数学八年级上册 轴对称填空选择单元综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学八年级上册 轴对称填空选择单元综合测试(Word 版 含答案)
一、八年级数学全等三角形填空题(难)
1.如图,∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,AB =11,AC =5,则BE =______________.
【答案】3
【解析】如图,连接CD ,BD ,已知AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质可得DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,即可得AE=AF ,又因DG 是BC 的垂直平分线,所以CD=BD ,在Rt △CDF 和Rt △BDE 中,CD =BD ,DF =DE ,利用HL 定理可判定Rt △CDF ≌Rt △BDE ,由全等三角形的性质可得BE=CF ,所以
AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,又因AB=11,AC=5,所以BE=3.
点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.
2.如图,已知OP 平分∠AOB ,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .CP =
254
,PD =6.如果点M 是OP 的中点,则DM 的长是_____.
【答案】5.
【解析】
【分析】
由角平分线的性质得出∠AOP=∠BOP ,PC=PD=6,∠PDO=∠PEO=90°,由勾股定理得出2274
CE CP PE =-=,由平行线的性质得出∠OPC=∠AOP ,得出∠OPC=∠BOP ,证出
254CO CP ==,得出OE=CE+CO=8,由勾股定理求出2210OP OE PE =+=,再由直角三角形斜边上的中线性质即可得出答案.
【详解】
∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,
∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴222257446CE CP PE ⎛⎫
⎪⎭-⎝=-==, ∵CP ∥OA ,
∴∠OPC =∠AOP ,
∴∠OPC =∠BOP ,
∴254
CO CP ==, ∴725448OE CE CO =+=
+=, ∴22228610OP OE PE =+=+=,
在Rt △OPD 中,点M 是OP 的中点,
∴12
5DM OP =
=; 故答案为:5.
【点睛】 本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP 是解题的关键.
3.如图,△ABC 是等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥DA 于
Q ,PQ =3,EP =1,则DA 的长是________.
【答案】7
【解析】
试题解析:∵△ABC 为等边三角形,
∴AB=CA ,∠BAE=∠ACD=60°;
又∵AE=CD ,
在△ABE 和△CAD 中,
AB CA
BAE ACD
AE CD


∠∠






∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,则∠PBQ=90°-60°=30°;
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6;
又∵PE=1,
∴AD=BE=BP+PE=7.
故答案为7.
4.如图,ABC
∆中,90
ACB
∠=︒,8cm
AC,15cm
BC=,点M从A点出发沿
A C B
→→路径向终点运动,终点为B点,点N从B点出发沿B C A
→→路径向终点运动,终点为A点,点M和N分别以每秒2cm和3cm的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M和N作ME l
⊥于E,NF l
⊥于F.设运动时间为t秒,要使以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等,则t的值为______.
【答案】
23
5
或7或8
【解析】
【分析】
易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.
【详解】
①当0≤t<4时,点M在AC上,点N在BC上,如图①,
此时有AM=2t,BN=3t,AC=8,BC=15.
当MC=NC即8−2t=15−3t时全等,
解得t=7,不合题意舍去;
②当4≤t<5时,点M在BC上,点N也在BC上,如图②,
若MC=NC,则点M与点N重合,即2t−8=15−3t,
解得t=23
5

当5≤t<23
3
时,点M在BC上,点N在AC上,如图③,
当MC=NC即2t−8=3t−15时全等,解得t=7;
④当23
3
≤t<
23
2
时,点N停在点A处,点M在BC上,如图④,
当MC=NC即2t−8=8,解得t=8;
综上所述:当t等于23
5
或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为
顶点的三角形全等.
故答案为:23
5
或7或8.
【点睛】
本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.
5.在Rt△ABC中,∠C=90°,∠A的平分线AD分对边BD,DC的长度比为3:2,且BC=20cm,则点D到AB的距离是_____cm.
【答案】8
【解析】
【分析】
根据题意画出图形,过点D作DE⊥AB于点E,由角平分线的性质可知DE=CD,根据角平分线AD分对边BC为BD:DC=3:2,且BC=10cm即可得出结论.
【详解】
解:如图所示,过点D作DE⊥AB于点E,
∵AD是∠BAC的平分线,∠C=90°,
∴DE=CD.
∵BD:DC=3:2,且BC=10cm,
∴CD=20×2
5
=8(cm).
故答案为:8.
【点睛】
本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.
6.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:
①△DEF是等腰直角三角形;
②AE=CF;
③△BDE≌△ADF;
④BE+CF=EF;
⑤S四边形AEDF=1
4
AD2,
其中正确结论是_____(填序号)
【答案】①②③
【解析】
【分析】
先由ASA 证明△AED ≌△CFD ,得出AE =CF ,DE =FD ;再由全等三角形的性质得到BE +CF =AB ,由勾股定理求得EF 与AB 的值,通过比较它们的大小来判定④的正误;先得出S 四边形AEDF =S △ADC =12
AD 2,从而判定⑤的正误. 【详解】
解:∵Rt △ABC 中,AB =AC ,点D 为BC 中点,
∴∠C =∠BAD =45°,AD =BD =CD ,
∵∠MDN =90°,
∴∠ADE +∠ADF =∠ADF +∠CDF =90°,
∴∠ADE =∠CDF .
在△AED 与△CFD 中,
EAD C AD CD
ADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△AED ≌△CFD (ASA ),
∴AE =CF ,ED =FD .故①②正确;
又∵△ABD ≌△ACD ,
∴△BDE ≌△ADF .故③正确;
∵△AED ≌△CFD ,
∴AE =CF ,ED =FD ,
∴BE +CF =BE +AE =AB
BD ,
∵EF
ED ,BD >ED ,
∴BE +CF >EF .故④错误;
∵△AED ≌△CFD ,△BDE ≌△ADF ,
∴S 四边形AEDF =S △ADC =
12
AD 2.故⑤错误. 综上所述,正确结论是①②③.
故答案是:①②③.
【点睛】 考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.
7.如图,四边形ABCD 是正方形,直线l 1、l 2、l 3分别过A 、B 、C 三点,l 1∥l 2∥l 3,若l 1与l 2之间的距离为4,l 2与l 3之间的距离为5,则正方形的边长为______.
【答案】41
【解析】
解:过B作直线BF⊥l3于F,交直线l1于点
E.∵l1∥l3,∴∠AEB=∠BFC=90°,∴BE=4,BF=5.∵ABCD是正方形,
∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°.∵∠ABE+∠BAE=90°,∴∠BAE=∠CBF.在
△ABE和△BCF中,
∵∠BAE=∠CBF,∠AEB=∠BFC,AB=BC,∴△ABE≌△BCF,∴AE=BF=5.在Rt△AEB中,AB=22
=41.故答案为41.
54
AE BE=22
点睛:本题考查了全等三角形的性质和判定,正方形的性质的应用,解答本题的关键是能正确作出辅助线,并进一步求出△ABE≌△BCF,难度适中.
8.如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE 上一点,AF⊥AE,且C是线段AF的垂直平分线上的点,AF=22,则DF=________.
【答案】3.
【解析】
【分析】
由题意可证的△ABF≌△ACE,可得△AEF为等腰直角三角形,取AF的中点O,连接CO交BE与点G,连接AG,可得△AGF, △AGE,△CEG均为等腰直角三角形,可得AG平行等于CE,可得四边形AGCE为平行四边形,可得FD的长.
【详解】
解:如图
Rt△ABC中,AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,
又∠BAC=90°,BE⊥CE,∠DAE为∠BAC与EAF的公共角
∴∠BAF=∠CAE,
∠ABC=∠ACB=45°, BE⊥CE
∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,
∴∠ABF=∠ACE,
在△ABF与△ACE中,有
AB AC
BAF CAE
ABF ACE
=


∠=∠

⎪∠=∠

,∴△ABF≌△ACE,
∴AE=AF, △AEF为等腰直角三角形, 取AF的中点O,连接CO交BE与点G,连接AG,
C是线段AF的垂直平分线上的点,易得△AGF, △AGE,△CEG均为等腰直角三角形,AF=22∴AG=GE=CE=FG=2,
又AG⊥BE,CE⊥BE,可得AG∥CE,
∴四边形AGCE为平行四边形,
∴GD=DE=1,
∴DF=FG+GD=2+1=3.
【点睛】
本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.
9.如图,在△ABC中,AB=AC=10,BC=12,AD是角平分线,P、Q分别是AD、AB边上的动点,则BP+PQ的最小值为_______.
【答案】9.6
【解析】
∵AB=AC,AD是角平分线,
∴AD⊥BC,BD=CD,
∴B点,C点关于AD对称,
如图,过C作CQ⊥AB于Q,交AD于P,
则CQ=BP+PQ 的最小值, 根据勾股定理得,AD=8,
利用等面积法得:AB ⋅CQ=BC ⋅AD ,
∴CQ=
BC AD AB ⋅=12810
⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.
10.如图,△ABC 与△DEF 为等边三角形,其边长分别为a ,b ,则△AEF 的周长为___________.
【答案】a+b
【解析】
先根据全等三角形的判定AAS 判定△AEF≌△BFD,得出AE=BF ,从而得出△AEF 的周长=AF+AE+EF=AF+BF+EF=a+b .
故答案为:a+b
二、八年级数学全等三角形选择题(难)
11.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143
其中正确的结论个数是
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
连接CF,证明△ADF≌△CEF,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.
【详解】
连接CF,
∵△ABC是等腰直角三角形,
∴∠FCB=∠A=45,CF=AF=FB;
∵AD=CE,
∴△ADF≌△CEF(SAS);
∴EF=DF,∠CFE=∠AFD;
∵∠AFD+∠CFD=90∘,
∴∠CFE+∠CFD=∠EFD=90∘,
又∵EF=DF
∴△EDF是等腰直角三角形(故(1)正确).
当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).
由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;
即当DF⊥AC时,DE最小,此时
1
4
2
DF BC
== .
∴242
DE DF=故(3)错误).
∵△ADF≌△CEF,
∴S△CEF=S△ADF
∴S四边形CDFE=S△AFC,
∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1
即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1
当S△ADF:S△CDF=1:2时,S△ADF=1
3
S△ACF=
1116
84
323
⨯⨯⨯=
又∵S△ADF=1
42
2
AD AD ⨯⨯=
∴2AD=16 3
∴AD=8
3
(故(4)错误).
故选:A.
【点睛】
本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.
12.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;
④QP∥AB.其中一定正确的是( )
A.①②③B.①③④C.①②④D.②③④
【答案】C
【解析】
试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,
∴点P在∠BAC的平分线上,
即AP平分∠BAC,故①正确;
∴∠PAR=∠PAQ,
∵AQ=PQ,
∴∠APQ=∠PAQ,
∴∠APQ=∠PAR,
QP AB
∴,故④正确;
在△APR与△APS中,
AP AP PR PS
=


=
⎩,
(HL)
APR APS
∴≌,∴AR=AS,故②正确;
△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.
故选C.
13.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB与∠BCO的数量关系为()
A.∠OAB+∠BCO=180°B.∠OAB=∠BCO
C.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定
【答案】C
【解析】
根据题意画图,可知当C 处在C 1的位置时,两三角形全等,可知∠OAB=∠BCO ;当点C 处在C 2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.
故选C.
14.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结
论:①45ADC ∠=︒;②12
BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
试题解析:如图,
过E 作EQ ⊥AB 于Q ,
∵∠ACB=90°,AE 平分∠CAB ,
∴CE=EQ ,
∵∠ACB=90°,AC=BC ,
∴∠CBA=∠CAB=45°,
∵EQ ⊥AB ,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ ,
∴∠QEB=45°=∠CBA ,
∴EQ=BQ ,
∴AB=AQ+BQ=AC+CE ,
∴③正确;
作∠ACN=∠BCD ,交AD 于N ,
∵∠CAD=
12
∠CAB=22.5°=∠BAD , ∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD ,
∴∠DBC=∠CAD ,
在△ACN 和△BCD 中, DBC CAD AC BC
ACN DCB ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ACN ≌△BCD ,
∴CN=CD ,AN=BD ,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN ,
∴AN=CN ,
∴∠NCE=∠AEC=67.5°,
∴CN=NE ,
∴CD=AN=EN=
12AE , ∵AN=BD ,
∴BD=12
AE , ∴①正确,②正确;
过D 作DH ⊥AB 于H ,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA ,
∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,
∴DF=DH ,
在△DCF 和
△DBH 中
90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩
====, ∴△DCF ≌△DBH ,
∴BH=CF ,
由勾股定理得:AF=AH ,

2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF
+++++++====, ∴AC+AB=2AF ,
AC+AB=2AC+2CF ,
AB-AC=2CF ,
∵AC=CB ,
∴AB-CB=2CF , ∴④正确.
故选D
15.如图,将一个等腰Rt △ABC 对折,使∠A 与∠B 重合,展开后得折痕CD ,再将∠A 折叠,使C 落在AB 上的点F 处,展开后,折痕AE 交CD 于点P ,连接PF 、EF ,下列结论:①tan ∠CAE=2﹣1;②图中共有4对全等三角形;③若将△PEF 沿PF 翻折,则点E 一定落在AB 上;④PC=EC ;⑤S 四边形DFEP =S △APF .正确的个数是( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【详解】 ①正确.作EM ∥AB 交AC 于M .
∵CA=CB ,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵∠CAE=∠BAE=
12
∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则2,
∴tan ∠CAE=212CE AC a a
==+,故①正确,
②正确.△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF,故②正确,
③正确.∵△PEC≌△PEF,
∴∠PCE=∠PFE=45°,
∵∠EFA=∠ACE=90°,
∴∠PFA=∠PFE=45°,
∴若将△PEF沿PF翻折,则点E一定落在AB上,故③正确.
④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,
∴∠CPE=∠CEP,
∴CP=CE,故④正确,
⑤错误.∵△APC≌△APF,
∴S△APC=S△APF,
假设S△APF=S四边形DFPE,则S△APC=S四边形DFPE,
∴S△ACD=S△AEF,
∵S△ACD=1
2
S△ABC,S△AEF=S△AEC≠
1
2
S△ABC,
∴矛盾,假设不成立.
故⑤错误.
.
故选D.
16.如图,等腰直角△ABC中,∠BAC=90 ,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:
①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=
1
2
∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,故①正确;
∵M为EF的中点,
∴AM⊥EF,故②正确;
过点F作FH⊥AB于点H,
∵BE平分∠ABC,且AD⊥BC,
∴FD=FH<FA,故③错误;
∵AM⊥EF,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中
{
FBD DAN
BD AD
BDF ADN
∠∠
∠∠



∴△FBD≌△NAD,
∴DF=DN,故④正确;
故选C.
17.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;
③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()
A.②③④B.①②C.①④D.①②③④【答案】B
【解析】
【分析】
连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得
△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.
【详解】
解:如图
连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,
AP是∠BAC的平分线,∠1=∠2,
△APR≌△APS.
AS=AR,
又QP/AR,
∠2 = ∠3又∠1 = ∠2,
∠1=∠3,
AQ=PQ,
没有办法证明△PQR≌△CPS,③不成立,
没有办法证明AC-AQ=2SC,④不成立.
所以B选项是正确的.
【点睛】
本题主要考查三角形全等及三角形全等的性质.
18.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()
A.1 B.2 C.3 D.4【答案】B
【解析】
【分析】
依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=1
2
,即可得到∠BAD≠30°;连
接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得
AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.
【详解】
∵点D是等腰直角△ABC腰BC上的中点,
∴BD=1
2
BC=
1
2
AB,
∴tan∠BAD=1
2,
∴∠BAD≠30°,故①错误;
如图,连接B'D,
∵B、B′关于AD对称,
∴AD垂直平分BB',
∴∠AFB=90°,BD=B'D=CD,
∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,
∴∠BB'C=∠BB'D+∠DB'C=90°,
∴∠AFB=∠BB'C,
又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,
∴∠BAF=∠CBB',
∴△ABF≌△BCB',
∴BF=CB'=B'F,
∴△FCB'是等腰直角三角形,
∴∠CFB'=45°,即∠BFC=135°,故②正确;
由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,
∴△AEF与△CEB'不全等,
∴AE≠CE,
∴S△AFE≠S△FCE,故④错误;
故选B.
【点睛】
本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
19.下列条件中,不能判定两个直角三角形全等的是( )
A.两条直角边对应相等B.有两条边对应相等
C.斜边和一锐角对应相等D.一条直角边和斜边对应相等
【答案】B
【解析】
根据全等三角形的判定SAS,可知两条直角边对应相等的两个直角三角形全等,故A不正确;
根据一条直角边和斜边对应相等的两个直角三角形,符合全等三角形的判定定理HL,能判定全等;若两条直角边对应相等的两个直角三角形,符合全等三角形的判定定理SAS,也能判全等,但是有两边对应相等,没说明是什么边对应,故不能判定,故B正确.
根据全等三角形的判定AAS,可知斜边和一锐角对应相等的两直角三角形全等,故C不正确;
根据直角三角形的判定HL,可知一条直角边和斜边对应相等两直角三角形全等,故D不正确.
故选B.
点睛:此题主要考查了直角三角形全等的判定,解题时利用三角形全等的判定SSS,SAS,ASA,AAS,HL,直接判断即可.
20.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握
21.如图,已知AB =AC ,AF =AE ,∠EAF=∠BAC,点C 、D 、E 、F 共线.则下列结论,其中正确的是( )
①△AFB≌△AEC;②BF=CE ;③∠BFC=∠EAF;④AB=
BC .
A .①②③
B .①②④
C .①②
D .①②③④
【答案】A
【解析】
【分析】 根据题意结合图形证明△AFB ≌△AEC ;利用四点共圆及全等三角形的性质问题即可解决.
【详解】
如图,
∵∠EAF=∠BAC ,
∴∠BAF=∠CAE ;
在△AFB 与△AEC 中,
AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩
===, ∴△AFB ≌△AEC (SAS ),
∴BF=CE ;∠ABF=∠ACE ,
∴A 、F 、B 、C 四点共圆,
∴∠BFC=
∠BAC=∠EAF ;
故①、②、③正确,④错误.
故选A..
【点睛】
本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.
22.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作 EF∥AD,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连结DE 、 EH 、DH 、FH .下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23
AE AB =,则313
DHC
EDH S
S =.其中结论正确的有( )
A .1个
B .2个
C .3个
D .4个
【答案】D 【解析】 分析:①根据题意可知∠ACD=45°,则GF=FC ,则EG=EF-GF=CD-FC=DF ;
②由SAS 证明△EHF ≌△DHC 即可; ③根据△EHF ≌△DHC ,得到∠HEF=∠HDC ,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;
④若AE AB =23
,则AE=2BE ,可以证明△EGH ≌△DFH ,则∠EHG=∠DHF 且EH=DH ,则∠DHE=90°,△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,设HM=x ,则
DM=5x ,26x ,CD=6x ,则S △DHC =
12×HM×CD=3x 2,S △EDH =12
×DH 2=13x 2. 详解:①∵四边形ABCD 为正方形,EF ∥AD ,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°, ∴△CFG 为等腰直角三角形,
∴GF=FC ,
∵EG=EF−GF ,DF=CD−FC ,
∴EG=DF ,故①正确;
②∵△CFG 为等腰直角三角形,H 为CG 的中点,
∴FH=CH,∠GFH=1
2
∠GFC=45°=∠HCD,
在△EHF和△DHC中,
EF=CD;∠EFH=∠DCH;FH=CH,
∴△EHF≌△DHC(SAS),故②正确;
③∵△EHF≌△DHC(已证),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;
④∵AE
AB
=
2
3

∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
EG=DF;∠EGH=∠HFD;GH=FH,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
如图,过H点作HM⊥CD于M,
设HM=x,则26x,CD=6x,
则S△DHC=1
2
×HM×CD=3x2,S△EDH=
1
2
×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确;
故选D.
点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.
23.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;
③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由
∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;
④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;
⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是
∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;
【详解】
①∵△ABC和△CDE为等边三角形
∴AC=BC,CD=CE,∠BCA=∠DCB=60°
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴AD=BE,故①正确;
由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°
∴△CQB≌△CPA(ASA),
∴AP=BQ,故②正确;
∵△CQB≌△CPA,
∴PC=PQ,且∠PCQ=60°
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,故③正确,
∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,
∴PD≠CD,
∴DE≠DP,故④DE=DP错误;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,
∴∠AOE=120°,故⑤正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.
24.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC
的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8 B.10 C.42D.82
【答案】A
【解析】
【分析】
将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.
【详解】
解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,
根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,
∴△ABE是等腰直角三角形,
∴∠ABE=45°,
又∵∠ABC=45°,
∴∠EBC=90°,
∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,
∴∠BDF=∠ECB
在△EBC和△BFD中
EBC=BFD=90
ECB=BDF
EC=BD
⎧∠∠

∠∠



∴△EBC≌△BFD(AAS)
∴DF=BC=4
∴△DBC的面积=
11
BC DF=44=8
22
⋅⨯⨯
故选A.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.
25.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )
A.AD+BC=AB B.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
【分析】
根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.
【详解】
∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.
∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;
与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;
∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=
1
2
∠EOD,∠BOC=
1
2
∠MOE,∴∠AOB=
1
2
(∠EOD+∠MOE)=
1
2
×180°=90°,故C选项结论正确;
在Rt△AOD和Rt△AOE中,
AO AO
AD AE
=


=

,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理
可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.
故选B.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.
26.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
【详解】
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,
45
APE CPF
AP PC
EAP C
∠∠



⎪∠∠︒



==

∴△APE≌△CPF(ASA),
∴AE=CF,故①②正确;
∵△AEP≌△CFP,同理可证△APF≌△BPE,
∴△EFP是等腰直角三角形,故③错误;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=1
2
S△ABC.故④正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.
27.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正确的是( )
A.①③B.①②④C.①③④D.①②③④
【答案】C
【解析】
【分析】
由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=
∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.
【详解】
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,且∠ACD=15°,
∵∠BCD=30°,
∵∠BAC=∠BDC=90°,
∴点A,点C,点B,点D四点共圆,
∴∠ADC=∠ABC=45°,故①符合题意,
∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,
∵DF为∠BDA的平分线,
∴∠ADF=∠BDF,
∵∠AFD=∠BDF+∠DBF>∠ADF,
∴AD≠AF,故②不合题意,
如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,
∵DH =AD ,∠HDF =∠ADF ,DF =DF ,
∴△ADF ≌△HDF(SAS)
∴∠DHF =∠DAF =30°,AF =HF ,
∵∠DHF =∠HBF+∠HFB =30°,
∴∠HBF =∠BFH =15°,
∴BH =HF ,
∴BH =AF ,
∴BD =BH+DH =AF+AD ,故③符合题意,
∵∠ADC =45°,∠DAB =30°=∠BCD ,
∴∠BED =∠ADC+∠DAB =75°,
∵GD =DE ,∠BDG =∠BDE =90°,BD =BD ,
∴△BDG ≌△BDE(SAS)
∴∠BGD =∠BED =75°,
∴∠GBC =180°﹣∠BCD ﹣∠BGD =75°,
∴∠GBC =∠BGC =75°,
∴BC =BG ,
∴BC =BG =2DE+EC ,
∴BC ﹣EC =2DE ,故④符合题意,
故选:C.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,
28.如图,ABC ∆中,45ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论正确的有( )个
①BF AC =;②12
AE BF =;③67.5A ∠=;④DGF ∆是等腰三角形;⑤ADGE GHCE S S =四边形四边形.
A .5个
B .4个
C .3个
D .2个
【答案】B
【解析】
【分析】 只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.
【详解】
∵CD ⊥AB ,BE ⊥AC ,
∴∠BDC =∠ADC =∠AEB =90°,
∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,
∴∠A =∠DFB ,
∵∠ABC =45°,∠BDC =90°,
∴∠DCB =90°−45°=45°=∠DBC ,
∴BD =DC ,
在△BDF 和△CDA 中
BDF CDA A DFB
BD CD ∠∠⎧⎪∠∠⎨⎪⎩
===, ∴△BDF ≌△CDA (AAS ),
∴BF =AC ,故①正确.
∵∠ABE =∠EBC =22.5°,BE ⊥AC ,
∴∠A =∠BCA =67.5°,故③正确,
∴BA =BC ,
∵BE ⊥AC ,
∴AE =EC =
12AC =12
BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,
∴∠ABE =∠CBE =22.5°,
∵∠BDF =∠BHG =90°,
∴∠BGH =∠BFD =67.5°,
∴∠DGF =∠DFG =67.5°,
∴DG =DF ,故④正确.
作GM⊥AB于M.
∵∠GBM=∠GBH,GH⊥BC,
∴GH=GM<DG,
∴S△DGB>S△GHB,
∵S△ABE=S△BCE,
∴S四边形ADGE<S四边形GHCE.故⑤错误,
∴①②③④正确,
故选:B.
【点睛】
此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.
29.如图,AO OM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )
A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化
【答案】B
【解析】
【分析】
作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.
【详解】
如图,过点E作EN⊥BM,垂足为点N,
∵∠AOB=∠ABE=∠BNE=90°,
∴∠ABO+∠BAO=∠ABO+∠NBE=90°,
∴∠BAO=∠NBE ,
∵△ABE 、△BFO 均为等腰直角三角形,
∴AB=BE ,BF=BO ;
在△ABO 与△BEN 中,
BAO NBE AOB BNE AB BE ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△ABO ≌△BEN (AAS ),
∴BO=NE ,BN=AO ;
∵BO=BF ,
∴BF=NE ,
在△BPF 与△NPE 中,
FBP ENP FPB EPN BF NE ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△BPF ≌△NPE (AAS ),
∴BP=NP=
12BN ;而BN=AO , ∴BP=12AO=12
×8=4, 故选B .
【点睛】
本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.
30.如图,
,,,点D 、E 为BC 边上的两点,且,连接EF 、BF 则下列结论:≌;≌;;,其中正确的有( )个.
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;
由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;
先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;
先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】
‚解:①∵∠DAF=90°,∠DAE=45°,
∴∠FAE=∠DAF-∠DAE=45°.
在△AED与△AEF中,

∴△AED≌△AEF(SAS),①正确;
②∵△AED≌△AEF,
∴AF=AD,
∵,
∴∠FAB=∠CAD,
∵AB=AC,
∴≌,②正确;
③∵∠BAC=∠DAF=90°,
∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.
在△ACD与△ABF中,

∴△ACD≌△ABF(SAS),
∴CD=BF,
由①知△AED≌△AEF,
∴DE=EF.
在△BEF中,∵BE+BF>EF,
∴BE+DC>DE,③正确;
④由③知△ACD≌△ABF,
∴∠C=∠ABF=45°,
∵∠ABE=45°,
∴∠EBF=∠ABE+∠ABF=90°.④正确.
故答案为D.
【点睛】
本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.。

相关文档
最新文档