B 1D →|·|m |=-217.则sin θ=217. ∴直线B 1D 与平面ACC 1A 1所成角的正弦值为217. 3.(本小题满分12分)2017年1月6日,国务院法制办公布了《未成年人网络保护条例(送审稿)》,条例禁止未成年人在每日的0:00至8:00期间打网游,强化网上个人信息保护,对未成年人实施网络欺凌,构成犯罪的,将被依法追究刑事责任.为了解居民对实施此条例的意见,某调查机构从某社区内年龄(单位:岁)在[25,55]内的10 000名居民中随机抽取了100人,获得的所有样本数据按照年龄区间[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]进行分组,同时对这100人的意见情况进行统计得到频率分布表.(1)完成抽取的这100人的频率分布直方图,并估计这100人的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,根据样本估计总体的思想,若从这10 000名居民中任选4人进行座谈,求至多有1人的年龄在[50,55]内的概率;(3)若按分层抽样的方法从年龄在区间[25,40),[40,45)内的居民中共抽取10人,再从这10人中随机抽取3人进行座谈,记抽取的3人的年龄在[40,45)内的人数为X ,求X 的分布列与数学期望.分组 持赞同意见的人数占本组的频率[25,30) 4 0.80 [30,35)80.80[35,40) 12 0.80 [40,45) 19 0.95 [45,50) 24 0.80 [50,55]170.85解:(1)根据题意可得年龄在[25,30)内的人数为40.80=5,其频率为5100=0.05;年龄在[30,35)内的人数为80.80=10,其频率为10100=0.1;年龄在[35,40)内的人数为120.80=15,其频率为15100=0.15;年龄在[40,45)内的人数为190.95=20,其频率为20100=0.2;年龄在[45,50)内的人数为240.80=30,其频率为30100=0.3;年龄在[50,55]内的人数为170.85=20,其频率为20100=0.2.作出频率分布直方图如图所示.根据频率分布直方图估计这100人的平均年龄为25+302×0.05+30+352×0.1+35+402×0.15+40+452×0.2+45+502×0.3+50+552×0.2=1.375+3.25+5.625+8.5+14.25+10.5=43.5.(2)由(1)知随机抽取的这100人中,年龄在[25,50)内的人数为80,年龄在[50,55]内的人数为20,任选1人,其年龄恰在[50,55]内的频率为20100=15,将频率视为概率,故从这10 000名居民中任选1人,其年龄恰在[50,55]内的概率为15,设“从这10 000名居民中任选4人进行座谈,至多有1人的年龄在[50,55]内”为事件A ,则P (A )=C 04×⎝ ⎛⎭⎪⎫1-154×⎝ ⎛⎭⎪⎫150+C 14×⎝ ⎛⎭⎪⎫1-153×15=512625.(3)由(1)得年龄在[25,40)内的人数为30,年龄在[40,45)内的人数为20,则分层抽样的抽样比为30∶20=3∶2,故从年龄在[25,40)内的居民中抽取6人,从年龄在[40,45)内的居民中抽取4人,则抽取的3人的年龄在[40,45)内的人数X 的所有可能取值为0,1,2,3,P (X =0)=C 36C 04C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 06C 34C 310=130.故X 的分布列为X 0 1 2 3 P16 12310130E (X )=0×16+1×12+2×10+3×30=5.4.(本小题满分12分)设椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点为A ,B ,C 是椭圆上关于原点对称的两点(B ,C 均不在x 轴上),线段AC 的中点为D ,且B ,F ,D 三点共线.(1)求椭圆E 的离心率;(2)设F (1,0),过F 的直线l 交E 于M ,N 两点,直线MA ,NA 分别与直线x =9交于P ,Q 两点.证明:以PQ 为直径的圆过点F .解:(1)解法一:由已知A (a,0),F (c,0),设B (x 0,y 0),C (-x 0,-y 0),则D ⎝⎛⎭⎪⎫a -x 02,-y 02,∵B ,F ,D 三点共线,∴BF →∥BD →,又BF →=(c -x 0,-y 0),BD →=⎝ ⎛⎭⎪⎫a -3x 02,-3y 02,∴-32y 0(c -x 0)=-y 0·a -3x 02,∴a =3c ,从而e =13.解法二:设直线BF 交AC 于点D ,连接OD ,由题意知,OD 是△CAB 的中位线, ∴OD ═∥12AB ,∴AB →∥OD →, ∴△OFD ∽△AFB .∴ca -c =12,解得a =3c ,从而e =13. (2)证明:∵F 的坐标为(1,0), ∴c =1,从而a =3,∴b 2=8. ∴椭圆E 的方程为x 29+y 28=1.设直线l 的方程为x =ny +1,由⎩⎪⎨⎪⎧x =ny +1x 29+y28=1⇒(8n 2+9)y 2+16ny -64=0,∴y 1+y 2=-16n 8n 2+9,y 1y 2=-648n 2+9,其中M (ny 1+1,y 1),N (ny 2+1,y 2). ∴直线AM 的方程为y y 1=x -3ny 1-2,∴P ⎝⎛⎭⎪⎫9,6y 1ny 1-2,同理Q ⎝ ⎛⎭⎪⎫9,6y 2ny 2-2, 从而FP →·FQ →=⎝ ⎛⎭⎪⎫8,6y 1ny 1-2·⎝ ⎛⎭⎪⎫8,6y 2ny 2-2=64+36y 1y 2n 2y 1y 2-2n y 1+y 2+4=64+36×-648n 2+9-64n 28n 2+9+32n28n 2+9+4 =64+36×-6436=0.∴FP ⊥FQ ,即以PQ 为直径的圆恒过点F .5.(本小题满分12分)已知函数f (x )=12x 2-x +a ln x (a >0).(1)若a =1,求f (x )的图象在(1,f (1))处的切线方程; (2)讨论f (x )的单调性;(3)若f (x )存在两个极值点x 1,x 2,求证:f (x 1)+f (x 2)>-3-2ln 24.解:(1)a =1时,f (x )=12x 2-x +ln x ,f ′(x )=x -1+1x ,f ′(1)=1,f (1)=-12,∴y -⎝ ⎛⎭⎪⎫-12=x -1,即y =x -32.∴f (x )的图象在(1,f (1))处的切线方程为2x -2y -3=0.(2)f ′(x )=x -1+a x =x 2-x +ax(a >0).①若a ≥14,x 2-x +a ≥0,f ′(x )≥0,∴f (x )在(0,+∞)上单调递增.②若0<a <14,由x 2-x +a >0得0<x <1-1-4a 2或x >1+1-4a 2;由x 2-x +a <0得1-1-4a 2<x <1+1-4a 2. ∴f (x )在⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减,在⎝ ⎛⎭⎪⎫0,1-1-4a 2和⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增.综上,当a ≥14时,f (x )在(0,+∞)上单调递增;当0<a <14时,f (x )在⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减,在⎝ ⎛⎭⎪⎫0,1-1-4a 2和⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增.(3)由(2)知0<a <14时,f (x )存在两个极值点x 1,x 2,且x 1,x 2是方程x 2-x +a =0的两个根,∴x 1+x 2=1,x 1·x 2=a .∴f (x 1)+f (x 2)=12x 21-x 1+a ln x 1+12x 22-x 2+a ln x 2=12(x 1+x 2)2-x 1·x 2-(x 1+x 2)+a ln(x 1·x 2)=12-a -1+a ln a =a ln a -a -12.令g (x )=x ln x -x -12⎝⎛⎭⎪⎫0<x <14,则g ′(x )=ln x <0.∴g (x )在⎝ ⎛⎭⎪⎫0,14上单调递减,∴g (x )>g ⎝ ⎛⎭⎪⎫14=-3-2ln 24.∴f (x 1)+f (x 2)>-3-2ln 24.请考生在第6、7题中任选一题作答,如果多做,则按所做的第一题计分. 6.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C的参数方程为⎩⎪⎨⎪⎧x =2cos φy =2+2sin φ(φ为参数).以O 为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C 的普通方程;(2)直线l 的极坐标方程是2ρsin ⎝ ⎛⎭⎪⎫θ+π6=53,射线OM :θ=π6与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)因为圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos φy =2+2sin φ(φ为参数),所以圆心C 的坐标为(0,2),半径为2,圆C 的普通方程为x 2+(y -2)2=4.(2)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4,得圆C 的极坐标方程为ρ=4sin θ.设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ=4sin θθ=π6,解得ρ1=2,θ1=π6.设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧2ρsin ⎝⎛⎭⎪⎫θ+π6=53θ=π6,解得ρ2=5,θ2=π6.所以|PQ |=3.7.(本小题满分10分)选修4-5:不等式选讲 已知f (x )=|2x -1|-|x +1|.(1)将f (x )的解析式写成分段函数的形式,并作出其图象;(2)若a +b =1,对∀a ,b ∈(0,+∞),1a +4b≥3f (x )恒成立,求x 的取值范围.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧-x +2,x <-1-3x ,-1≤x <12,x -2,x ≥12作函数f (x )的图象如图所示.(2)∵a,b∈(0,+∞),且a+b=1,∴1a+4b=⎝⎛⎭⎪⎫1a+4b(a+b)=5+⎝⎛⎭⎪⎫ba+4ab≥5+2ba·4ab=9,当且仅当ba=4ab,即a=13,b=23时等号成立.∴1a+4b≥3(|2x-1|-|x+1|)恒成立,∴|2x-1|-|x+1|≤3,结合图象知-1≤x≤5.∴x的取值范围是[-1,5].。
2018高考数学(理科)模拟考试题一含答案及解析
2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B. 5 C.4 D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i, 其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B. 2 C. 3 D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2= 3.故选C.图D1884.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π24.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.5.设x ∈R ,[x ]表示不超过x 的最大整数. 若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立,则正整数n 的最大值是( )A .3B .4C .5D .65.B 解析:因为[x ]表示不超过x 的最大整数.由[t ]=1,得1≤t <2,由[t 2]=2,得2≤t 2<3.由[t 3]=3,得3≤t 3<4.由[t 4]=4,得4≤t 4<5.所以2≤t 2< 5.所以6≤t 5<4 5.由[t 5]=5,得5≤t 5<6,与6≤t 5<4 5矛盾,故正整数n 的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a 值为1,则输出的k 值为( )图M1-2A .1B .2C .3D .46.B 解析:输入a =1,则k =0,b =1;进入循环体,a =-12,否,k =1,a =-2,否,k =2,a =1,此时a =b =1,输出k ,则k =2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m +n 的值是( )图M1-3A .10B .11C .12D .137.C 解析:由题意,得78+88+84+86+92+90+m +957=88,n =9.所以m +n =12.故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16C .17万元 D .18万元8.D 解析:设该企业每天生产甲、乙两种产品分别为x 吨、y 吨,则利润z =3x +4y .由题意可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0.其表示如图D189阴影部分区域:图D189当直线3x +4y -z =0过点A (2,3)时,z 取得最大值,所以z max =3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个9.C 解析:由题意,必有a 1=0,a 8=1,则具体的排法列表如下:10.(2016年天津)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎝⎛⎦⎤0,18B.⎝⎛⎦⎤0,14∪⎣⎡⎭⎫58,1 C.⎝⎛⎦⎤0,58 D.⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58 10.D 解析:f (x )=1-cos ωx 2+sin ωx 2-12=22sin ⎝⎛⎭⎫ωx -π4,f (x )=0⇒sin ⎝⎛⎭⎫ωx -π4=0, 所以x =k π+π4ω(π,2π),(k ∈Z ).因此ω⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,54∪⎝⎛⎭⎫98,94∪…=⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,+∞⇒ω∈⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58.故选D.11.四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为243π16的同一球面上,则P A =( )A .3 B.72C .2 3 D.9211.B 解析:如图D190,连接AC ,BD 交于点E ,取PC 的中点O ,连接OE ,则OE∥P A ,所以OE ⊥底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O 为球心,12PC =12P A 2+AC 2=12P A 2+8,所以由球的体积可得43π⎝⎛⎭⎫12P A 2+83=243π16,解得P A =72.故选B.图D19012.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若OA →·OB →=6(O 为坐标原点),则△ABO 与△AOF 面积之和的最小值为( )A .4 B.3 132 C.17 24D.1012.B 解析:设直线AB 的方程为x =ty +m ,点A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m,0),将直线方程与抛物线方程联立,可得y 2-ty -m =0,根据韦达定理有y 1·y 2=-m ,因为OA →·OB →=6,所以x 1·x 2+y 1·y 2=6,从而(y 1·y 2)2+y 1·y 2-6=0,因为点A ,B 位于x 轴的两侧,所以y 1·y 2=-3,故m =3,不妨令点A 在x 轴上方,则y 1>0,又F ⎝⎛⎭⎫14,0,所以S △ABO +S △AFO =12×3×(y 1-y 2)+12×14y 1=138y 1+92y 1≥2138·y 1·92·1y 1=3132,当且仅当13y 18=92y 1,即y 1=6 1313时取等号,故其最小值为3 132.故选B.第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则c =m a +b =(m +4,2m +2),|a |=5,|b |=2 5,a ·c =5m +8,b ·c =8m +20.∵c 与a 的夹角等于c 与b 的夹角,∴c·a |c|·|a|=c·b |c|·|b|.∴5m +85=8m +202 5.解得m =2.14.设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.14.5 解析:根据双曲线的对称性,不妨设F (c,0),虚轴端点为(0,b ),从而可知点(-c,2b )在双曲线上,有c 2a 2-4b 2b2=1,则e 2=5,e = 5.15.(2016年北京)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式T r +1=C r 6·(-2)r x r 可知,x 2的系数为C 26(-2)2=60,故填60.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤12”发生的概率为________.16.13 解析:由正弦函数的图象与性质知,当x ∈⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π时,sin x ≤12. 所以所求概率为⎝⎛⎭⎫π6-0+⎝⎛⎭⎫π-5π6π=13.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.17.解:(1)设{a n }的公比为q ,{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10.消去d ,得q 4-2q 2-8=0.解得q =2,d =2.所以{a n }的通项公式为a n =2n -1,n ∈N *, {b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)2n -1,设{c n }的前n 项和为S n , 则S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以S n =(2n -3)·2n +3,n ∈N *.18.(本小题满分12分)(2014年大纲)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠P AB=90°,BC=CD=12AD,E为边AD的中点,异面直线P A与CD所成的角为90°.(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB ⊂平面PBE ,CM 平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 从而CD ⊥PD .所以∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.设BC =1,则在Rt △P AD 中,P A =AD =2.如图D191,过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 易知P A ⊥平面ABCD , 从而P A ⊥CE . 于是CE ⊥平面P AH . 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE . 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=3 22, 所以sin ∠APH =AH PH =13.图D191 图D192方法二,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.由P A ⊥AB ,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD → ,AP →的方向分别为x 轴,z 轴的正方向,建立如图D192所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2)设平面PCE 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0, 得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13 .所以直线P A 与平面PCE 所成角的正弦值为13.20.(本小题满分12分)(2016年新课标Ⅲ)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .20.解:(1)由题设,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减.(2)由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)由题设c >1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c . 令g ′(x )=0,解得x 0=lnc -1ln cln c .当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减. 由(2)知,1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以x ∈(0,1)时,1+(c -1)x >c x .21.(本小题满分12分)(2016年广东广州综合测试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2, 0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为椭圆的左焦点为F 1(-2,0),所以a 2-b 2=4.①因为点B (2,2)在椭圆C 上,所以4a 2+2b 2=1.②由①②,解得a =2 2,b =2.所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A ,则点A 的坐标为(-2 2,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于两点E ,F ,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).联立方程组⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2. 所以x 0=2 21+2k2,则y 0=2 2k 1+2k2.所以直线AE 的方程为y =k1+1+2k2(x +2 2).因为直线AE ,AF 分别与y 轴交于点M ,N ,令x =0得y = 2 2k1+1+2k2,即点M ⎝ ⎛⎭⎪⎫0, 2 2k 1+1+2k 2. 同理可得点N ⎝ ⎛⎭⎪⎫0, 2 2k 1-1+2k 2. 所以|MN |=⎪⎪⎪⎪⎪⎪2 2k 1+1+2k 2- 2 2k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k .则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+2 2k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A (2,π)、B ⎝⎛⎭⎫2,4π3. (1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.22.解:(1)将A 、B 化为直角坐标为A (2cos π,2sin π),B ⎝⎛⎭⎫2cos 4π3,2sin 4π3,即A ,B 的直角坐标分别为A (-2,0),B (-1,-3),k AB =-3-0-1+2=-3,∴直线AB 的方程为y -0=-3(x +2),即直线AB 的方程为3x +y +2 3=0.(2)设M (2cos θ,sin θ),它到直线AB 的距离d =|2 3cos θ+sin θ+2 3|2=|13sin (θ+φ)+2 3|2, ∴d max =13+2 32.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -2|-|2x -a |,a ∈R .(1)当a =3时,解不等式f (x )>0;(2)当x ∈(-∞,2)时,f (x )<0恒成立,求a 的取值范围.23.解:(1)当a =3时,f (x )>0,即|x -2|-|2x -3|>0,等价于⎩⎪⎨⎪⎧ x ≤32,x -1>0,或⎩⎪⎨⎪⎧ 32<x <2,-3x +5>0,或⎩⎪⎨⎪⎧x ≥2,-x +1>0. 解得1<x ≤32,或32<x <53. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <53. (2)f (x )=2-x -|2x -a |,所以f (x )<0可化为|2x -a |>2-x , ①即2x -a >2-x ,或2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a ,∵x ∈(-∞,2),∴a ≥4.。
2018滨州市二模数学(理)试题附答案
山东省滨州市2018年5月高三第二次模拟考试(数学理科试题)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则( )A. B. C. D.2.已知为虚数单位,则复数的共轭复数( )A. B. C. D.3.设随机变量,集合不存在零点,,则( )A. B. C. D.4.的内角的对边分别为,若,则角等于( )A. B. C. D.5.已知双曲线的中心在原点,焦点在轴上,焦距为4,焦点到一条渐近线的距离为,则该双曲线的方程为( )A. B. C. D.6.已知,则的值为( )A. B. C. D.7.的展开式中,的系数为( )A.92 B.216 C.292 D.3848.如图,函数的图象过和两点,将函数的图象向右平移1个单位长度后得到函数的图象,则函数的递增区间是( )A. B.C. D.9.德国著名数学家狄利克雷在数学领域成就显著,函数,称为狄利克雷函数,关于函数有以下四个命题:①函数是偶函数;②存在实数,使得;③是周期函数,且任意一个非零有理数都是它的一个周期;④存在三个点,使得为等腰直角三角形.其中真命题的个数是( )A.4 B.3 C. 2 D.110.已知抛物线的焦点为,为准线上一点,为轴上一点,为直角,若线段的中点在抛物线上,则的面积为( )A. B. C. D.11.已知函数,函数,若对任意,总存在,使,则实数的取值范围是( )A. B. C. D.12.定义在上的函数,满足,当时,,且当时,有,则( )A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量是单位向量,向量,若,则与的夹角为.14.变量满足约束条件,则的最大值为.15.某几何体挖去两个半球后的视图如图所示,若剩余几何体的体积为,则的值力__________.16.在凸四边形中,,则的最大值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列的前项和为.且.(1)求证:数列是等比数列;(2)若.求数列的前项和.18. 如图,四棱锥中,,,°,为等边三角形,是的中点.(1)求证:;(2)若直线与平面所成角的余弦值为,求二面角的余弦值.19. 某水果经销商销售水果甲,售价为每公斤10元,成本为每公斤7元销售宗旨是当天进货当天销售,如果当天卖不出去,未售出的全部水果销售给一果汁加工厂,平均每公斤损失4元.根据以往的销售情况,日等求量(单位:公斤)的分组区间为得到如图所示的水果甲的日需求量的频率分布直方图,将日需求量落人各组的频率视为概率,并假设每天的需求量相互独立.(1)求未来三天内,水果甲至少有2 天的日销售量不低于550公斤的概率;(2)在频率分布直方图中,用各组区间的中点值代表相应各组的值.(Ⅰ)写出日需求量的分布列;(Ⅱ)该经销商计划每日进货400公斤,或500 公厅,以每日利润的数学期望为决策依据,他应该选择每日进货400公厅,还是500公斤?并说明理由.20. 已知动点到定点和定直线的距离之比为,设动点的轨迹为曲线.(1)求曲线的方程;(2)过点作斜率不为0的任意一条直线与曲线交于两点,试问在轴上是否存在一个定点(与点不重合),使得.若存在,求出点的坐标,若不存在。
黄冈中学2018高三数学五月模拟试卷及答案(理科)
湖北省黄冈中学2019届高三五月模拟考试数学(理工类)本试卷共4页,共22题,其中15,16题为选考题。
满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的区域内。
答在试卷纸、草稿纸上无效.一、选择题:本小题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是A .1B .0C .-1D .1或-1 2.若(2)a i i b i -=-,其中,a b R ∈,i 是虚数单位,复数a bi +=A .12i +B .12i -+C .12i --D .12i -3.阅读右面的程序框图,则输出的S =A .14B .20C .30D .554.“lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的 A .充分非必要条件; B .必要非充分条件;C .充要条件;D .既非充分也非必要条件.5.下列函数中既是偶函数,又是区间[-1,0]上的减函数的是 A .x y cos = B .1--=x y C .xx y +-=22lnD .xx e e y -+= 6.已知二项式()2*12nx n N x ⎛⎫+∈ ⎪⎝⎭展开式中,前三项的二项式系数和是56,则展开式中的常数项为(第3题图)A .45256 B .47256 C .49256D .512567.已知两点(1,0),(1,3),A B O 为坐标原点,点C 在第二象限,且120=∠AOC ,设2,(),OC OA OB λλλ=-+∈R 则等于A .1-B .2C .1D .2-8.过抛物线x y 42=的焦点作一条直线与抛物线相交于B A ,两点,它们到直线2-=x 的距 离之和等于5,则这样的直线A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在9.某个体企业的一个车间有8名工人,以往每人年薪为1万元,从今年起,计划每人的年薪都比上一年增加20%,另外,每年新招3名工人,每名新工人的第一年的年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,如果将第n 年企业付给工人的工资总额y (万元)表示成n 的函数,则其表达式为A .y =(3n +5)1.2n +2.4B .y =8×1.2n +2.4nC .y =(3n +8)1.2n +2.4D .y =(3n +5)1.2n -1+2.410.如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为 A.π23B. π3C. π32 D. π2二、填空题:本小题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.函数1)(23++-=x x x x f 在点)2,1(处的切线与函数2)(x x g =围成的图形的面积等于 .12.平面直角坐标系中,圆O 方程为122=+y x ,直线x y 2=与圆O 交于B A ,两点,又知角α、β的始边是x 轴,终边分别为OA 和OB ,则()cos αβ+= .DCBA 'D CBA第10题13.已知点P 的坐标4(,)1x y x y y x x +≤⎧⎪≥⎨⎪≥⎩满足,过点P 的直线l 与圆22:14C x y +=相交于A 、B 两点,则AB 的最小值为 .14. 若实数a,b,c 满足222,2222a b a b a b c a b c ++++=++=,则c 的最大值是 . (二)选考题(请考生在第15、16两题中任选一题作答)15.如图,A ,B 是圆O 上的两点,且OA ⊥OB ,OA =2,C 为OA 的中点,连接BC 并延长交圆O 于点D ,则CD= .16.已知直线()142x t t R y t =+⎧∈⎨=-⎩与圆()2cos 2[0,2]2sin x y θθπθ=+⎧∈⎨=⎩相交于AB,则以AB为直径的圆的面积为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤。
山东省济南市2018届高三第二次模拟考试理数试题word含答案
山东省济南市2018届高三第二次模拟考试理数试题word含答案山东省济南市2018届高三第二次模拟(5月)考试理科数学参考公式:锥体的体积公式:V=1/3Sh,其中S为锥体的底面积,h为锥体的高。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
21.设全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分表示的集合为()小幅度改写:已知全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分为集合A和集合B的交集。
2.设复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是()小幅度改写:已知复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是z=-1+i。
3.已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα等于()小幅度改写:已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα=±3/5.4.已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为()小幅度改写:已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为x2/b2-y2/a2=1.5.某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
则中奖的概率为()小幅度改写:某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
山东省青岛市2018届高三5月第二次模拟考试数学(理)试卷
2018年青岛市高考模拟检测数学(理科)本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上3..考试结束后保留试卷方便讲解,只交答卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A=()(){}360x x x +-≥,B=124x x ⎧⎫≤⎨⎬⎩⎭,则()R C A B ⋂= A .(-3,6) B .[6,+∞) C .(-3,-2]D .(-∞,-3)U(6,+∞)2.在复平面内,复数4723iz i-=+ (i 是虚数单位),则z 的共轭复数z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其 大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A .215πB .320π C .2115π-D .3120π-4.在如图所示的框图中,若输出S=360,那么判断框中应填入的关于k 的判断条件是 A .k >2? B .k <2? C .k >3? D .k <3?5.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足645,3,a a a -成等差数列,则42S S = A .3 B .9 C .10D .136.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),则“a =0OA OB ⋅=”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知定义域为R 的奇函数()f x ,当0x >时,满足()()()23log 72,02,33,2x x f x f x x ⎧--<≤⎪⎪=⎨⎪->⎪⎩则()()()()1232020f f f f ++++…=A .2log 5B .2log 5-C .2-D .08.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴方程为 A .24x π=-B .4x π=C .524x π=D .12x π=9.设变量,x y 满足约束条件14x y x y y a -≥-⎧⎪+≤⎨⎪≥⎩,目标函数32z x y =-的最小值为-4,则a 的值是 A .1B .0C .-1D .1210.某几何体的三视图如图所示,则该几何体的体积为 A .5B .53C .52D .5611.已知过抛物线()220y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于点C ,1AA l ⊥点A 1,若四边形AA 1CF的面积为l 的方程为A.x =B.x =-C .2x =-D .1x =-12.对于定义域为R 的函数()f x ,若满足①()00f =;②当x R ∈,且 x ≠0时,都有()0xf x '>;③当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏 对称函致”.现给出四个函数:()1sin f x x x =;())2lnf x x =;()31,0,0x e x f x x x ⎧-≥=⎨-<⎩;()24x xf x e e x =--;则其中是“偏对称函数”的函数个数为 A .3B .2C .1D .0二、填空题:本大题共4个小题,每小题5分.13.已知向量,a b 满足5,4,6b a b a b =+=-=,则向量a 在向量b 上的投影为___________. 14.已知()521a x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为30,则实数a =___________. 15.定义12nnp p p +++…为n 个正数12,,,n p p p …的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则122320172018111b b b b b b +++…=______________. 16.已知三棱锥A —BCD 中,AB=3,AD=1,BC=4,BD=A —BCD 的 体积最大时,其外接球的体积为________________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos 3b Ac +=. (1)求cos B ;(2)如图,D 为△ABC 外一点,若在平面四边形ABCD 中,∠D=2∠B ,且AD=1,CD=3,AB 的长.18.(12分)如图所示,在三棱柱ABC-A 1B 1C 1中,侧棱BB 1⊥底面ABC ,BB 1=4,AB ⊥BC ,且AB=BC=M ,N 为棱AB ,BC 上的动点,且AM=BN ,D 为B 1C 1的中点. (1)当点M ,N 运动时,能否出现AD//面B 1MN 情况,请说明理由.(2)若AD 与平面B 1MN 所成角的正弦值.19.(12分)为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩0u ;(精确到个位)(2)研究发现,本次检测的理科数学成绩X 近似服从正态分布N ()2,u σ (0u u =,σ约为19.3),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占40%. (i)估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位) (ii)从该市高三理科学生中随机抽取4人,记理科数学成绩能达到自主招生分数要求的人数为Y ,求Y 的分布列及数学期望E(Y). (说明:P()111x u X x φσ-⎛⎫>=-⎪⎝⎭表示1X x >的概率.参考数据()()0.7257=0.60.6554=0.4φφ,)20.(12分)在平面直角坐标系中,点F 1、F 2分别为双曲线C :()222210,0x y a b a b-=>>的左、右焦点,双曲线C 的离心率为2,点(1,32)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为 (1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M(11,x y )、N(22,x y ),线段MN 的中点为G ,已知点(12,x x )在圆222x y +=上,求OG MN 的最大值,并判断此时△OMN 的形状.21.(12分)已知函数()()2ln f x x ax x a R =++∈.(1)讨论函数()f x 在[1,2]上的单调性; (2)令函数()()12x g x ex a f x -=++-,e =2.71828…是自然对数的底数,若函数()g x 有且只有一个零点m ,判断m 与e 的大小,并说明理由.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做 的第一题记分.22.选修4—4:坐标系与参数方程(10分)以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线C 1的极坐标方程为2sin 4cos 0ρθθ-=,曲线C 2的参数方程是12cos 2sin x y ϕϕ=-+⎧⎨=⎩(ϕ为参数).(1)求曲线C 1的直角坐标方程及C 2的普通方程;(2)已知点P 102⎛⎫ ⎪⎝⎭,,直线l的参数方程为122x y ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数),设直线l 与曲线C 1相交于M 、N 两点,求11PM PN+的值. 23.选修4—5:不等式选讲(10分) 已知函数()12f x x x =++-. (1)求函数()f x 的最小值k ; (2)在(1)的结论下,若正实数,a b满足11a b +22122a b+≥。
2018年山东省济宁市高考数学二模试卷(理科)(解析版)
2018年山东省济宁市高考数学二模试卷(理科)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.(5分)设复数z满足(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)设集合A={x|y=ln(2﹣x)},,则A∩B=()A.{x|x<﹣1}B.{x|x<2}C.{x|﹣1<x<2}D.{x|﹣1<x≤2} 3.(5分)设θ∈R,则“”是“tanθ=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)从1,2,3,4,5这5个数中任取2个数,则所取2个数之积能被3整除的概率是()A.B.C.D.5.(5分)已知平面α,β,直线m,n,下列命题中不正确的是()A.若m⊥α,m⊥β则α∥βB.若m∥n,m⊥α,则n⊥αC.若m∥α,α∩β=n,则m∥n D.若m⊥α,m⊂β,则α⊥β6.(5分)已知双曲线的虚轴长是实轴长的2倍,则其顶点到渐近线的距离为()A.B.C.D.7.(5分)(2x+1)(1﹣)6的展开式中的常数项是()A.﹣5B.7C.﹣11D.138.(5分)九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.要将九连环中的九个圆环全部从框架上解下或套上,需要遵循一定的规律.解下或者套上所需要的最少移动次数可由如图所示的程序框图得到.执行该程序框图,输出的结果为()A.170B.256C.341D.6829.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)图象上相邻的两条对称轴之间的距离为,且若将y=f(x)的图象向左平移个单位后,得到的图象关于y轴对称,那么函数y=f(x)的图象()A.关于点()对称B.关于点(﹣)对称C.关于直线x=对称D.关于直线x=﹣对称10.(5分)某组合体的三视图如图所示(其中侧视图中的弧线为半圆),则该几何体的体积为()A.2π+2B.C.D.11.(5分)设非零向量,,满足=0,||=2,<,>=120°,则||的最大值为()A.1B.C.D.212.(5分)已知为奇函数,f'(x)+f(x)tan x>0,则不等式f(x)>cos x的解()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知变量x,y满足约束条件,则z=2x﹣3y的最大值为.14.(5分)2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是.15.(5分)如图在平面四边形ABCD中,∠A=45°,∠B=60°,∠D=150°,AB=2BC =4,则四边形ABCD的面积为.16.(5分)抛物线y2=2px(p>0)的焦点为F,A,B为抛物线上的两点,以AB为直径的圆过点F,过AB的中点M作抛物线的准线的垂线MN,垂足为N,则的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}满足.(I)证明:是等比数列;(II)记,求R n.18.(12分)如图,四边形ABCD是矩形,沿对角线AC将△ACD折起,使得点D在平面ABC上的射影恰好落在边AB上.(I)求证:平面ACD⊥平面BCD;(II)若直线AB与平面BCD所成角为30°时,求二面角D﹣AC﹣B的余弦值.19.(12分)某单位计划组织200名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为1%,且每个人血检是否呈阳性相互独立.(I)根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机分成20组,每组10人,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.设进行化验的总次数为X,试求X的数学期望;(Ⅱ)若该疾病的患病率为0.5%,且患该疾病者血检呈阳性的概率为99%,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:0.9910=0.904,0.9911=0.895,0.9912=0.886.)20.(12分)已知椭圆的右焦点为F,离心率为,平行于x 轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.21.(12分)已知函数f(x)=﹣x2+tlnx.(I)讨论f(x)的单调性;(Ⅱ)当t=1时,若对任意m∈(﹣1,0],关于x的方程f(x)+ax﹣m=0在(0,3]内总有两个不同的根,求实数a的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在平面直角坐标系xoy中,曲线(α为参数),过坐标原点O的直线l交曲线C1于点A,交曲线C2于点B(点B不是原点).(I)以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,写出曲线C1和C2的极坐标方程;(Ⅱ)求的最大值.[选修4-5:不等式选讲](本小题满分0分)23.设函数f(x)=|2x﹣1|.(1)设f(x)+f(x+1)<5的解集为集合A,求集合A;(2)已知m为集合A中的最大自然数,且a+b+c=m(其中a,b,c为正实数),设.求证:M≥8.2018年山东省济宁市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.(5分)设复数z满足(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由,得z=i+zi,即z=,∴z在复平面内对应的点的坐标为(),位于第二象限.故选:B.2.(5分)设集合A={x|y=ln(2﹣x)},,则A∩B=()A.{x|x<﹣1}B.{x|x<2}C.{x|﹣1<x<2}D.{x|﹣1<x≤2}【解答】解:A={x|x<2},B={x|x>﹣1};∴A∩B={x|﹣1<x<2}.故选:C.3.(5分)设θ∈R,则“”是“tanθ=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当θ=时,满足,但tanθ=﹣1,即充分性不成立,当θ=时,满足tanθ=1,但不成立,即必要性不成立,即“”是“tanθ=1”的既不充分也不必要条件,故选:D.4.(5分)从1,2,3,4,5这5个数中任取2个数,则所取2个数之积能被3整除的概率是()A.B.C.D.【解答】解:从1,2,3,4,5这5个数中任取2个数,基本事件总数n=,所取2个数之积能被3整除包含的基本事件有4个,分别为:(1,3),(2,3),(3,4),(3,5),∴所取2个数之积能被3整除的概率是P=.故选:A.5.(5分)已知平面α,β,直线m,n,下列命题中不正确的是()A.若m⊥α,m⊥β则α∥βB.若m∥n,m⊥α,则n⊥αC.若m∥α,α∩β=n,则m∥n D.若m⊥α,m⊂β,则α⊥β【解答】解:A、∵m⊥α,m⊥β,∴α∥β,故A正确;B、∵m∥n,m⊥α,∴n⊥α,由平行线中的一条直线垂直于一个平面,则另一条也垂直于这个平面可知,B正确;C、m∥α,α∩β=n,则m与n可能平行,可能垂直,也可能异面,故C错误;D、m⊥α,m⊂β,由面面垂直的判断定理可知α⊥β,故D正确.故选:C.6.(5分)已知双曲线的虚轴长是实轴长的2倍,则其顶点到渐近线的距离为()A.B.C.D.【解答】解:由双曲线的方程得a=1,∵双曲线的虚轴长是实轴长的2倍,∴2b=2×2a=4,即b=2,则双曲线的顶点为A(1,0),双曲线的渐近线方程为y=±x=±2x,不妨取渐近线y=2x,即2x﹣y=0,则顶点到渐近线的距离d===,故选:B.7.(5分)(2x+1)(1﹣)6的展开式中的常数项是()A.﹣5B.7C.﹣11D.13【解答】解:∵(2x+1)(1﹣)6=(2x+1)(1﹣+﹣+﹣+),故(2x+1)(1﹣)6的展开式中常数项为2×(﹣6)+1×1=﹣11,故选:C.8.(5分)九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.要将九连环中的九个圆环全部从框架上解下或套上,需要遵循一定的规律.解下或者套上所需要的最少移动次数可由如图所示的程序框图得到.执行该程序框图,输出的结果为()A.170B.256C.341D.682【解答】解:模拟程序的运行,可得i=1,S=1i=2,满足条件i为偶数,S=2不满足条件i>8,执行循环体,i=3,不满足i为偶数,S=5不满足条件i>8,执行循环体,i=4,满足i为偶数,S=10不满足条件i>8,执行循环体,i=5,不满足i为偶数,S=21不满足条件i>8,执行循环体,i=6,满足i为偶数,S=42不满足条件i>8,执行循环体,i=7,不满足i为偶数,S=85不满足条件i>8,执行循环体,i=8,满足i为偶数,S=170不满足条件i>8,执行循环体,i=9,不满足i为偶数,S=341此时,满足条件i>8,退出循环,输出S的值为341.故选:C.9.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)图象上相邻的两条对称轴之间的距离为,且若将y=f(x)的图象向左平移个单位后,得到的图象关于y轴对称,那么函数y=f(x)的图象()A.关于点()对称B.关于点(﹣)对称C.关于直线x=对称D.关于直线x=﹣对称【解答】解:由函数y=f(x)图象相邻两条对称轴之间的距离为,可知其周期为π,所以ω==2,所以f(x)=sin(2x+φ);将函数y=f(x)的图象向左平移个单位后,得到函数y=sin[2(x+)+φ]图象.因为得到的图象关于y轴对称,所以2×+φ=kπ+,k∈Z,即φ=kπ﹣,k∈Z;又|φ|<,所以φ=﹣,所以f(x)=sin(2x﹣),令2x﹣=kπ,k∈Z,解得x=﹣,k∈Z;k=0时,得f(x)的图象关于点(,0)对称,A正确.故选:A.10.(5分)某组合体的三视图如图所示(其中侧视图中的弧线为半圆),则该几何体的体积为()A.2π+2B.C.D.【解答】解:几何体为半圆柱与正四棱锥的组合体,其中,半圆柱的底面半径为1,高为2,正四棱锥的底面边长为2,高为1,∴几何体的体积为V=π×12×2×+=π+.故选:B.11.(5分)设非零向量,,满足=0,||=2,<,>=120°,则||的最大值为()A.1B.C.D.2【解答】解:如图所示构造△ABC,使=,=,=,||=2,∠BAC=60°,∴<,>=180°﹣∠BAC=120°,△ABC中,由正弦定理得,====,∴||=sin B,当sin B=1,即B=90°时,||取得最大值为.故选:C.12.(5分)已知为奇函数,f'(x)+f(x)tan x>0,则不等式f(x)>cos x的解()A.B.C.D.【解答】解:根据题意,已知为奇函数,则有f(0)=1,设g(x)=,则g′(x)==,又由在x∈(﹣,),f'(x)+f(x)tan x>0,则有g′(x)>0,函数g(x)在(﹣,)上为增函数,又由在x∈(﹣,),cos x>0,则不等式f(x)>cos x⇒>1,即g(x)>g(0),又由函数g(x)在(﹣,)上为增函数,必有0<x<,即不等式的解集为(0,);故选:D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知变量x,y满足约束条件,则z=2x﹣3y的最大值为4.【解答】解:由约束条件作出可行域如图,联立,解得A(﹣1,﹣2),化目标函数z=2x﹣3y为y=,由图可知,当直线y=过A时,z有最大值为4.故答案为:4.14.(5分)2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是78.75.【解答】解:由频率分布直方图得:评估得分在[60,70)的频率为:0.015×10=0.15,评估得分在[70,80)的频率为:0.040×10=0.4,∴估计这100名职工评估得分的中位数是:70+×10=78.75.故答案为:78.75.15.(5分)如图在平面四边形ABCD中,∠A=45°,∠B=60°,∠D=150°,AB=2BC =4,则四边形ABCD的面积为6﹣.【解答】解:连接AC,在△ABC中,AB=2BC=4,∠B=60°,利用余弦定理得:AC2=BC2+AB2﹣2BC•AB•cos∠B,解得:AC=2,所以:AB2=AC2+BC2∠,则:是直角三角形.所以:∠DAC=∠DCA=15°,过点D作DE⊥AC,则:AE=AC=,所以:DE=tan15°AE=(2﹣=2﹣3.则:,=6﹣3+2,=6﹣.故答案为:6﹣16.(5分)抛物线y2=2px(p>0)的焦点为F,A,B为抛物线上的两点,以AB为直径的圆过点F,过AB的中点M作抛物线的准线的垂线MN,垂足为N,则的最大值为.【解答】解:设|AF|=a,|BF|=b,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,∴2||=|AQ|+|BP|=a+b.由余弦定理得,||2=a2+b2﹣2ab cos90°=a2+b2,配方得,||2=(a+b)2﹣2ab,又∵ab≤()2,∴(a+b)2﹣2ab≥(a+b)2﹣(a+b)2=(a+b)2得到||≥(a+b).|MF|=,∴=2×≤,即的最大值为.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}满足.(I)证明:是等比数列;(II)记,求R n.【解答】证明:(Ⅰ)数列{a n}满足.所以:,整理得:,所以:,且,则:数列{}是以lg2为首项,2为公比等比数列.(Ⅱ)由于:,所以:lgR n=+…+,由于:=,所以:,则:lgR n=+…+,=,所以:.18.(12分)如图,四边形ABCD是矩形,沿对角线AC将△ACD折起,使得点D在平面ABC上的射影恰好落在边AB上.(I)求证:平面ACD⊥平面BCD;(II)若直线AB与平面BCD所成角为30°时,求二面角D﹣AC﹣B的余弦值.【解答】(Ⅰ)证明:设点D在平面ABC上的射影为E,连接DE,则DE⊥平面ABC,可得DE⊥BC.∵四边形ABCD为矩形,∴AB⊥BC,又DE∩AB=E,∴BC⊥平面ABD,则BC⊥AD.又AD⊥CD,∴AD⊥平面BCD,而AD⊂平面ACD,可得平面ACD⊥平面BCD;(Ⅱ)解:由(Ⅰ)可知,AD⊥平面BCD,∴∠ABD为直线AB与平面BCD所成角,在Rt△ADB中,∠ABD=30°,可得AB=2AD,设AD=a,则AB=2a,在矩形ABCD中,过点D作DM⊥AC,垂足为M,连接ME,∵DE⊥平面ABC,可得DE⊥AC,又DM∩DE=D,∴AC⊥平面DME,可得EM⊥AC,则∠DME为二面角D﹣AC﹣B的平面角.在Rt△ADC中,可知DC=AB=2a,且AC=.∴.在Rt△AEM中,由,可得EM=.∴cos.∴二面角D﹣AC﹣B的余弦值为.19.(12分)某单位计划组织200名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为1%,且每个人血检是否呈阳性相互独立.(I)根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机分成20组,每组10人,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.设进行化验的总次数为X,试求X的数学期望;(Ⅱ)若该疾病的患病率为0.5%,且患该疾病者血检呈阳性的概率为99%,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:0.9910=0.904,0.9911=0.895,0.9912=0.886.)【解答】解:(I)设每组化验的次数为ξ,则取值为1,11.P(ξ=1)=0.9910=0.904,P(ξ=11)=1﹣0.9910=0.096,∴ξ的分布列为:∴Eξ=1×0.904+11×0.096=1.96.∴进行化验的总次数为X的数学期望EX=20Eξ=39.2.(II)设事件A表示“血检呈阳性”,B表示事件“该疾病”.由题意可得:P(A)=0.01,P(B)=0.005,P(A|B)=0.99,由条件概率P(A|B)=,可得P(AB)=P(B)•P(A|B)=0.005×0.99.∴P(B|A)===0.495.∴单位有一职工血检呈阳性,则该职工确实患该疾病的概率为0.495.20.(12分)已知椭圆的右焦点为F,离心率为,平行于x 轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由题意可得:,∵平行于x轴的直线交椭圆于A,B两点,且.∴,a=,∴c=2,b2=a2=﹣c2=2.∴椭圆C的方程为(Ⅱ)设直线l的方程为y=k(x﹣2),代入椭圆C的方程,得(3k2+1)x2﹣12k2x+12k2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.21.(12分)已知函数f(x)=﹣x2+tlnx.(I)讨论f(x)的单调性;(Ⅱ)当t=1时,若对任意m∈(﹣1,0],关于x的方程f(x)+ax﹣m=0在(0,3]内总有两个不同的根,求实数a的取值范围.【解答】解:(I)f′(x)=﹣2x+=(x>0),(i)若t≤0,则f′(x)<0,∴f(x)在区间(0,+∞)上单调递减;(ii)若t>0,令f′(x)=0可得x=,∴当0<x<时,f′(x)>0,当x>时,f′(x)<0,∴f(x)在区间(0,)上单调递增,在区间(,+∞)上单调递减.综上,当t≤0时,f(x)在区间(0,+∞)上单调递减;当t>0时,f(x)在区间(0,)上单调递增,在区间(,+∞)上单调递减.(II)当t=1时,f(x)=﹣x2+lnx,令g(x)=f(x)+ax=lnx﹣x2+ax,则g′(x)=﹣2x+a=,令g′(x)=0得x1=<0(舍)或x2=,∴当0<x<时,g′(x)>0,当x>时,g′(x)<0,∴g(x)在(0,)上单调递增,在(,+∞)上单调递减,若≥3,则g(x)在(0,3]单调递增,不符合题意,故<3,∴g(x)在(0,)上单调递增,在(,3]上单调递减,∵对任意m∈(﹣1,0],关于x的方程f(x)+ax﹣m=0在(0,3]内总有两个不同的根,且当x→0时,g(x)→﹣∞,∴,由g(3)≤﹣1可得ln3﹣9+3a+1≤0,解得a≤①,由g(x2)>0得lnx2﹣x22+ax2>0,又﹣2x22+ax2+1=0,得a=2x2﹣,∴lnx2+x22﹣1>0,令φ(x)=lnx+x2﹣1,则φ(x)在(0,3]上单调递增,且φ(1)=0,∴lnx2+x22﹣1>0得解为1<x2<3,此时,a=2x2﹣在(1,3)上单调递增,∴1<a<②,由①②可得1<a≤.即a得取值范围是(1,].(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在平面直角坐标系xoy中,曲线(α为参数),过坐标原点O的直线l交曲线C1于点A,交曲线C2于点B(点B不是原点).(I)以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,写出曲线C1和C2的极坐标方程;(Ⅱ)求的最大值.【解答】解:(Ⅰ)∵曲线(α为参数),∴曲线C1的极坐标方程为ρcosθ+ρsinθ=4,即,曲线C2的参数方程肖去参数α,得C2的普通方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0,∴C2的极坐标方程为ρ=2cosθ.(Ⅱ)设直线l的极坐标方程为θ=β,(ρ∈R),则A 的极坐标为(,β),B的极坐标为(2cosβ,β),====,∴取,取最大值.[选修4-5:不等式选讲](本小题满分0分)23.设函数f(x)=|2x﹣1|.(1)设f(x)+f(x+1)<5的解集为集合A,求集合A;(2)已知m为集合A中的最大自然数,且a+b+c=m(其中a,b,c为正实数),设.求证:M≥8.【解答】解:(1)f(x)+f(x+1)<5,即|2x﹣1|+|2x+1|<5;当时,不等式化为1﹣2x﹣2x﹣1<5,∴;当时,不等式化为1﹣2x+2x+1<5,不等式恒成立;当时,不等式化为2x﹣1+2x+1<5,∴;综上,集合;(2)证明:由(1)知m=1,则a+b+c=1;则;同理;则;即M≥8.第21页(共21页)。
2018年全国高考新课标2卷理科数学试题(解析版)
2018年全国高考新课标2卷理科数学试题(解析版)2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知1+2i/(1-2i),则结果为:A。
--iB。
-+iC。
--iD。
-+i解析:选D。
2.已知集合A={(x,y)|x+y≤3,x∈Z,y∈Z },则A中元素的个数为:A。
9B。
8C。
5D。
4解析:选A。
问题为确定圆面内整点个数。
3.函数f(x)=2/x的图像大致为:A。
B。
C。
D。
解析:选B。
f(x)为奇函数,排除A。
当x>0时,f(x)>0,排除D。
取x=2,f(2)=1,故选B。
4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=:A。
4B。
3C。
2D。
2-2xy解析:选B。
a·(2a-b)=2a-a·b=2+1=3.5.双曲线a^2(x^2)-b^2(y^2)=1(a>0,b>0)的离心率为3,则其渐近线方程为:A。
y=±2xB。
y=±3xC。
y=±2x/abD。
y=±3x/ab解析:选A。
e=3,c=3ab=2a。
6.在ΔABC中,cosC=1/5,BC=1,AC=5,则AB=:A。
42B。
30C。
29D。
25解析:选A。
cosC=2cos^2(C/2)-1=-1/5,AB=AC+BC-2AB·BC·cosC=32,AB=42.7.为计算S=1-1/3+1/5-1/7+……+(-1)^n-1/(2n-1),设计了右侧的程序框图,则在空白框中应填入:开始N=0,T=1i=1是N=N+1/T=T+(-1)^N-1/(2N-1)i<100否S=N-T输出S结束A。
高三数学全真模拟考试试题(一)理(含解析)
荆州中学2018年普通高等学校招生全国统一考试理科数学(模拟一)选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合,则A、 B、C、 D、【答案】D【解析】【分析】分别求出集合,,再利用交集定义就可求出结果【详解】则故选【点睛】本题主要考查了集合的交集及其运算,属于基础题、2、欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里特别重要,被誉为“数学中的天桥"、依照欧拉公式可知,表示的复数位于复平面中的A、第一象限 B。
第二象限 C、第三象限 D、第四象限【答案】B【解析】【分析】由欧拉公式(为虚数单位)可得:,再利用诱导公式化简,即可得到答案【详解】由欧拉公式(为虚数单位)可得:表示的复数对应的点为,此点位于第二象限故选【点睛】本题主要考查的是欧拉公式的应用,诱导公式,复数与平面内的点的一一对应关系,考查了学生的运算能力,转化能力。
3、要得到函数的图象,只需将函数的图象A。
向左平移个周期B、向右平移个周期C、向左平移个周期D、向右平移个周期【答案】D【解析】【分析】利用函数的图象变换规律,三角函数的周期性,得出结果【详解】将函数的图象向右平移个单位,可得的图象,即向右平移个周期故选【点睛】本题考查了三角函数图像的平移,运用诱导公式进行化简成同名函数,然后运用图形平移求出结果,本题较为基础。
4。
某地区空气质量监测表明,一天的空气质量为优良的概率是,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天空气质量为优良的概率是A。
B。
C、 D、【答案】A【解析】试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,因此,故选A、考点:条件概率。
视频5、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是A、 2 B。
2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)
2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。
精校word版---济宁市2018届高三5月份第二次模拟考试试题(理综)
济宁市高三年级模拟考试理科综合能力测试本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共18页。
满分300分。
考试用时150分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Fe 56第I卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.细胞器是悬浮在细胞质基质中具有一定形态结构功能的小体,下列有关细胞器的说法更准确的是A.细胞器中不一定含有磷脂,但一定含有蛋白质B.核糖体是细菌、噬菌体、酵母菌唯一共有的细胞器C.人体细胞中,催化丙酮酸进一步分解的酶都位于线粒体中D.叶绿体是细胞进行光合作用的必需结构,其中含有少量DNA和RNA2.为满足生命活动的需要,细胞对物质的进出具有一定的选择性,下列有关物质输入和输出的分析合理的是A.运输过程中耗能的就是主动运输B.小分子物质都是通过主动运输或被动运输进出细胞C.机体内环境渗透压维持相对稳定与物质跨膜运输密切相关D.当植物细胞内外存在浓度差时,细胞就会发生质壁分离或复原3.下列关于信息传递的描述,正确的是4.“分子马达”是分布于细胞内部或细胞表面的一类蛋白质,它们的结构会随着与ATP和ADP 的交替结合而改变,从而使自身或与其结合的分子产生运动。
下列相关分析错误的是A.线粒体和叶绿体中都有“分子马达”B.RNA聚合酶是沿RNA移动的“分子马达”C.细胞膜上的部分载体蛋白是“分子马达”D.“分子马达”运动所需的能量由ATP水解提供5.下列关于生物变异、育种的叙述,正确的是A.育种可以培育出新品种,也可能得到新物种B.联会时的交叉互换实现了染色体上等位基因的重新组合C.单倍体育种过程中,经常先筛选F1花粉类型,再进行花药离体培养D.无子果实的获得均要用到秋水仙素,变异类型为染色体的数目变异6.下图是某单基因遗传病的家系图,下列有关分析合理的是A.若该家系中的遗传病是显性,则图中所有的患者均为杂合子B.若该家系中的遗传病是隐性,则致病基因可能只位于X染色体上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年济宁市高三模拟考试
理科数学试题
2018.05本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上.
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.
第I卷(选择题共60分)
一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.
1.设复数z满足(i为虚数单位),则z在复平面内对应的点位于
A.第一象限B.第二象限C.第三象限D.第四象限
2.设集合
A.B.C.D.
3.设,则“”是“”的
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
4.从1,2,3,4,5这5个数中任取2个数,则所取2个数之积能被3整除的概率是
A.B.C.D.
5.已知是平面,m,n是直线,下列命题中不正确的是
A.B.
C.D.
6.已知双曲线的虚轴长是实轴长的2倍,则其顶点到渐近线的距离为A.B.C.D.
7.的展开式中的常数项是
A.B.
C.7D.13
8.九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.要将九连环中的九个圆环全部从框架上解下或套上,需要遵循一定的规律.解下或者套上所需要的最少移动次数可由右图所示的程序框图得到.执行该程序框图,输出的结果为A.170
B.256
C.341
D.682
9.已知函数,其图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称,那么函数的图象
A.关于点对称B.关于点对称
C.关于直线对称D.关于直线对称
10.某组合体的三视图如图所示(其中侧视图中的弧线为半圆),则该几何体的体积为
A.B.
C.D.
11.设非零向量满足,,则的最
大值为
A.1B.C.D.2
12.已知为奇函数,,则不等式
的解
A.B.C.D.
第Ⅱ卷(非选择题共90分)
13.已知变量满足约束条件的最大值为▲.
14.2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考
核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位
数是▲.
15.如图,在平面四边形ABCD中,,
,则四边形ABCD的面积为▲.
16.抛物线的焦点为F,A,B为抛物线上的两点,以AB为直
径的圆过点F,过AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为▲.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(本小题满分12分)
已知数列满足.
(I)证明:是等比数列;
(II)记,求.
18. (本小题满分12分)
如图,四边形ABCD是矩形,沿对角线AC将折起,使得点D在平面ABC上的射影恰好落在边AB上.
(I)求证:平面平面BCD;
(II)若直线AB与平面BCD所成角为时,求二面角的余弦值.
19.(本小题满分12分)
某单位计划组织200名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为1%,且每个人血检是否呈阳性相互独立.
(I)根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机分成20组,每组10人,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.设进行化验的总次数为X,试求X的数学期望;
(Ⅱ)若该疾病的患病率为0.5%,且患该疾病者血检呈阳性的概率为99%,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:0.9910=0.904,0.9911=0.895,
0.9912=0.886.)
20.(本小题满分12分)
已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于
A,B两点,且.
(I)求椭圆C的方程;
(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得
是定值?若存在,请求出该点的坐标;若不存在,请说明理由.
21.(本小题满分12分)
已知函数.
(I)讨论的单调性;
(Ⅱ)当时,若对任意,关于x的方程内总有两个不同的根,求实数a的取值范围.
(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系中,曲线(为参数),过坐标原点O的直线l交曲线于点A,交曲线于点B(点B不是原点).
(I)以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,写出曲线和的极坐标方程;
(Ⅱ)求的最大值.
23.[选修4—5:不等式选讲](本小题满分10分)
设函数.
(I)设的解集为A,求集合A;
(Ⅱ)已知m为(I)中集合A中的最大整数,且(其中为正实数),
求证:.。