山东省济宁市梁山一中2012-2013学年高二3月质检 数学文 含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梁山一中2012—2013学年高二3月质量检测
数学(文)
一、
选择题:(本大题共10小题,每小题5分,共50分。


1.复数
3
1+1i i
+的虚部是( )
A. 1-
B 。

1
C 。

i -
D 。

i
2。

函数()sin 2f x x =的导数()f x '=( )
A .cos 2x
B .2cos 2x
C .2cos 2x -
D .cos 2x -
3。

设复数1213,32,z
i z i =-=-则
12
z z 在复平面内对应的点在( )
A.第一象限
B. 第二象限
C. 第三象限 D 。

第四象限 4.函数3
()3f x x
x =-的单调递减区间是( )
A.
(,1)-∞- B 。

(1,)+∞ C. (,1)(1,)-∞-+∞
D 。

(1,1)-
5.设θ是△ABC 的一个内角,且7sin cos 13
θθ+=,则2
2sin cos 1x
y θθ-=表示
( )
A .焦点在x轴上的椭圆
B .焦点在y轴上的椭圆
C .焦点在x轴上的双曲线
D .焦点在y轴上
的双曲线 6。

到定点(7
, 0)和定直线x =77
16的距离之比为
4
7的动点轨迹方程是
( ).
A 。

9
x 2+16y 2=1 B .
16
x 2+9y 2=1
C.
8x 2-y 2=1 D. x 2—8
y 2=1
7。

若双曲线的两条渐进线的夹角为0
60,则该双曲线的离心率为( )
A 。

2
B 。

3
6 C 。

2或
3
6 D.2或
3
3
2 8。

经过点p(1/2,0)且与双曲线2
241x y -=仅交于一点的直线有
( )
A 。

1
B 。

2 C. 3 D 。

4
9。

已知函数3)(-=x
xe x g 在点A 处的切线垂直于y 轴,则点A 的横坐标
是( )
A 。

1 B.-1 C 。

e
1 D.e
10。

设抛物线2
8
1x y =上一点P 到y 轴的距离为4,则点P 到该抛物线
焦点的距离是( )
A 。

4 B.6 C 。

8 D 。

12
11。

函数x a ax x
x f 223
323
1)(+-=在)10(,内有极小值,则实数a 的取值范围是
( )
A 。

),0(+∞ B.)3,(-∞ C.(0 ,3
1) D 。

)2
3,0(
12.已知双曲线)0,0(122
22>>=-b a b
y a x 的左、右焦点分别为1F 、2F ,点P 在双曲
线的右支上且2
1
4PF PF =,则此双曲线的离心率e 的最大值为
( )
A.34
B.35
C.2
D.3
7
二、填空题(每小题5分,共20分)
13.已知复数z ,满足)3(43i iz z -=+,则=||z __________.
14.椭圆两焦点为)0,3(1
-F ,)0,3(2
F ,P 在椭圆上,若2
1
F PF ∆的面积最大值为12,则该椭圆的离心率是____________。

15。

如图是杨辉三角的前五行数的结构图对应n
b a )(+展开式各项系数,则6
)(b a +展开式中第四项的系数应是__________.
“c b a 、、都大于零”的反设是“c b a 、、不都大于零”;(3)“R
x
O
∈∃,使得
2cos sin =+O O x x ”的否定是“对2cos sin ,≠+∈∀x x R x ”
;(4)某产品销售量y (件)与销售价格x (元/件)负相关,则其回归方程00ˆ<<+=a b a bx y
且中,以上判断正确的是_________。

三、解答题(共6小题,共计70分) 17. (本小题满分10分) 已知复数i a z ai a a z 2221
2,3)(--=+-=,问:当a 为何实数时?
(1)21
z z z -=为虚数;
(2)21
z z z +=在复平面内对应的点在虚轴的负半轴上;
(3)21
z z
>;
18。

(本小题满分12分)
曲线1
2
,C C 都是以原点O 为对称中心、离心率相等的椭圆.点M 的坐
标是(0,1),线段MN 是1
C 的短轴,是2
C 的长轴。

直线:(01)l y m m =<<与1
C
交于A,D 两点(A 在D 的左侧),与2
C 交于B,C 两点(B 在C 的左侧). (1)当m=
54AC =时,求椭圆12,C C 的方程;。

相关文档
最新文档