高考数学压轴专题最新备战高考《数列》全集汇编含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《数列》知识点归纳
一、选择题
1.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7
C .8
D .13
【答案】C 【解析】 【分析】
根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】
()115158151502a a S a +=
=>Q ,()
()116168916802
a a S a a +==+<,80a ∴>,
90a <,
所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】
本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.
2.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6
C .10
D .11
【答案】C 【解析】
25251634121
32323222log 62
n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)
011102
n n n S n n +-=
>⇒<⇒= ,故选C.
3.若{}n a 为等差数列,n S 是其前n 项和,且11223
S π
=,则6tan()a 的值为( )
A B .C D .
【答案】B 【解析】 【分析】
由11162a a a +=,即可求出6a 进而求出答案. 【详解】 ∵()11111611221123
a a S a π
+===
,∴623a π=,()62tan tan 33a π⎛⎫
==- ⎪⎝⎭
, 故选B. 【点睛】
本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.
4.执行下面程序框图输出S 的值为( )
A .
2542
B .
3764
C .
1730
D .
67
【答案】A 【解析】 【分析】
模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当
6i =,满足5i >,退出循环,输出运行的结果111111324354657
S =
++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】
由题意可知, 第1次循环时1
13
S =⨯,2i =,否; 第2次循环111324S =
+⨯⨯,3i =,否; 第3次循环时111132435
S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546
S =
++⨯⨯⨯⨯+,5i =,否;
第5次循环时111111324354657
S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出
111111324354657
S =
++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 111125
1226742
⎛⎫=
+--=
⎪⎝⎭ 故选:A. 【点睛】
本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.
5.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21
C .63-
D .21
【答案】C 【解析】 【分析】
根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得
21112163S a ==-.
【详解】
∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】
此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.
6.设数列是公差
的等差数列,为前项和,若,则
取得最
大值时,的值为
A .
B .
C .或
D .
【答案】C 【解析】
,进而得到
,即

数列
是公差
的等差数列,所以前五项都是正数,
或时,
取最大值,故选C.
7.等差数列的首项为1
25
,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫
+∞
⎪⎝⎭
C .83,7525⎛⎫
⎪⎝
⎭ D .83,7525⎛⎤
⎥⎝
⎦ 【答案】D 【解析】 【分析】
根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】
由题意,设数列{}n a 的公差为d ,首项11
25a =
,则109
11a a >⎧⎨≤⎩,
即1019
19181a a d a a d =+>⎧⎨=+≤⎩,解得
83
7525d <≤. 故选:D. 【点睛】
本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.
8.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线
的非零向量OAOB OC u u u r u u u r u u u r ,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O
点,则S 2010等于( ) A .1005 B .1006
C .2010
D .2012
【答案】A 【解析】 【分析】
根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r
,及三点A ,
B ,
C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】
由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;
由10051006OC a OA a OB =+u u u r u u u r u u u r ,
所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()
12010201020101
10052
2
a a +⨯=
=
=. 故选:A. 【点睛】
本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.
9.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件
【答案】B 【解析】 【分析】
根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】
因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得
111242a a q a q >+,化简后可得()
2
1210q a -<.
因为(
)
2
2
1
0q -≥
所以不等式的解集为10a < 若210n S -<
当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】
本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.
10.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 为( )
A .3∶4
B .4∶3
C .1∶2
D .2∶1
【答案】A 【解析】 【分析】
根据在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012
S x =,153
4
S x =
,从而得到155:S S 的值. 【详解】
解:在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得101
2
S x =, 1051122S S x x x ∴-=
-=-,151014S S x ∴-=,15113
244
S x x x ∴=+=, 故155
334:4
x
S S x ==, 故选:A . 【点睛】
本题考查等比数列的性质,解题的关键是熟练掌握等比数列的性质k S ,2k k S S -,32k k S S -,成公比为k q 的等比数列,属于中档题.
11.在数列{}n a 中,()111,1n
n n a a a n +==++-,则2018a 的值为( )
A .2017⨯1008
B .2017⨯1009
C .2018⨯1008
D .2018⨯1009
【答案】B 【解析】 【分析】
根据已知条件()n
n 1n a a n 1+-=+-,利用累加法并结合等差数列的前n 项和公式即可得到答案. 【详解】
()n
n 1n a a n 1+-=+-,
()()20182017201720162016201520152014a a 20171,a a 20161,a a 20151,a a 20141,
-=+--=+-=+--=+
⋅⋅⋅32a a 21-=+,()21a a 11,-=+-
将以上式子相加得20181a a 20172016-=++⋅⋅⋅+2, 即2018a 20172016=++⋅⋅⋅+2+1=2017(12017)
201710092
+=⨯,
故选:B. 【点睛】
本题考查数列递推关系式的应用和累加法求和,考查等差数列前n 项和公式的应用.
12.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,33
4
S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]
1,0- B .11,2
⎡⎤-⎢⎥⎣

C .1,12⎡⎤⎢⎥⎣⎦
D .[]
0,1
【答案】B 【解析】 【分析】
先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】
由1220,a a += 33
4S =,得11211,,1232n
n a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦

当1n =时,n S 取最大值1,当2n =时,n S 取最小值
12
, 所以12
21a a ⎧

⎪⎨⎪+≥⎩
,112a -≤≤,故选B. 【点睛】
本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.
13.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51
C .61
D .68
【答案】B 【解析】 【分析】
由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】
在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,
3156a a ∴+=.
()()11731517171717651222
a a a a S ++⨯∴=
===. 故选:B . 【点睛】
本题考查等差数列的性质和前n 项和公式,属于基础题.
14.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=
+ ⎪⎝⎭
,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )
A .135
B .141
C .149
D .155
【答案】D 【解析】 【分析】
利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】
解:由于正项数列{}n a 满足112n n n S a a ⎛⎫
=+ ⎪⎝⎭
,*n N ∈,
所以当1n =时,得11a =,
当2n ≥时,11
1111
[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+
⎪-⎝⎭ 所以11
1
n n n n S S S S ---=
-,
所以2
=n S n ,
因为各项为正项,所以=n S
因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,
[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .
所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】
此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.
15.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则26
3
n n S a ++的最小值为( )
A .4
B .3
C
.2
D .2
【答案】D 【解析】
【分析】
由题意得2
(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,
从而可得26
3
n n S a ++,换元,利用基本不等式,即可求出函数的最小值.
【详解】
解:11a =Q ,1a 、3a 、13a 成等比数列,
2(12)112d d ∴+=+. 得2d =或0d =(舍去),
21n a n ∴=-,
2(121)
2
n n n S n +-∴=
=, ∴()()2
2211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+
,则
2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴26
3
n n S a ++的最小值为2.
故选:D . 【点睛】
本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.
16.在递减等差数列{}n a 中,2132
4a a a =-.若113a =,则数列1
1
{
}n n a a +的前n 项和的最大值为 ( ) A .
24143
B .
1143
C .
2413
D .
613
【答案】D 【解析】
设公差为,0d d < ,所以由2
1324a a a =-,113a =,得
213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- ,
因为
111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫
⎨⎬⎩⎭
的前n 项和等于
1111116
()()213213213261313
n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中
间若干项的方法,裂项相消法适用于形如1n n c a a +⎧


⎬⎩⎭
(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类
隔一项的裂项求和,如1(1)(3)n n ++或
1
(2)
n n +.
17.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120
C .121
D .192
【答案】B 【解析】 【分析】
根据35
2
a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】
Q 3
5227a q a ==, ∴ 3q =
∴ 4414(1)3(13)
120113
a q S q --===--.故选:B
【点睛】
本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.
18.已知数列}{
n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为5
4
,则5S =( ). A .35 B .33
C .31
D .29
【答案】C 【解析】
试题分析:由题意得,设等比数列的公比为q ,则2
231112a a a q a q a =⋅=,所以42a =,
又3
474452224a a a a q +=+=⨯,解得11,162
q a ==,所以
55
151
16(1())
(1)2311112
a q S q --==
=--,故选C . 考点:等比数列的通项公式及性质.
19.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( )
A .32
B .32-
C .23
D .23
- 【答案】D
【解析】
【分析】
根据等差数列公式直接计算得到答案.
【详解】
依题意,()()183********
a a a a S ++===,故364a a +=,故33a =,故63233
a a d -=
=-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.
20.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )
A .3
B .4
C .7
D .9 【答案】B
【解析】
由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242...3402 (170)
n n a a q a a a +++===+++ ,21
211234117051112
n n S ++-==+=- ,解得4n = ,故选B.。

相关文档
最新文档