江苏省南京市2019-2020学年中考数学模拟试题(5)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市2019-2020学年中考数学模拟试题(5)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若2x y +=,2xy =-,则y x
x y
+的值是( ) A .2
B .﹣2
C .4
D .﹣4
2.下列计算正确的是( ) A .a 2+a 2=2a 4
B .(﹣a 2b )3=﹣a 6b 3
C .a 2•a 3=a 6
D .a 8÷a 2=a 4
3.如图,在等腰直角三角形ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )
A .
3
5
B .
34
C .
23
D .
57
4.已知1122()()A x y B x y ,,,两点都在反比例函数k
y x
=图象上,当12x 0x <<时,12y y < ,则k 的取值范围是( ) A .k>0
B .k<0
C .k 0≥
D .k 0≤
5.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米
B .43.510-⨯米
C .53.510-⨯米
D .93.510-⨯米
6.2017年,小榄镇GDP 总量约31600000000元,数据31600000000科学记数法表示为( ) A .0.316×1010
B .0.316×1011
C .3.16×1010
D .3.16×1011
7.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )
A .
B .
C .
D .
8.数据”1,2,1,3,1”的众数是( ) A .1 B .1.5 C .1.6 D .3 9.下列计算正确的是 A .224a a a +=
B .624a a a ÷=
C .352()a a =
D .222)=a b a b --(
10.计算(ab 2)3的结果是( ) A .ab 5
B .ab 6
C .a 3b 5
D .a 3b 6
11.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则AC 的长是( )
A .12
B .14
C .16
D .18
12.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 7 8 9 10 次数 1 4 3
2
A .8、8
B .8、8.5
C .8、9
D .8、10
二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.点 C 在射线 AB 上,若 AB=3,BC=2,则AC 为_____.
14.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.
15.已知反比例函数(0)k
y k x
=
≠,在其图象所在的每个象限内,y 的值随x 的值增大而减小,那么它的图象所在的象限是第__________象限.
16.如图,已知⊙P 的半径为2,圆心P 在抛物线y =12
x 2
﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为_____.
17.某市居民用电价格如表所示:
用电量不超过a千瓦时超过a千瓦时的部分
单价(元/千瓦时)0.5 0.6
小芳家二月份用电200千瓦时,交电费105元,则a=______.
18.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:
月份(x)1月2月3月4月5月6月
销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;
(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
20.(6分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
(1)求抛物线的解析式和顶点坐标;
(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
①若B、C都在抛物线上,求m的值;
②若点C在第四象限,当AC2的值最小时,求m的值.
21.(6分)列方程或方程组解应用题:
去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.
22.(8分)阅读材料,解答问题.
材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(﹣3,9)开始,按点的横坐标依次增加1的规律,
在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、
P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=1
2
(9+1)×2
﹣1
2
(9+4)×1﹣
1
2
(4+1)×1,即△P1P2P3的面积为1.”
问题:
(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);
(2)猜想四边形P n﹣1P n P n+1P n+2的面积,并说明理由(利用图2);
(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形P n﹣1P n P n+1P n+2的面积(直接写出答案).
23.(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目
选手
服装普通话主题演讲技巧
李明85 70 80 85
张华90 75 75 80
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
(1)求证:四边形ADCE是菱形;
(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
25.(10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.
(2)求至少有一辆汽车向左转的概率.
26.(12分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.
(1)试探究线段AE与CG的关系,并说明理由.
(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
②当△CDE为等腰三角形时,求CG的长.
27.(12分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】
因为()2
222x y x xy y +=++,所以()2
22222228x y x y xy +=+-=-⨯-=,因为
22842
y x y x x y xy ++===--,故选D. 2.B 【解析】 【分析】 【详解】
解:A .a 2+a 2=2a 2,故A 错误; C 、a 2a 3=a 5,故C 错误; D 、a 8÷a 2=a 6,故D 错误; 本题选B.
考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方 3.A 【解析】
∵△DEF 是△AEF 翻折而成, ∴△DEF ≌△AEF ,∠A=∠EDF , ∵△ABC 是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°, ∴∠BED=∠CDF ,
设CD=1,CF=x ,则CA=CB=2, ∴DF=FA=2-x ,
∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2-x )2, 解得x=
3
,
∴sin∠BED=sin∠CDF=
3
5 CF
DF
.
故选:A.
4.B
【解析】
【分析】
根据反比例函数的性质判断即可.
【详解】
解:∵当x1<x2<0时,y1<y2,
∴在每个象限y随x的增大而增大,
∴k<0,
故选:B.
【点睛】
本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.
5.C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
35000纳米=35000×10-9米=3.5×10-5米.
故选C.
【点睛】
此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6.C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
31600000000=3.16×1.故选:C.
本题考查科学记数法,解题的关键是掌握科学记数法的表示. 7.B 【解析】
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长, 故选B .
【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键. 8.A 【解析】 【分析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解. 【详解】
在这一组数据中1是出现次数最多的,故众数是1. 故选:A . 【点睛】
本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 9.B 【解析】
试题分析:根据合并同类项的法则,可知2222a a a +=,故A 不正确; 根据同底数幂的除法,知624a a a ÷=,故B 正确; 根据幂的乘方,知()
3
2
6a a =,故C 不正确;
根据完全平方公式,知()2
222ab a b a b -=-+,故D 不正确. 故选B.
点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算. 10.D 【解析】
试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可. 试题解析:(ab 2)3=a 3•(b 2)3=a 3b 1.
考点:幂的乘方与积的乘方.
11.C
【解析】
延长线段BN交AC于E.
∵AN平分∠BAC,∴∠BAN=∠EAN.
在△ABN与△AEN中,
∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.
12.B
【解析】
【分析】
根据众数和中位数的概念求解.
【详解】
由表可知,8环出现次数最多,有4次,所以众数为8环;
这10个数据的中位数为第5、6个数据的平均数,即中位数为89
2
=8.5(环),
故选:B.
【点睛】
本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.2或2.
【解析】
解:本题有两种情形:
(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;
故答案为2或2.
点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
14.40°
【解析】
【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.
【详解】∵∠ADE=60°,
∴∠ADC=120°,
∵AD⊥AB,
∴∠DAB=90°,
∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,
故答案为40°.
【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.15.【解析】
【分析】
直接利用反比例函数的增减性进而得出图象的分布.
【详解】
∵反比例函数y
k
x
(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在
的象限是第一、三象限.
故答案为:一、三.
【点睛】
本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.
16.6,16,1)
【解析】
【分析】
根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可
【详解】
根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.
当y=1时,
12 x 1
-1=1,解得 当y=-1时,1
2
x 1-1=-1,方程无解
故P 2)或(2) 【点睛】
此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键. 17.150 【解析】 【分析】
根据题意可得等量关系:不超过a 千瓦时的电费+超过a 千瓦时的电费=105元;根据等量关系列出方程,解出a 的值即可. 【详解】
∵0.5×200=100<105, ∴a<200.
由题意得:0.5a+0.6(200-a)=105, 解得:a=150. 故答案为:150 【点睛】
此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程. 18.(3a ﹣b )
【解析】解:由题意可得,剩余金额为:(3a-b )元,故答案为:(3a-b ). 点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(1)p =0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m 的值为1. 【解析】 【分析】
(1)直接利用待定系数法求一次函数解析式即可;
(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;
(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可. 【详解】
(1)设p =kx+b ,
把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b 中,
得:
3.9 2
4.0, k b
k b
+=
⎧
⎨
+=
⎩
解得:
0.1
3.8 k
b
=
⎧
⎨
=
⎩
,
∴p=0.1x+3.8;
(2)设该品牌手机在去年第x个月的销售金额为w万元,
w=(﹣50x+2600)(0.1x+3.8)
=﹣5x2+70x+9880
=﹣5(x﹣7)2+10125,
当x=7时,w最大=10125,
答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;
(3)当x=12时,y=100,p=5,
1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;
1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,
解得:m1%=5
3
(舍去),m2%=
1
5
,
∴m=1,
答:m的值为1.
【点睛】
此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.
20.(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=23或m=﹣23;②m的
值为
462
--
.
【解析】
分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2
有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
详解:
(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
∴﹣4﹣8+c=0,即c=12,
∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
则顶点坐标为(﹣2,16);
(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
∵点B关于原点的对称点为C,
∴C(﹣m,﹣n),
∵C落在抛物线上,
∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
解得:﹣m2+4m+12=m2﹣4m﹣12,
解得:m=2或m=﹣2;
②∵点C(﹣m,﹣n)在第四象限,
∴﹣m>0,﹣n<0,即m<0,n>0,
∵抛物线顶点坐标为(﹣2,16),
∴0<n≤16,
∵点B在抛物线上,
∴﹣m2﹣4m+12=n,
∴m2+4m=﹣n+12,
∵A(2,0),C(﹣m,﹣n),
∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
当n=时,AC2有最小值,
∴﹣m2﹣4m+12=,
解得:m=,
∵m<0,∴m=不合题意,舍去,
则m的值为.
点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C (-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系
式,利用二次函数的性质求得当n=1
2
时,AC2有最小值,在解方程求得m的值即可.
21.吉普车的速度为30千米/时.
【解析】
【分析】
先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.
【详解】
解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.
由题意得:151515
1.560 x x
-=.
解得,x=20
经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.
答:吉普车的速度为30千米/时.
点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.
22.(1)2,2;(2)2,理由见解析;(3)2.
【解析】
【分析】
(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和S P2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3来求解;(2)(3)由图可知,P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,将四边形面积转化为S四边形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn ﹣2
来解答.
【详解】
(1)作P5H5垂直于x轴,垂足为H5,
由图可知S P1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2=93111449 2222
⨯⨯++
---=2,
S P2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3=3(14)111114
2222
+⨯⨯+
---=2;
(2)作P n﹣1H n﹣1、P n H n、P n+1H n+1、P n+2H n+2垂直于x轴,垂足为H n﹣1、H n、H n+1、H n+2,
由图可知P n﹣1、P n、P n+1、P n+2的横坐标为n﹣5,n﹣2,n﹣3,n﹣2,
代入二次函数解析式,可得P n﹣1、P n、P n+1、P n+2的纵坐标为(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,四边形P n﹣1P n P n+1P n+2的面积为S四边形Pn﹣1PnPn+1Pn+2
=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2
=
22
2222223(5)(2)(5)(4)(4)(3)(3)(2)2
222
n n n n n n n n ⎡⎤-+--+--+--+-⎣⎦
---
=2; (3)S 四边形Pn ﹣1PnPn+1Pn+2=S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣5Hn ﹣5Hn ﹣2Pn ﹣2﹣S 梯形Pn ﹣2Hn ﹣2Hn ﹣3Pn ﹣3﹣S 梯形Pn ﹣3Hn ﹣3Hn
﹣2Pn ﹣2
=
22223(5)(5)(2)(2)(5)(5)(4)(4)-22
n b n c n b n c n b n c n b n c ⎡⎤-+-++-+-+-+-++-+-+⎣⎦-2222(4)(4)(3)(3)(3)(3)(2)(2)22
n b n c n b n c n b n c n b n c
-+-++-+-+-+-++-+-+-
=2. 【点睛】
本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,
23.(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析. 【解析】 【分析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题. 【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%, 普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5; (3)李明得分为:85×
10%+70×20%+80×30%+85×40%=80.5, 张华得分为:90×10%+75×20%+75×30%+80×40%=78.5, ∵80.5>78.5, ∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛. 【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键. 24.(1)详见解析;(2)1. 【解析】
【分析】
(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出
△AOD≌△COE,即可得出四边形ADCE是菱形.
(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.
【详解】
(1)证明:由题意可知:
∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
∴直线DE是线段AC的垂直平分线,
∴AC⊥DE,即∠AOD=∠COE=90°;
且AD=CD、AO=CO,
又∵CE∥AB,
∴∠1=∠2,
在△AOD和△COE中
∴△AOD≌△COE(AAS),
∴OD=OE,
∵A0=CO,DO=EO,
∴四边形ADCE是平行四边形,
又∵AC⊥DE,
∴四边形ADCE是菱形;
(2)解:当∠ACB=90°时,
OD∥BC,
即有△ADO∽△ABC,
∴
又∵BC=6,
∴OD=3,
又∵△ADC的周长为18,
∴AD+AO=9,
即AD=9﹣AO,
∴
可得AO=4,
∴DE=6,AC=8,
∴
【点睛】
考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.
25.(1)4
9
;(2)
5
9
.
【解析】
【分析】
(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;
(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.
【详解】
(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:
∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,
所以两辆汽车都不直行的概率为4
9
;
(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等
∴P(至少有一辆汽车向左转)=5
9
.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.
26.(1)AE=CG ,AE ⊥CG ,理由见解析;(2)①位置关系保持不变,数量关系变为3
4
CG AE =; 理由见解析;②当△CDE 为等腰三角形时,CG 的长为32或2120或158
. 【解析】
试题分析:()1AE CG AE CG =⊥,,证明ADE V ≌CDG V ,
即可得出结论. ()2①位置关系保持不变,数量关系变为3.4
CG AE =证明ADE CDG V V ∽,
根据相似的性质即可得出. ()3分成三种情况讨论即可.
试题解析:(1)AE CG AE CG =⊥,, 理由是:如图1,∵四边形EFGD 是正方形,
∴90DE DG EDC CDG =∠+∠=︒,, ∵四边形ABCD 是正方形,
∴90AB CD ADE EDC ,,=∠+∠=︒ ∴ADE CDG ∠=∠, ∴ADE V ≌CDG V ,
∴45AE CG DCG DAE =∠=∠=︒,, ∵45ACD ∠=︒, ∴90ACG ,∠=︒
∴CG AC ,⊥ 即AE CG ⊥;
(2)①位置关系保持不变,数量关系变为
3
.4
CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,
∵四边形EFGD 是矩形, ∴OE OF OG OD ===, Rt DGF △中,OG=OF , Rt DCF V 中,OC OF ,= ∴OE OF OG OD OC ====,
∴D 、E 、F 、C 、G 在以点O 为圆心的圆上, ∵90DGF ∠=︒, ∴DF 为O e 的直径, ∵DF EG =,
∴EG 也是O e 的直径, ∴∠ECG=90°,即AE CG ⊥, ∴90DCG ECD ,∠+∠=︒ ∵90DAC ECD ∠+∠=︒, ∴DAC DCG ∠=∠, ∵ADE CDG ∠=∠, ∴ADE CDG V V ∽,
∴
3
.4
CG DC AE AD == ②由①知:
3
.4
CG AE = ∴设34CG x AE x ==,, 分三种情况:
(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,
∴DH CH =,
∴4AE EC x ,== 由勾股定理得:5AC =, ∴85x =,
5.8x =
1538
CG x ∴==
; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,
EH CH ∴=,
∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,, ∴CDH CAD V V ∽,
∴
,CD CH CA CD = 3,53
CH ∴= ∴9
5
CH =,
∴97425255
AE x AC CH ==-=-⨯
=, 720
x =
, ∴21320
CG x ,==
(iii )当3CD CE ==时,如图5,
∴4532AE x ==-=,
12
x =,
∴332
CG x ==
, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158
. 点睛:两组角对应,两三角形相似.
27.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元. 【解析】 【分析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;
(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
【详解】
(1)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=25,x2=35,
答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
∵a=﹣2,
∴抛物线开口向下,当x<30时,y随x的增大而增大,
又由于这种农产品的销售价不高于每千克28元
∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
【点睛】
此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.。