藁城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

藁城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 在复平面内,复数Z=+i 2015对应的点位于(

A .第四象限
B .第三象限
C .第二象限
D .第一象限
2. 已知函数,且,则( )
x x x f 2sin )(-=)2(3
1(log ),2
3(ln 3.02f c f b f a ===A .
B .
C .
D .c a b >>a c b >>a b c >>b a c
>>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.3. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )
A .10
B .40
C .50
D .80
4. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为(

A .1
B .2
C .3
D .4
5. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为(

A .钱
B .钱
C .钱
D .钱
6. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )
A .7
B .14
C .28
D .56
7. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )
A .(﹣,﹣2]
B .[﹣1,0]
C .(﹣∞,﹣2]
D .(﹣,+∞)
8. 函数,的值域为( )
2
-21y x x =-[0,3]x ∈ A. B. C. D.
9. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟④不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是( )
A .没有同时报考“华约” 和“卓越”联盟的学生
B .报考“华约”和“京派”联盟的考生一样多
C .报考“北约” 联盟的考生也报考了“卓越”联盟
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
D .报考“京派” 联盟的考生也报考了“北约”联盟
10.在△ABC 中,若a=2bcosC ,则△ABC 一定是( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .等边三角形
11.下列说法正确的是(

A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
12.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )
A .为直角三角形
B .为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
二、填空题
13.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为
. 
14.的展开式中,常数项为___________.(用数字作答)8
1()x x
【命题意图】本题考查用二项式定理求指定项,基础题.15.已知f (x )=
,则f[f (0)]= .
16.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 
17.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .
18.已知函数f (x )=,g (x )=lnx ,则函数y=f (x )﹣g (x )的零点个数为 .
三、解答题
19.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该[10,60]旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分[10,20),[20,30),[30,40),[40,50),[50,60]别记为,其频率分布直方图如下图所示.
,,,,A B C D E
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
(Ⅱ)该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中,,C D E 6随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率.
C 20.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;
{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.
(){}
1n
n n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
21.已知双曲线C :与点P (1,2).
(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;
(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.
22.(1)计算:(﹣)0+lne﹣+8+log62+log63;
(2)已知向量=(sinθ,cosθ),=(﹣2,1),满足∥,其中θ∈(,π),求cosθ的值.
23.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥
A1B1,D为棱A1B1上的点.
(1)证明:DF⊥AE;
(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.
24.已知函数f(x)=lnx﹣a(1﹣),a∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为0.
(i)求实数a的值;
(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.
藁城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:复数Z=+i2015=﹣i=﹣i=﹣.
复数对应点的坐标(),在第四象限.
故选:A.
【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.
2.【答案】D
3.【答案】C
【解析】
二项式定理.
【专题】计算题.
【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.
【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k
当k﹣1时,C5k25﹣k=C5124=80,
当k=2时,C5k25﹣k=C5223=80,
当k=3时,C5k25﹣k=C5322=40,
当k=4时,C5k25﹣k=C54×2=10,
当k=5时,C5k25﹣k=C55=1,
故展开式中x k的系数不可能是50
故选项为C
【点评】本题考查利用二项展开式的通项公式求特定项的系数.
4.【答案】B
【解析】解:∵M∩{1,2,4}={1,4},
∴1,4是M中的元素,2不是M中的元素.
∵M⊆{1,2,3,4},
∴M={1,4}或M={1,3,4}.
故选:B.
5.【答案】B
【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,
则由题意可知,a ﹣2d+a ﹣d=a+a+d+a+2d ,即a=﹣6d ,又a ﹣2d+a ﹣d+a+a+d+a+2d=5a=5,∴a=1,则a ﹣2d=a ﹣2×=

故选:B . 
6. 【答案】C
【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.
∴函数f (x )关于直线x=1对称,
∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.
则{a n }的前28项之和S 28==14(a 6+a 23)=28.
故选:C .
【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题. 
7. 【答案】A
【解析】解:∵f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,故函数y=h (x )=f (x )﹣g (x )=x 2﹣5x+4﹣m 在[0,3]上有两个不同的零点,
故有,即
,解得﹣<m ≤﹣2,故选A .
【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题. 
8. 【答案】A 【解析】
试题分析:函数在区间上递减,在区间上递增,所以当x=1时,
()2
2
2112y x x x =--=--[]0,1[]1,3,当x=3时,,所以值域为。

故选A 。

()()min 12f x f ==-()()max 32f x f ==[]2,2-考点:二次函数的图象及性质。

9. 【答案】D
【解析】集合表示报考“北约”联盟的学生,集合表示报考“华约”联盟的学生,A B 集合表示报考“京派”联盟的学生,集合表示报考“卓越”联盟的学生,
C D
由题意得,∴

U A B B C
D C D B =∅
⎧⎪⊆⎪⎨=∅⎪⎪=⎩I I ð
U A D B C D B
⊆⎧⎪
=⎨⎪=⎩ð选项A .,正确;
B D =∅I 选项B .,正确; B
C =选项C .,正确. A
D ⊆10.【答案】B
【解析】解:由余弦定理得cosC=,
把cosC 代入a=2bcosC 得:,
∴a 2=a 2+b 2﹣c 2,
∴c 2=b 2.又b 和c 都大于0,则b=c ,即三角形为等腰三角形.故选B
【点评】此题考查了余弦定理,以及三角形的形状判定,利用余弦定理表示出cosC 是本题的突破点. 
11.【答案】C 【解析】

点:几何体的结构特征.12.【答案】A
【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得,
消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),
=(x 2,x 22),
得到=x 1x 2+(x 1x 2)2=﹣1+1=0,



∴△AOB 为直角三角形.故选A
A D
B=C
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直. 
二、填空题
13.【答案】 (x ﹣5)2+y 2=9 .
【解析】解:抛物线y 2=20x 的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x ±4y=0
由题意,r
=3,则所求方程为(x ﹣5)2+y 2=9
故答案为:(x ﹣5)2+y 2=9.
【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题. 
14.【答案】70
【解析】的展开式通项为,所以当时,常数项为
81
()x x -8821881()(1)r r
r r r r r T C x C x x
--+=-=-4r =.
448(1)70C -=15.【答案】 1 .
【解析】解:f (0)=0﹣1=﹣1,f[f (0)]=f (﹣1)=2﹣1=1,故答案为:1.
【点评】本题考查了分段函数的简单应用. 
16.【答案】 .
【解析】解:∵f (x )=cos 2x+sinx=1﹣sin 2x+sinx=﹣+,
故当sinx=时,函数f (x )取得最大值为,故答案为:.
【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题. 
17.【答案】 .
【解析】解:∵数列{a n}为等差数列,且a3=,
∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,
∴cos(a1+a2+a6)=cos=.
故答案是:.
18.【答案】3
【解析】解:令g(x)=f(x)﹣log4x=0得f(x)=log4x
∴函数g(x)=f(x)﹣log4x的零点个数即为函数f(x)与函数y=log4x的图象的交点个数,
在同一坐标系中画出函数f(x)与函数y=log4x的图象,如图所示,
有图象知函数y=f(x)﹣log4 x上有3个零点.
故答案为:3个.
【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.
三、解答题
19.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
20.【答案】
【解析】(1)设等差数列的首项为,公差为,
{}n a 1a d 则由,,得,解得,……………3分
990S =15240S =11
93690
15105240a d a d +=⎧
⎨+=⎩12a d ==所以,即,
2(n 1)22n a n =+-⨯=2n a n =,即.……………5分
(1)
22(1)2n n n S n n n -=+⨯=+1n S n n =+(

21.【答案】
【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…
当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,
并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)
(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点
所以l的方程为…
(ⅱ)当2﹣k2≠0,即k≠±时
△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),
①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.
所以l的方程为3x﹣2y+1=0…
综上知:l的方程为x=1或或3x﹣2y+1=0…
(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),
则2x12﹣y12=2,2x22﹣y22=2,
两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…
又∵x1+x2=2,y1+y2=4,
∴2(x1﹣x2)=4(y1﹣y2)
即k AB==,…
∴直线AB的方程为y﹣2=(x﹣1),…
代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,
由于判别式为482﹣4×15×34>0,则该直线AB存在.…
【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题. 
22.【答案】
【解析】(本小题满分12分)
解析:(1)原式=1+1﹣5+2+1=0; …(6分)
(2)∵向量=(sinθ,cosθ),=(﹣2,1),满足∥,
∴sinθ=﹣2cosθ,①…(9分)
又sin2θ+cos2θ+=1,②
由①②解得cos2θ=,…(11分)
∵θ∈(,π),∴cosθ=﹣. …(12分)
【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力. 
23.【答案】
【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,
又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,
又∵AC⊂面A1ACC1,∴AB⊥AC,
以A为原点建立如图所示的空间直角坐标系A﹣xyz,
则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),
设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),
则D(λ,0,1),所以=(,,﹣1),
∵=(0,1,),∴•==0,所以DF⊥AE;
(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.
理由如下:
设面DEF的法向量为=(x,y,z),则,
∵=(,,),=(,﹣1),
∴,即,
令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).
由题可知面ABC的法向量=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为,
∴|cos<,>|==,即=,
解得或(舍),所以当D为A1B1中点时满足要求.
【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.
24.【答案】
【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.
当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;
当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.
所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).
综上述:a≤0时,f(x)的单调递增区间是(0,+∞);
a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).
(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;
当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,
令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,
由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.
所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.
因此,a=1.
(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.
由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.
猜想当n≥3,n∈N时,2<a n<.
下面用数学归纳法进行证明.
①当n=3时,a3=+ln2,故2<a3<.成立.
②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.
则当n=k+1时,a k+1=1++lna k,
由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,
所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,
h()=1++ln<1++1<.
故2<a k+1<成立,即当n=k+1时,不等式成立.
根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.
综上可得,n>1时[a n]=2.
【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,
考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.。

相关文档
最新文档