复数练习题(有答案) 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.已知复数2z i =-,若i 为虚数单位,则
1i
z
+=( ) A .3155i + B .
1355i + C .113
i +
D .
13
i + 2.
212i
i
+=-( ) A .1
B .−1
C .i -
D .i
3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( ) A .1
B .0
C .-1
D .1+i
4.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )
A .6 B
C .5
D 5.设2i
z i
+=,则||z =( )
A B C .2
D .5
6.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z
z
,其结果一定是实数的是( ) A .①②
B .②④
C .②③
D .①③
7.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )
A .1
B
C .2
D .4
8.已知复数z 的共轭复数212i
z i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1
B .-1
C .i
D .i -
9.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )
A B .2
C .10
D
10.复数2i
i -的实部与虚部之和为( ) A .
35 B .15- C .15
D .
3
5
11.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1-
B .3
C .3i
D .i -
12.设复数z 满足41i
z i
=+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
13.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5
C .6
D .8
14.复数21i
i
+的虚部为( ) A .1- B .1
C .i
D .i -
15.若复数11i
z i
,i 是虚数单位,则z =( ) A .0
B .
12
C .1
D .2
二、多选题
16.已知复数(),z x yi x y R =+∈,则( ) A .2
0z
B .z 的虚部是yi
C .若12z i =+,则1x =,2y =
D .z =
17.设复数z 满足1
z i z
+=,则下列说法错误的是( ) A .z 为纯虚数
B .z 的虚部为12
i -
C .在复平面内,z 对应的点位于第三象限
D .2
z =
18.已知复数1cos 2sin 22
2z i π
πθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )
A .复数z 在复平面上对应的点可能落在第二象限
B .z 可能为实数
C .2cos z θ=
D .
1
z 的实部为12
-
19.若复数z 满足()1z i i +=,则( )
A .1z i =-+
B .z 的实部为1
C .1z i =+
D .22z i =
20.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数
D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称
21.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =
,则12=z z B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
22.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数(
)(
)
2
2
34224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z
23.已知i 为虚数单位,以下四个说法中正确的是( ).
A .234i i i i 0+++=
B .3i 1i +>+
C .若()2
z=12i +,则复平面内z 对应的点位于第四象限
D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 24.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限
C .123z z +=
D .12z z =25.下列命题中,正确的是( ) A .复数的模总是非负数
B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应
C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限
D .相等的向量对应着相等的复数
26.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根
27.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )
A .1ω=
B .2ω的虚部为
C .31ω=-
D .
1
ω
在复平面内对应的点在第四象限
28.下面四个命题,其中错误的命题是( ) A .0比i -大 B .两个复数当且仅当其和为实数时互为共轭
复数
C .1x yi i +=+的充要条件为1x y ==
D .任何纯虚数的平方都是负实数 29.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数
D .纯虚数z 的共轭复数是z -
30.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小
C .若复数1z ,2z 满足22
12
0z z +=,则120z z == D .i -的平方等于1
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.B 【分析】
利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】
利用复数的除法法则可化简1i
z
+,即可得解. 【详解】
2z i =-,()()()()12111313
222555
i i i i i i z i i i +++++∴
====+--+. 故选:B.
2.D 【分析】
利用复数的除法运算即可求解. 【详解】 , 故选:D
解析:D 【分析】
利用复数的除法运算即可求解.
【详解】
()()()()22
21222255121212145
i i i i i i
i i i i i +++++====--+-, 故选:D
3.C 【分析】
利用复数和三角函数的性质,直接代入运算即可 【详解】 由题意可知=, 故选C
解析:C 【分析】
利用复数和三角函数的性质,直接代入运算即可 【详解】
由题意可知i e π=cos sin 101i ππ+=-+=-, 故选C
4.C 【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】 , , 所以,, 故选:C.
解析:C 【分析】
利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】
2z i =-,
(12)(2)(12)43z i i i i ∴⋅+=-+=+,
所以,5z =, 故选:C.
5.B 【分析】
利用复数的除法运算先求出,再求出模即可. 【详解】
, .
故选:B .
解析:B 【分析】
利用复数的除法运算先求出z ,再求出模即可. 【详解】
()
22212i i
i z i i i
++=
==-,
∴z ==
故选:B .
6.D 【分析】
设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.
解析:D 【分析】
设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】
设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,
2222
2z a bi a b abi
z a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.
7.B 【分析】
由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】
因为的实部为,所以可设复数, 则其共轭复数为,又, 所以由,可得,即,因此. 故选:B.
解析:B 【分析】
由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】
因为z ,所以可设复数(),z yi x R y R =∈∈,
则其共轭复数为z yi =
,又z z =,
所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =
故选:B.
8.A 【分析】
先化简,由此求得,进而求得的虚部. 【详解】 ,
所以,则的虚部为. 故选:A
解析:A 【分析】
先化简z ,由此求得z ,进而求得z 的虚部. 【详解】
()()()()212251212125
i i i i
z i i i i ----=
===-++-, 所以z
i ,则z 的虚部为1.
故选:A
9.D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.
解析:D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】
因为1z i =+,
所以1z i =-,12z i +=+,
所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.
10.C 【分析】
利用复数代数形式的乘除运算化简得答案. 【详解】
,的实部与虚部之和为. 故选:C 【点睛】
易错点睛:复数的虚部是,不是.
解析:C 【分析】
利用复数代数形式的乘除运算化简得答案. 【详解】
()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555
-+=. 故选:C 【点睛】
易错点睛:复数z a bi =+的虚部是b ,不是bi .
11.B 【分析】
化简,利用定义可得的虚部. 【详解】
则的虚部等于 故选:B
解析:B 【分析】
化简12z z ⋅,利用定义可得12z z ⋅的虚部. 【详解】
()()1212113z z i i i ⋅=+⋅+=-+
则12z z ⋅的虚部等于3 故选:B
12.D
【分析】
先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案 【详解】 解:因为, 所以,
所以共轭复数在复平面内的对应点位于第四象限, 故选:D
解析:D 【分析】
先对41i
z i
=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】
解:因为244(1)4(1)=2(1)22221(1)(1)2
i i i i i z i i i i i i i i --=
==-=-=+++-, 所以22z i =-,
所以共轭复数z 在复平面内的对应点位于第四象限, 故选:D
13.D 【分析】
利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D
解析:D 【分析】
利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】
()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=
故选:D
14.B 【分析】
将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果. 【详解】 ,故虚部为1. 故选:B.
解析:B 【分析】
将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果. 【详解】
22(1)11(1)(1)
i i i i i i i -==+++-,故虚部为1. 故选:B.
15.C 【分析】
由复数除法求出,再由模计算. 【详解】 由已知, 所以. 故选:C .
解析:C 【分析】
由复数除法求出z ,再由模计算. 【详解】
由已知21(1)21(1)(1)2
i i i
z i i i i ---=
===-++-, 所以1z i =-=. 故选:C .
二、多选题 16.CD 【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误. 【详解】
对于A 选项,取,则,A 选项错误; 对于B 选项,复数的虚部为,B 选项错误;
解析:CD 【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误. 【详解】 对于A 选项,取z
i ,则210z =-<,A 选项错误;
对于B 选项,复数z 的虚部为y ,B 选项错误;
对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;
对于D 选项,z =
D 选项正确.
故选:CD.
【点睛】
本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 17.AB
【分析】
先由复数除法运算可得,再逐一分析选项,即可得答案.
【详解】
由题意得:,即,
所以z 不是纯虚数,故A 错误;
复数z 的虚部为,故B 错误;
在复平面内,对应的点为,在第三象限,故C 正确
解析:AB
【分析】 先由复数除法运算可得1122
z i =-
-,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122
z i i -=
=---, 所以z 不是纯虚数,故A 错误;
复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为1
1(,)22
--,在第三象限,故C 正确;
2
z ==,故D 正确. 故选:AB
【点睛】
本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.
18.BC
【分析】
由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.
【详解】
因为,所以,所以,所以,所以A 选
解析:BC
【分析】 由22π
π
θ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部
sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝
⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得
11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.
【详解】 因为22π
π
θ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,
所以A 选项错误;
当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭
时,复数z 是实数,故B 选项正确;
2cos z θ===,故C 选项正确:
()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22
θθ+=+,故D 不正确. 故选:BC
【点睛】
本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.
19.BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
【详解】
解:由,得,
所以z 的实部为1,,,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
解:由()1z i i +=,得2(1)2(1)11(1)(1)2
i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题
20.AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于:复数是实数的充要条件是,显然成立,故正确;
对于:若复数是纯虚数则且,故错误;
对于:若,互为共轭复数
解析:AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;
对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;
对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2
122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;
故选:AC
【点睛】
本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.
21.BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;
当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;
因为当两个复数相等时,模一定相等,所以A 项正确;
故选:BCD.
【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
22.AB
【分析】
求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.
【详解】
解:对于,复数的模,故正确;
对于,若复数,则,在复平面内对应的点的坐标为,在第四
解析:AB
【分析】
求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.
【详解】
解:对于A ,复数34z i =+的模||5z ==,故A 正确;
对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;
对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,
则223402240m m m m ⎧+-=⎨--≠⎩
,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.
故选:AB .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 23.AD
根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.
【详解】
,则A 正确;
虚数不能比较大小,则B 错误;
,则,
解析:AD
【分析】
根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.
【详解】
234110i i i i i i +++=--+=,则A 正确;
虚数不能比较大小,则B 错误;
()22
1424341z i i i i =++=+-+=,则34z i =--,
其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣
,
=,解得0x =
则z 在复平面内对应的点的轨迹为直线,D 正确;
故选:AD
【点睛】
本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.
24.AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,对应的
解析:AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;
对于C 选项,122+=+z z i ,则12z z +==,故C 错;
对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z =
=D 正确.
故选:AD
【点睛】
本题考查复数的相关概念及复数的计算,较简单. 25.ABD
【分析】
根据复数的几何意义逐项判断后可得正确的选项.
【详解】
设复数,
对于A ,,故A 正确.
对于B ,复数对应的向量为,
且对于平面内以原点为起点的任一向量,其对应的复数为,
故复数集与
解析:ABD
【分析】
根据复数的几何意义逐项判断后可得正确的选项.
【详解】
设复数(),z a bi a b R =+∈,
对于A ,0z =≥,故A 正确.
对于B ,复数z 对应的向量为(),OZ a b =,
且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,
且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,
故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.
对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,
故C 错.
对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .
【点睛】
本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.
26.ABCD
【分析】
利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.
【详解】
因为(1﹣i )z =
解析:ABCD
【分析】
利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.
【详解】
因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)
2i i i i i i +-+===-+-+,所以
||z ==A 正确; 所以1i z =--,故B 正确;
由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;
因为2
(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.
故选:ABCD.
【点睛】
本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 27.AB
【分析】
求得、的虚部、、对应点所在的象限,由此判断正确选项.
【详解】
依题意,所以A 选项正确;
,虚部为,所以B 选项正确;
,所以C 选项错误;
,对应点为,在第三象限,故D 选项错误.
故选
解析:AB
【分析】
求得ω、2ω的虚部、3ω、
1ω
对应点所在的象限,由此判断正确选项. 【详解】
依题意1ω==,所以A 选项正确;
2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭
,虚部为,所以B 选项正确;
22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;
2211112222122222ω----====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
,对应点为1,2⎛- ⎝⎭
,在第三象限,故D 选项错误.
故选:AB
【点睛】
本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.
28.ABC
【分析】
根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.
【详解】
对于A 选项,由于虚数不能比大小,
解析:ABC
【分析】
根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.
【详解】
对于A 选项,由于虚数不能比大小,A 选项错误;
对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,
C 选项错误;
对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()2
20ai a =-<,D 选项正确.
【点睛】
本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.
29.AB
【分析】
由复数的代数形式的运算,逐个选项验证可得.
【详解】
解:因为
当且时复数为纯虚数,此时,故A 错误,D 正确;
当时,复数为实数,故C 正确;
对于B :,则即,故B 错误;
故错误的有AB
解析:AB
【分析】
由复数的代数形式的运算,逐个选项验证可得.
【详解】
解:因为(,)z a bi a b R =+∈
当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;
当0b =时,复数为实数,故C 正确;
对于B :32a bi i -=+,则32a b =⎧⎨
-=⎩即32
a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;
故选:AB
【点睛】
本题考查复数的代数形式及几何意义,属于基础题. 30.AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,且,根据复数相等的性质,则,故正确;
对于选项B ,
解析:AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;
对于选项B ,∵虚数不能比较大小,故正确;
对于选项C ,∵若复数1=z i ,2=1z 满足2212
0z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;
故选:AB .
【点睛】
本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题.。