人教中考数学锐角三角函数综合题汇编及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞
行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.
(1)求之间的距离
(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223
. 【解析】 【分析】
(1)解直角三角形即可得到结论;
(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,
'30CE AA ==3Rt △ABC 中,求得3
3,然后根据三角函数的定义即可得到结论. 【详解】
解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,
∴AB=sin 30AC

=6012
=120(m )
(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3
在Rt △ABC 中, AC=60m ,∠ADC=60°,
∴33∴3
∴tan ∠A 'A D= tan ∠'A DC=
'A E DE 5032
35
答:从无人机'A 上看目标D 2
35
【点睛】
本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.
2.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.
(1)AE的长为 cm;
(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;
(3)求点D′到BC的距离.
【答案】(1);(2)12cm;(3)cm.
【解析】
试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:
∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.
∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).
∵点E为CD边上的中点,∴AE=DC=cm.
(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.
(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则
∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.
试题解析:解:(1).
(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,
∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.
∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.
∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.
∴点E,D′关于直线AC对称.
如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.
∵△ADE是等边三角形,AD=AE=,
∴,即DP+EP最小值为12cm.
(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,
∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=.
在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′
(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.
设D′G长为xcm,则CG长为cm,
在Rt△GD′C中,由勾股定理得,
解得:(不合题意舍去).
∴点D′到BC边的距离为cm.
考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.
3.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
【答案】(1)tan∠DBC=;
(2)P(﹣,).
【解析】
试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形
的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;
(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中
的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).
试题解析:
(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,
解得 x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
当x=3时,y=﹣32+3×3+4=4,
∴D(3,4).
如图,连接CD,过点D作DE⊥BC于点E.
∵C(0,4),
∴CD//AB,
∴∠BCD=∠ABC=45°.
在直角△OBC中,∵OC=OB=4,
∴BC=4

在直角△CDE 中,CD=3. ∴CE=ED=,
∴BE=BC ﹣DE=. ∴tan ∠DBC=

(2)过点P 作PF ⊥x 轴于点F . ∵∠CBF=∠DBP=45°, ∴∠PBF=∠DBC , ∴tan ∠PBF=

设P (x ,﹣x 2+3x+4),则=

解得 x 1=﹣,x 2=4(舍去), ∴P (﹣

).
考点:1、二次函数;2、勾股定理;3、三角函数
4.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.
(1)试求抛物线的解析式;
(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;
(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233
384
y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3
34
y x =
+或3
34
y x =--.
【解析】
【分析】
(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4
5
PC ,所以5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=
18
5
,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】
解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣
38
∴抛物线解析式为y =﹣
38(x+2)(x ﹣4)=﹣38x 2+34
x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴
PC PD
BC OB
= ∵B (4,0),C (0,3)
∴OB =4,OC =3,BC ∴PD =
45
PC ∴5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =1
2
BC•AE ∴AE =
6318
55
AB OC BC ⨯==
∴5AE =18
∴5PA+4PC 的最小值为18.
(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,
∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q
∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°
∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =
3
5
FQ TF = ∵Rt △FGQ 中,cos ∠QFT =3
5
FG FQ = ∴FG =
35FQ =95
∴x Q =1﹣9455=-,QG =2
222
912FQ 355FG ⎛⎫-=-= ⎪⎝⎭
①若点Q 在x 轴上方,则Q (412
55
-,) 设直线l 解析式为:y =kx+b
∴404125
5k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧
=⎪⎨
⎪=⎩ ∴直线l :3
34
y x =
+ ②若点Q 在x 轴下方,则Q (41255
--,
) ∴直线l :3
34
y x =-
- 综上所述,直线l 的解析式为3
34
y x =
+或3
34
y x =--
【点睛】
本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论
5.阅读下面材料:
观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD
b
,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即
sin sin b c B C = .同理有:sin sin c a
C A
=,sin sin a b A B
=,所以sin sin sin a b c
A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.
(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;
(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB . (3)在(2)的条件下,试求75°的正弦值.(结果保留根号)
【答案】(1)6;(2)6海里;(36+2
【解析】 【分析】
(1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB 的值.
(2)此题可先由速度和时间求出BC 的距离,再由各方向角得出∠A 的角度,过B 作BM ⊥AC 于M ,求出∠MBC=30°,求出MC ,由勾股定理求出BM ,求出AM 、BM 的长,由勾股定理求出AB 即可;
(3)在三角形ABC 中,∠A=45,∠ABC=75,∠ACB=60,过点C 作AC 的垂线BD ,构造直角三角形ABD ,BCD ,在直角三角形ABD 中可求出AD 的长,进而可求出sin75°的值. 【详解】
解:(1)在△ABC 中,∠B=75°,∠C=45°,BC=60,则∠A=60°, ∵AB sinC =sin BC
A , ∴
45AB sin =60
sin60
, 22
3,
解得:6. (2)如图,
依题意:BC=60×0.5=30(海里)∵CD∥BE,
∴∠DCB+∠CBE=180°
∵∠DCB=30°,
∴∠CBE=150°
∵∠ABE=75°.
∴∠ABC=75°,
∴∠A=45°,
在△ABC中,
sin AB ACB
∠=
BC
sin A
∠即60?
AB
sin
=
30
45?
sin,
解之得:AB=156.
答:货轮距灯塔的距离AB=156海里.
(3)过点B作AC的垂线BM,垂足为M.
在直角三角形ABM中,∠A=45°,6,
所以3BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以3,
由题意得,15315
75
sin

156
60
sin
,sin75°=
6+2
4

【点睛】
本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.
6.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为
60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)
【答案】工件如图摆放时的高度约为61.9cm.
【解析】
【分析】
过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.
【详解】
解:如图,过点A作AP⊥CD于点P,交BC于点Q,
∵∠CQP=∠AQB,∠CPQ=∠B=90°,
∴∠A=∠C=60°,
在△ABQ中,∵AQ=(cm),
BQ=AB tan A=20tan60°=20(cm),
∴CQ=BC﹣BQ=60﹣20(cm),
在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,
∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),
答:工件如图摆放时的高度约为61.9cm .
【点睛】
本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.
7.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12
x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .
(1)求该抛物线的表达式及点D 的坐标;
(2)求∠DCB 的正切值;
(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.
【答案】(1)21y 234x x =-
+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18).
【解析】
【分析】
(1)y =12
x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣
14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC 5CE =2,则CH 5
解; (3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可.
【详解】
(1)y =12
x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣
14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14
x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1);
(2)过点E作EH⊥BC交于点H,
C、D的坐标分别为:(0,﹣3)、(4,1),
直线CD的表达式为:y=x﹣3,则点E(3,0),
tan∠OBC=
31
62
OC
OB
==,则sin∠OBC=
5

则EH=EB•sin∠OBC=
5

CE=32,则CH=
5

则tan∠DCB=
1
3 EH
CH
=;
(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),
则BC=35,
∵OE=OC,∴∠AEC=45°,
tan∠DBE=
1
64
-

1
2

故:∠DBE=∠OBC,
则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,
过点F作FG⊥BG交BC的延长线与点G,
则∠GFC=∠OBC=α,
设:GF=2m,则CG=GFtanα=m,
∵∠CBF=45°,∴BG=GF,
即:35+m=2m,解得:m=35,
CF=22
GF CG
=5m=15,
故点F(0,﹣18);
②当点F在y轴正半轴时,
同理可得:点F(0,1);
故:点F坐标为(0,1)或(0,﹣18).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.
8.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.
(1)求抛物线表达式;
(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,
①求点P坐标;
②过此二点的直线交y轴于F, 此直线上一动点G,当GB+2
GF最小时,求点G坐标.
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值
【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313
【解析】
【分析】
(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式
为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2
×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求
得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+
2 2
GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;
(3)先用面积法求出sin∠ACB=
213
,tan∠ACB=
2
3
,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=
MB
BN

2
3
,所以BN=
3
2
MB,当MB为直径时,BN的长度最大.
【详解】
(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),

14
12554
a b
a b
-++


-++




解得
1
6
a
b


-




∴抛物线表达式为y=x²﹣6x+4.
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,
设直线BC的解析式为y=kx+m,
∵B(5,-1),C(0,4),

15
4
k m
m
-+





,解得
1
4
k
m



-



∴直线BC的解析式为:y=-x+4,
设点P(t,t2-6t+4),R(t,-t+4),
∵▱CBPQ的面积为30,
∴S△PBC=1
2
×(−t+4−t2+6t−4)×5=15,
解得t=2或t=3,
当t=2时,y=-4
当t=3时,y=-5,
∴点P坐标为(2,-4)或(3,-5);
②当点P为(2,-4)时,
∵直线BC解析式为:y=-x+4, QP∥BC,
设直线QP的解析式为:y=-x+n,
将点P代入,得-4=-2+n,n=-2,
∴直线QP的解析式为:y=-x-2,
∴F(0,-2),∠GOR=45°,
∴GB+2GF=GB+GR
当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,
同理可得点G的坐标为(0,-2),
(3) )∵A(1,-1),B(5,-1)C(0,4),
∴AC=26,BC=52,
∵S△ABC=1
2AC×BCsin∠ACB=
1
2
AB×5,
∴sin∠ACB=213,tan∠ACB=2
3
,∵AE为直径,AB=4,
∴∠ABE=90°,
∵sin∠AEB=sin∠ACB=213=4
AE
,∴AE=213,
∵MB⊥NB,∠NMB=∠EAB,
∴∠N=∠AEB=∠ACB,
∴tanN=MB
BN =
2
3

∴BN=3
2
MB,
当MB为直径时,BN的长度最大,为313.
【点睛】
题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.
9.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平
分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;
(2)若EF=y,求y关于x的函数关系式;
(3)连结OF,CG.
①若△AOF为等腰三角形,求⊙O的面积;
②若BC=3,则30CG+9=______.(直接写出答案).
【答案】(1)证明见解析;(2)y=1
8
x2(x>0);(3)①
16
3
π或8π或(17+2)
π;21.
【解析】
【分析】
(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;
(2)只要证明△AEF∽△ACB,可得AE EF
AC BC
=解决问题;
(3)①分三种情形分别求解即可解决问题;
②只要证明△CFG∽△HFA,可得GF
AF
=
CG
AH
,求出相应的线段即可解决问题;
【详解】
(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,
∵AB是直径,AB⊥GH,
∴EG=EH,
∴DG=DH,
∴AG=DG=DH=AH,
∴四边形AGDH是菱形.
(2)解:∵AB是直径,
∴∠ACB=90°,
∵AE⊥EF,
∴∠AEF=∠ACB=90°,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
∴AE EF
AC BC
=,

1
2
4
x y
x
=,
∴y=1
8
x2(x>0).
(3)①解:如图1中,连接DF.
∵GH垂直平分线段AD,
∴FA=FD,
∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=83,
∴⊙O的面积为16
3
π.
如图2中,当AF=AO时,
∵AB22
AC BC
+2
16x
+
∴OA2
16x
+

∵AF22
EF AE
+
22
2
11
82
x
⎛⎫⎛⎫
+
⎪ ⎪
⎝⎭⎝⎭
∴2162x +=22
21182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 解得x =4(负根已经舍弃),
∴AB =42,
∴⊙O 的面积为8π.
如图2﹣1中,当点C 与点F 重合时,设AE =x ,则BC =AD =2x ,AB =2164x +,
∵△ACE ∽△ABC ,
∴AC 2=AE•AB ,
∴16=x•2164x +,
解得x 2=217﹣2(负根已经舍弃),
∴AB 2=16+4x 2=817+8,
∴⊙O 的面积=π•14
•AB 2=(217+2)π 综上所述,满足条件的⊙O 的面积为
163π或8π或(217+2)π; ②如图3中,连接CG .
∵AC =4,BC =3,∠ACB =90°,
∴AB =5,
∴OH =OA =52

∴AE=3
2

∴OE=OA﹣AE=1,
∴EG=EH=
2
5
1
2
⎛⎫
-

⎝⎭

21
2

∵EF=1
8x2=
9
8

∴FG =21
2﹣
9
8
,AF=22
AE EF
+=
15
8
,AH=22
AE EH
+=
30
2

∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,
∴GF CG
AF AH
=,
∴219
28
1530 82
-
=,
∴CG=270
5﹣
330
10

∴30CG+9=421.
故答案为421.
【点睛】
本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.
10.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.
(1)求证:四边形是菱形;
(2)若,,,求的值.
【答案】(1)证明见解析
(2)
【解析】
试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形
(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP
试题解析:(1)∵AE平分∠BAD BF平分∠ABC
∴∠BAE=∠EAF ∠ABF=∠EBF
∵AD//BC
∴∠EAF=∠AEB ∠AFB=∠EBF
∴∠BAE=∠AEB ∠AFB=∠ABF
∴AB=BE AB=AF
∴AF=AB=BE
∵AD//BC
∴ABEF为平行四边形
又AB=BE
∴ABEF为菱形
(2)作PH⊥AD于H
由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5
∴tan∠ADP=
考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数。

相关文档
最新文档