四川外语学院重庆第二外国语学校高考数学等差数列习题及答案doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知数列{}n a 的前n 项和为n S ,11
2
a =
,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( )
A .21
4
a =-
B .
648
211S S S =+ C .数列{}12n n n S S S +++-的最大项为
712
D .1121
n n n n n
T T T n n +-=
++ 2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8
B .4
C .12
D .16
3.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7
B .12
C .14
D .21
4.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62
10S S ,则34a a +=( )
A .2
B .3
C .4
D .5
5.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231
n n a n b n =+,则2121S T 的值为( )
A .
13
15
B .
2335
C .
1117 D .
49
6.已知数列{}n a 的前n 项和n S 满足()
12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭
的前10项的和为
( ) A .
89
B .
910
C .10
11
D .
1112
7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29
B .38
C .40
D .58
8.设等差数列{}n a 的前n 项和为n S ,10a <且11101921
a a =,则当n S 取最小值时,n 的值为( ) A .21
B .20
C .19
D .19或209.题目
文件丢失!
10.已知数列{}n a 中,132a =
,且满足()*
1112,22
n n n a a n n N -=+≥∈,若对于任意*
n N ∈,都有
n a n
λ
≥成立,则实数λ的最小值是( ) A .2
B .4
C .8
D .16
11.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24
B .39
C .104
D .52
12.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .
53
B .2
C .8
D .13
13.已知等差数列{}n a 的前n 项和为n S ,且2
n S n =.定义数列{}n b 如下:
()*1m m b m m
+∈N 是使不等式()
*
n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++
+=( )
A .25
B .50
C .75
D .100
14.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103
B .107
C .109
D .105
15.设等差数列{}n a 的前n 和为n S ,若(
)*
111,m m a a a m m N +-<<->∈,则必有( )
A .0m S <且10m S +>
B .0m S >且10m S +>
C .0m S <且10m S +<
D .0m S >且10m S +<
16.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,1
2,2n n a n n =⎧=⎨
≥⎩
17.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60
B .120
C .160
D .240
18.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
19.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=
B .560a a +=
C .670a a +=
D .890a a +=
20.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24
B .36
C .48
D .64
二、多选题
21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =
B .733S =
C .135********a a a a a +++⋅⋅⋅+=
D .
222
122019
20202019
a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4
n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n
= B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1
{
}n
S 为递增数列 23.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >
B .130S >,140S <,则78a a >
C .若915S S =,则n S 中的最大值是12S
D .若2
n S n n a =-+,则0a =24.题目
文件丢失!
25.题目文件丢失!
26.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2
C .0
D .2
27.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
28.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,
则下列四个选项中正确的有( ) A .59823a a S +=
B .27S S =
C .5S 最小
D .50a =
29.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<
B .2
24154
a a +≥
C .
15
111a a +> D .1524a a a a ⋅>⋅
30.已知数列{}n a 满足:13a =,当2n ≥
时,)
2
11n a =
-,则关于数列
{}n a 说法正确的是( )
A .28a =
B .数列{}n a 为递增数列
C .数列{}n a 为周期数列
D .2
2n a n n =+
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.D 【分析】
当2n ≥且*
n ∈N 时,由1n n n a S S -=-代入120n
n n a S S -+=可推导出数列1n S ⎧⎫
⎨⎬⎩⎭
为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫
⎨⎬⎩⎭
的通项公式,由221a S S =-可判断A
选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】
当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得11111
2020n n n n n n
S S S S S S ----+=⇒-+=, 整理得
1
112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨
⎬⎩⎭
为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111
424
a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫

⎬⎩⎭
为等差数列,显然有648211S S S =+,B 选项正确;
C 中,记()()
1212211221n n n n b S S n n n S ++=+-=
+-++, ()()()
1123111
212223n n n n b S S S n n n ++++=+-=+-+++,
()()()
1111602223223n n n b b n n n n n n ++∴-=
--=-<++++,故{}n b 为递减数列, ()1123max 1117
24612
n b b S S S ∴==+-=
+-=,C 选项正确; D 中,
12n n S =,()()2212
n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()111121121
11n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.
故选:D . 【点睛】
关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩来求解,在变形
过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 2.A 【分析】
设项数为2n ,由题意可得()21
212
n d -⋅=,及6S S nd -==奇偶可求解. 【详解】
设等差数列{}n a 的项数为2n , 末项比首项大
212
, ()212121;2
n a a n d ∴-=-⋅=① 24S =奇,30S =偶,
30246S S nd ∴-=-==奇偶②.
由①②,可得3
2
d =,4n =, 即项数是8, 故选:A. 3.C
【分析】
判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】
∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()
1422
a a a a S ++===. 故选:C 4.B 【分析】
根据等差数列的性质,由题中条件,可直接得出结果. 【详解】
因为n S 为等差数列{}n a 的前n 项和,公差1d =,6
2
10S S ,
所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 5.C 【分析】
利用等差数列的求和公式,化简求解即可 【详解】
2121S T =12112121()21()22
a a
b b ++÷=121121a a b b ++=1111a b =211
3111⨯⨯+=1117.
故选C 6.C 【分析】 首先根据()12n n n S +=得到n a n =,设1
1111n n n b a a n n +==-+,再利用裂项求和即可得
到答案. 【详解】
当1n =时,111a S ==, 当2n ≥时,()()11122
n n n n n n n a S S n -+-=-=
-=. 检验111a S ==,所以n a n =. 设()11111
11
n n n b a a n n n n +=
==-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
…. 故选:C
7.A 【分析】
根据等差中项的性质,求出414a =,再求10a ; 【详解】
因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 8.B 【分析】 由题得出1392
a d =-,则2202n d
S n dn =-,利用二次函数的性质即可求解.
【详解】
设等差数列{}n a 的公差为d , 由
111019
21
a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392
a d =-
,10a <,0d ∴>,
()211+
2022
n n n d
S na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.
故选:B. 【点睛】
方法点睛:求等差数列前n 项和最值,由于等差数列
()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
9.无
10.A 【分析】 将11122
n n n a a -=
+变形为11221n n n n a a --=+,由等差数列的定义得出2
2n n n a +=,从而得
出()
22n
n n λ+≥,求出()max
22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,111
22
n n n a a -=
+,所以11221n n n n a a --=+,而1123a =
所以数列{
}
2n
n a 是首项为3公差为1的等差数列,故22n
n a n =+,从而2
2n n
n a +=
. 又因为
n a n λ
≥恒成立,即()22n
n n λ+≥恒成立,所以()max
22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()
()()()()
1
*121322,221122n n n
n n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨
+-+⎪≥⎪⎩N 得2n = 所以()()2
max
2222222n n n +⨯+⎡⎤
==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 11.D 【分析】
根据等差数列的性质计算求解. 【详解】
由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,
74a =,∴11313713()
13134522
a a S a +=
==⨯=. 故选:D . 12.B 【分析】
设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】
设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 13.B 【分析】
先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到2121
2
k k b --=,结合等差数列的求和公式,即可求解. 【详解】
由题意,等差数列{}n a 的前n 项和为n S ,且2
n S n =,可得21n a n =-,
因为n a m ≥,即21n m -≥,解得12
m n +≥

当21m k =-,(*
k N ∈)时,
1
m m b k m
+=,即()()11212m m m mk m b m m +===++, 即2121
2
k k b --=
, 从而()135191
13519502
b b b b ++++=
++++=.
故选:B. 14.B 【分析】
根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】
根据题意可知正整数能被21整除余2,
21+2n a n ∴=, 5215+2107a ∴=⨯=.
故选:B. 15.D 【分析】
由等差数列前n 项和公式即可得解. 【详解】
由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()
02
m m m a a S ++++=<. 故选:D. 16.B 【分析】
利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】
2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,
当1n =时,111a S ==,上式也成立,
()
*21n a n n N ∴=-∈,
故选:B. 【点睛】
易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即
11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结
果,考查学生的分类思想与运算求解能力,属于基础题.
17.B 【分析】
利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】
因为7916+=a a ,
所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()
11515815151581202
a a S a +===⨯=. 故选:B 18.D 【分析】
由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】
被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则
()8151157n a n n =+-=-,令1572020n a n =-≤,解得:2135
15
n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】
关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 19.B 【分析】
由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】
由等差数列的求和公式可得()
110101002
a a S +=
=,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 20.B 【分析】
利用等差数列的性质进行化简,由此求得9S 的值. 【详解】
由等差数列的性质,可得345675520a a a a a a ++++==,则54a =
19592993622
a a a
S +=
⨯=⨯= 故选:B
二、多选题
21.ABCD 【分析】
由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】
对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.
对D ,斐波那契数列总有21n n n a a a ++=+,则2
121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-
2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;
故选:ABCD. 【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 22.AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】
11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1
11
04n n n S S S -≠∴
-= 因此数列1{
}n S 为以1
1
4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n
=+-=∴=,即A 正确;
当2n ≥时111144(1)4(1)
n n n a S S n n n n -=-=
-=--- 所以1,141,24(1)
n n a n n n ⎧
=⎪⎪
=⎨⎪-≥-⎪⎩,即B ,C 不正确;
故选:AD 【点睛】
本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题. 23.AD 【分析】
对于A ,作差后利用等差数列的通项公式运算可得答案;
对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;
对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】
对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,
所以2
4619150a a a a d -=>,所以4619a a a a >,故A 正确;
对于B ,因为130S >,140S <,所以
77713()
1302
a a a +=>,即70a >,
787814()
7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以
7878||||0a a a a -=+<,即78||||a a <,故B 不正确;
对于C ,因为915S S =,所以101114150a a a a ++
++=,所以12133()0a a +=,即
12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值
是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;
对于D ,若2
n S n n a =-+,则11a S a ==,2n ≥时,
221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,
所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】
关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.
25.无
26.AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则
11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣

,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 27.ACD 【分析】
由题可得16a d =-,0d <,21322
n d d S n n =
-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022
n d d
S n n =
->,解出即可判断D.
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,
10a >,0d ∴<,且()21113+
222
n n n d d
S na d n n -==-, 对于A ,
81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =
-的对称轴为13
2n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =
⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;
对于D ,令213022
n d d
S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】
方法点睛:由于等差数列()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 28.BD 【分析】
设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】
设等差数列{}n a 的公差为d ,则81187
88282
S a d a d ⨯=+
=+,91198
99362
S a d a d ⨯=+
=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,
解得14a d =-,()()115n a a n d n d ∴=+-=-,()()21
9122
n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2
8
88942
d S d -⨯=
=-,A 选项错误; 对于B 选项,()2
2
29272
d S
d -⨯=
=-,()2
7
79772
d S
d -⨯=
=-,B 选项正确;
对于C 选项,()2
298192224n d d S n n n ⎡⎤
⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
.
若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】
在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 29.ABC 【分析】
由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】
由题知,只需1220
010a d d d =->⎧⇒<<⎨
>⎩
, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;
()()2
2
22415
223644
a a d d d d +=-++=-+>≥
,B 正确; 2
1511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅
+=-<,所以1524a a
a a ⋅<⋅,
D 错误. 【点睛】
本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断. 30
.ABD 【分析】
由已知递推式可得数列
2=,公差为1的等差数列,结合选项
可得结果. 【详解】
)
2
11n
a =
-得)
2
11n
a +=

1=,
即数列
2=,公差为1的等差数列,
2(1)11n n =+-⨯=+,
∴2
2n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,
所以易知ABD 正确, 故选:ABD. 【点睛】
本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.。

相关文档
最新文档