高考复习-不等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式
知识集结
知识元
一元二次不等式、分式不等式、绝对值不等式
知识讲解
1.一元二次不等式及其应用
【概念】
含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a不等于0)其中ax2+bx+c是实数域内的二次三项式.
【特征】
当△=b2﹣4ac>0时,
一元二次方程ax2+bx+c=0有两个实根,那么ax2+bx+c可写成a(x﹣x1)(x﹣x2)当△=b2﹣4ac=0时,
一元二次方程ax2+bx+c=0仅有一个实根,那么ax2+bx+c可写成a(x﹣x1)2.当△=b2﹣4ac<0时.
一元二次方程ax2+bx+c=0没有实根,那么ax2+bx+c与x轴没有交点.
【实例解析】
例1:一元二次不等式x2<x+6的解集为.
解:原不等式可变形为(x﹣3)(x+2)<0
所以,﹣2<x<3
故答案为:(﹣2,3).
这个题的特点是首先它把题干变了形,在这里我们必须要移项写成ax2+bx+c<0的形式;然后应用了特征当中的第一条,把它写成两个一元一次函数的乘积,所用的方法是十字相乘法;最后结合其图象便可求解.
【一元二次不等式的常见应用类型】
①一元二次不等式恒成立问题:
一元二次不等式ax2+bx+c>0的解集是R的等价条件是:a>0且△<0;一元二次不等式ax2+bx+c<0的解集是R的等价条件是:a<0且△<0.
②分式不等式问题:
>0⇔f(x)•g(x)>0;
<0⇔f(x)•g(x)<0;
≥0⇔;
≤0⇔.
2.其他不等式的解法
【知识点的知识】
不等式的解法
(1)整式不等式的解法(根轴法).
步骤:正化,求根,标轴,穿线(偶重根打结),定解.
特例:
①一元一次不等式ax>b解的讨论;
②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.
(2)分式不等式的解法:先移项通分标准化,则
.
(3)无理不等式:转化为有理不等式求解.
(4)指数不等式:转化为代数不等式
(5)对数不等式:转化为代数不等式
(6)含绝对值不等式
①应用分类讨论思想去绝对值;
②应用数形思想;
③应用化归思想等价转化.
注:常用不等式的解法举例(x为正数):
3.绝对值不等式的解法
【知识点的认识】
绝对值不等式的解法
1、绝对值不等式|x|>a与|x|<a的解集
不等式a>0a=0a<0 |x|<a{x|﹣a<x<a}∅∅
|x|>a{x|x>a,或x<﹣a}{x|x≠0}R
2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:
(1)|ax+b|≤c⇔﹣c≤ax+b≤c;
(2)|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;
(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:
方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.
方法二:利用“零点分段法”求解,体现了分类讨论的思想;
方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
【解题方法点拨】
1、解绝对值不等式的基本方法:
(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;
(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;
(3)利用绝对值的几何意义,数形结合求解.
2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m(m为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A(a),B(b)两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.
4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.
例题精讲
一元二次不等式、分式不等式、绝对值不等式
例1.
不等式(x-1)(x-2)>0的解集是()
A.{x|x≥2,或x≤1}
B.{x|x>2,或x<1}
C.{x|1<x<2}
D.{x|1≤x≤2}
例2.
已知不等式mx2+nx-3<0的解集为(-3,1),若曲线|y|=n x+1与直线y=b没有公共点,则b的取值范围是________.
例3.
不等式-x2+2x+8>0的解集是____________
基本不等式
知识讲解
1.基本不等式及其应用
【概述】
基本不等式主要应用于求某些函数的最值及证明不等式.其可表述为:两个正实数的几何
平均数小于或等于它们的算术平均数.公式为:≥(a≥0,b≥0),变形为ab≤
()2或者a+b≥2.常常用于求最值和值域.
【实例解析】
例1:下列结论中,错用基本不等式做依据的是.
A:a,b均为负数,则.B:.C:.D:
.
解:根据均值不等式解题必须满足三个基本条件:“一正,二定、三相等”可知A、B、D均满足条件.
对于C选项中sin x≠±2,
不满足“相等”的条件,
再者sin x可以取到负值.
故选:C.
A选项告诉我们正数的要求是整个式子为正数,而不是式子当中的某一个组成元素;B分子其实可以写成x2+1+1,然后除以分母就可换成基本不等式.这个例题告诉我们对于一个式子也是可以用基本不等式的,而且求最值也很方便.
例2:利用基本不等式求的最值?当0<x<1时,如何求的最大值.解:当x=0时,y=0,
当x≠0时,=,
用基本不等式
若x>0时,0<y≤,
若x<0时,﹣≤y<0,
综上得,可以得出﹣≤y≤,
∴的最值是﹣与.
这是基本不等式在函数中的应用,他的解题思路是首先判断元素是否大于0,没有明确表示的话就需要讨论;然后把他化成基本不等式的形式,也就是化成两个元素(函数)相加,而他们的特点是相乘后为常数;最后套用基本不等式定理直接求的结果.
【基本不等式的应用】
1、求最值
例1:求下列函数的值域.
2、利用基本不等式证明不等式
3、基本不等式与恒成立问题
4、均值定理在比较大小中的应用
【解题方法点拨】
技巧一:凑项
点评:本题需要调整项的符号,又要配凑项的系数,使其积为定值.
技巧二:凑系数
例2:当0<x<4时,求y=x(8﹣2x)的最大值.
解析:由0<x<4知,8﹣2x>0,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到2x+(8﹣2x)=8为定值,故只需将y=x(8﹣2x)凑上一个系数即可.
y=x(8﹣2x)=[2x•(8﹣2x)]≤()2=8
当2x=8﹣2x,即x=2时取等号,当x=2时,y=x(8﹣x2)的最大值为8.
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值.
技巧三:分离
例3:求y=的值域.
解:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离.
y===(x+1)++5,
当x>﹣1,即x+1>0时,y≥2+5=9(当且仅当x=1时取“=”号)
技巧四:换元
对于上面例3,可先换元,令t=x+1,化简原式在分离求最值.
技巧五:结合函数f(x)=x+的单调性.
技巧六:整体代换
点评:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.
技巧七:取平方
点评:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件.
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变
形技巧,积极创造条件利用基本不等式.
例题精讲
基本不等式
例1.
当a>0时,2a+的最小值为____
例2.
若直线(a>0,b>0)过点(1,2),则a+b的最小值为______.
线性规划
知识讲解
1.简单线性规划
【概念】
线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值.
【例题解析】
例:若目标函数z=x+y中变量x,y满足约束条件.
(1)试确定可行域的面积;
(2)求出该线性规划问题中所有的最优解.
解:(1)作出可行域如图:对应得区域为直角三角形ABC,
其中B(4,3),A(2,3),C(4,2),
则可行域的面积S==.
(2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z,
则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z得截距最小,
此时z最小为z=2+3=5,
当直线经过点B(4,3)时,直线y=﹣x+z得截距最大,
此时z最大为z=4+3=7,
故该线性规划问题中所有的最优解为(4,3),(2,3)
这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值.
【典型例题分析】
题型一:二元一次不等式(组)表示的平面区域
典例1:若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是()
A.B.C.D.
分析:画出平面区域,显然点(0,)在已知的平面区域内,直线系过定点(0,),结合图形寻找直线平分平面区域面积的条件即可.
解答:不等式组表示的平面区域如图所示.
由于直线y=kx+过定点(0,).因此只有直线过AB中点时,直线y=kx+能平分平面区域.
因为A(1,1),B(0,4),所以AB中点D(,).
当y=kx+过点(,)时,=+,所以k=.
答案:A.
点评:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.
注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.
题型二:求线性目标函数的最值
典例2:设x,y满足约束条件:,求z=x+y的最大值与最小值.
分析:作可行域后,通过平移直线l0:x+y=0来寻找最优解,求出目标函数的最值.
解答:先作可行域,如图所示中△ABC的区域,且求得A(5,2)、B(1,1)、C(1,),作出直线l0:x+y=0,再将直线l0平移,当l0的平行线l1过点B时,可使z=x+y达到最小值;当l0的平行线l2过点A时,可使z=x+y达到最大值.故z min=2,z max=7.
点评:(1)线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取
得.
(2)求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,明确和直线的纵截距的关系.
题型三:实际生活中的线性规划问题
典例3:某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:
年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元
韭菜6吨0.9万元0.3万元
为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为()
A.50,0B.30,20C.20,30D.0,50
分析:根据线性规划解决实际问题,要先用字母表示变量,找出各量的关系列出约束条件,设出目标函数,转化为线性规划问题.
解析设种植黄瓜x亩,韭菜y亩,则由题意可知
求目标函数z=x+0.9y的最大值,
根据题意画可行域如图阴影所示.
当目标函数线l向右平移,移至点A(30,20)处时,目标函数取得最大值,即当黄瓜种植30亩,韭菜种植20亩时,种植总利润最大.故答案为:B
点评:线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题,再按如下步骤完成:
(1)作图﹣﹣画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条l;
(2)平移﹣﹣将l平行移动,以确定最优解的对应点A的位置;
(3)求值﹣﹣解方程组求出A点坐标(即最优解),代入目标函数,即可求出最值.
题型四:求非线性目标函数的最值
典例4:(1)设实数x,y满足,则的最大值为.
(2)已知O是坐标原点,点A(1,0),若点M(x,y)为平面区域上的一个动点,则|+|的最小值是.
分析:与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.
解答:(1)表示点(x,y)与原点(0,0)连线的斜率,在点(1,)处取到最大值.
(2)依题意得,+=(x+1,y),|+|=可视为点(x,y)与点(﹣1,0)间的距离,在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,在该平面区域内的点中,由点(﹣1,0)向直线x+y=2引垂线的垂足位于该平面区域内,且与点
(﹣1,0)的距离最小,因此|+|的最小值是=.
故答案为:(1)(2).
点评:常见代数式的几何意义有
(1)表示点(x,y)与原点(0,0)的距离;
(2)表示点(x,y)与点(a,b)之间的距离;
(3)表示点(x,y)与原点(0,0)连线的斜率;
(4)表示点(x,y)与点(a,b)连线的斜率.
【解题方法点拨】
1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.
2.在通过求直线的截距的最值间接求出z的最值时,要注意:当b>0时,截距取最大值
时,z也取最大值;截距取最小值时,z也取最小值;当b<0时,截距取最大值时,z取最小值;截距取最小值时,z取最大值.
例题精讲
线性规划
例1.
设x,y满足约束条件,则z=x+y的最小值为()
A.3B.4C.5D.10
例2.
若实数x,y满足不等式组,则z=2|x|-y的最小值是()
A.-1B.0C.1D.2
例3.
已知实数x,y满足1≤y≤x+y≤ax+3,若y-2x的最大值是3,则实数a的取值范围是()A.(-∞,3]B.[1,3]
C.(-∞,2]D.[2,+∞)
不等式综合
知识讲解
1.不等式的综合
【知识点的知识】
1、不等式的性质
2、不等式大小比较的常用方法
(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;
(2)作商(常用于分数指数幂的代数式);
(3)分析法;
(4)平方法;
(5)分子(或分母)有理化;
(6)利用函数的单调性;
(7)寻找中间量或放缩法;
(8)图象法.其中比较法(作差、作商)是最基本的方法.
3、利用重要不等式求函数最值:“一正二定三相等,和定积最大,积定和最小”.
4、常用不等式
5、证明不等式的方法:比较法、分析法、综合法和放缩法.
比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论.
常用的放缩技巧有:
6.常系数一元二次不等式的解法:判别式﹣图象法
步骤:(1)化为一般形似:ax2+bx+c≥0,其中a>0;
(2)求根的情况:ax2+bx+c=0△>0(=0,<0);
(3)由图写解集:考虑y=ax2+bx+c(a>0)图象得解.
7.简单的一元高次不等式的解法:标根法:
其步骤是:
(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;
(2)将每一个一次因式的根标在数轴上,从最大根右上方依次通过每一点画曲线(奇穿偶回);
(3)根据曲线显现的符号变化规律,写出不等式的解集.
8.分式不等式的解法:
分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解.解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母.
9.绝对值不等式的解法:(了解)
(1)分域讨论法(最后结果应取各段的并集)
(2)利用绝对值的定义;(3)数形结合;(4)两边平方.
10、含参不等式的解法:通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”
注意:①解完之后要写上:“综上,原不等式的解集是…”.
②按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.含参数的一元二次不等式的解法:三级讨论法.
一般地,设关于x的含参数a的一元二次形式的不等式为:.(1)第一级讨论:讨论二次项系数f(a)是否为零;
(2)第二级讨论:若f(a)≠0时,先观察其左边能否因式分解,否则讨论△的符号;(3)第三级讨论:若f(a)≠0时,△>0时,先观察两根x1,x2大小是否确定,否则讨论两根的大小.
注意:每一级的讨论中,都有三种情况可能出现,即“>”,“=”,“<”,应做到不重不漏.
11.不等式的恒成立、能成立、恰成立等问题
常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法.
1)恒成立问题
若不等式f(x)>A在区间D上恒成立,则等价于在区间D上f(x)min>A,
若不等式f(x)<B在区间D上恒成立,则等价于在区间D上f(x)max<B.
例题精讲
不等式综合
例1.
已知a,b,c为正数,关于x的一元二次方程ax2+bx+c=0有两个相等的实数根.则方程
(a+1)x2+(b+2)x+c+1=0的实数根的个数是()
A.0或1B.1或2C.0或2D.不确定
例2.
做一个容积为256,底为正方形的长方体无盖水箱,它的高为___时最省料。
例3.
若直线l:ax-by=2(a>0,b>0)平分圆x2+y2-2x+4y=0,则+的最小值为()
A.2B.2C.(3+2)D.3+2
指对不等式的解法
知识讲解
1.指、对数不等式的解法
【概述】
指、对数不等式的解法其实最主要的就是两点,第一点是判断指、对数的单调性,第二点就是学会指数和指数,对数和对数之间的运算,下面以例题为讲解.
【例题解析】
例1:已知函数f(x)=e x﹣1(e是自然对数的底数).证明:对任意的实数x,不等式f(x)≥x恒成立.
解:(I)设h(x)=f(x)﹣x=e x﹣1﹣x
∴h'(x)=e x﹣1﹣1,
当x>1时,h'(x)>0,h(x)为增,
当x<1时,h'(x)<0,h(x)为减,
当x=1时,h(x)取最小值h(1)=0.
∴h(x)≥h(1)=0,即f(x)≥x.
这里面是一个综合题,解题的思路主要还是判断函数的单调性,尤其是指数函数的单调性,考查的重点其实是大家的计算能力.
例2:已知函数f(x)=log a(x﹣1),g(x)=log a(3﹣x)(a>0且a≠1),利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.
解:∵不等式f(x)≥g(x),即log a(x﹣1)≥log a(3﹣x),
∴当a>1时,有,解得2<x<3.
当1>a>0时,有,解得1<x<2.
综上可得,当a>1时,不等式f(x)≥g(x)中x的取值范围为(2,3);
当1>a>0时,不等式f(x)≥g(x)中x的取值范围为(1,2).
这个题考查的就是对数函数不等式的求解,可以看出主要还是求单调性,当然也可以右边移到左边,然后变成一个对数函数来求解也可以.
【考点点评】
本考点其实主要是学会判断各函数的单调性,然后重点考察学生的运算能力,也是一个比较重要的考点,希望大家好好学习.
例题精讲
指对不等式的解法
例1.
对任意实数x,都有,则实数a的取值范围是_______.
例2.
不等式22x-1<1的解集是___。
例3.
求满足>4-2x的x的取值集合是________.
当堂练习
单选题
练习1.
设a>0,b>0,若2a+b=1,则+的最小值为()
A.2B.8C.9D.10
练习2.
已知正实数a,b满足,则的最小值为()
A.4B.6C.9D.10
练习3.
若a,b>0,ab+2a+b=4,则a+b的最小值为()
A.2B.-1C.2-2D.2-3
练习4.
已知a>0,b>0,ab=4,那么a+b的最小值是()
A.2B.3C.4D.6
练习5.
已知实数a,b,c满足2a2+2b2+c2=1,则2ab+3c的最小值为()
A.-3B.C.-2D.-5
填空题
练习1.
不等式组的解集是{x|x>2},则实数a的取值范围是__________。
练习2.
做一个容积为256cm3的方底无盖水箱,若用料最省,则此时水箱的高度是___.
练习3.
已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,则实数a的取值范围是________.练习4.
设实数x,y满足2≤∙y≤3,1≤≤2,则使得a≤≤b恒成立的b的最小值是___.练习5.
不等式的解集为{x|x<1或x>2},则a的值为___.
练习6.
已知实数x,y满足3x-y≤ln(x+2y-3)+ln(2x-3y+5),则x+y=___。
解答题
练习1.'
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1]。
(1)求m的值;
(2)若a,b,c∈(0,+∞),且++=m,证明:a+2b+3c≥9.
练习2.'
某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为
万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
练习3.'
如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.
(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;
(2)怎样围才能使得场地的面积最大?最大面积是多少?
'
练习4.'
(1)函数f(x)=|x-3|,若存在实数x,使得2f(x+4)≤m+f(x-1)成立,求实数m的取值范围;
(2)设x,y,z∈R,若x+2y-2z=4,求x2+4y2+z2的最小值.
'
练习5.'
某工厂要建造一个长方体的无盖贮水池,其容积为4800m3,深为3m,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?'
练习6.'
(1)已知x<3,求f(x)=+x的最大值;
(2)已知x,y∈R+,且x+y=4,求+的最小值.
'。