核技术应用-辐射化学及其应用 PPT课件
合集下载
核技术应用与化学
同位素辐射技术
同位素示踪法是利用 放射性核素作为示踪 剂对研究对象进行标 记的微量分 析方法 同位素示踪技术已广 泛用于石油、化工、 冶金、水利水文等部 门,并取得显著的经 济效益。
食品辐照技术
食品辐照保藏,就是利用 电离辐射对食品进行照射 ,以抑制发芽、杀虫灭菌 、延长货架期和检疫处理 等,从而达到保存食品的 目的。
经辐照彻底灭菌的食品是 宇航员和特种病人最为理 想的食品。目前,国外食 品辐照已作为预防食源性 疾病和开展国术在化学方面的应用
辐射化学 同位素辐射 技术 食品辐照技术
同位素射化学化学
辐射化学
定义:辐射化学是 研究电离辐射与物 质相互作用所产生 的化学效应的学科 应用:它在工业、 农业、医学和研究 方面都有应用,比 如利用辐射加工新
材料、治理三废等
同位素辐射技术
放射性同位素的制备是同 位素与辐射技术应用的物 质基础 目前人工放射性同位素制 备大体有三种方法:在核 反应堆中生产,用于制备 丰中子同位素,简称堆照 同位素;用带电粒子加速 器制备,多用于贫中子同 位素生产,简称加速器同 位素;从核燃料后处理料 液中分离提取同位素,这 种同位素通常称为裂片同 位素。
核技术应用课件
正电子湮灭
➢正电子湮灭前在人体 组织内行进1-3mm
➢湮灭作用产生: ➢能量(光子是 511KeV) ➢动量
同时产生互成180度的 511 keV的伽玛光子。
PET
➢ PET。正电子发射计算机 断层扫描(Positron Emission Computerized Tomography,简称PECT或 PET)是目前最先进的医 疗诊断设备。
核技术应用
核 科 学 技 术 的 组 成 和 应 用 范 围
中国第一颗原子弹爆炸烟云
核物理和 放射化学 等基础研 究。
优化的EDTMP结构
我国的10MeV直线感应加速器
核技术的应用领域
环境污染 治理和分 析检测
环境
军事
核医学
核技术诊断与辐照治疗
科学研究
核技术
辐射育种、辐射不
农业
育防治虫害和同的浓度 测定文物、化石、煤 炭等的年代。
检测 与分 析, 辐射 加工
➢核医学 ➢核农学 ➢环境 ➢考古 。。。。
核医学
➢什么是核医学?
➢核医学是一门利用与研究放射性核素诊断与治 疗疾病并探索其机制与理论的医学学科。
➢核医学包括基础研究和临床应用两个部分, 他们的发展又与核药学及核仪器的发展密 切相关。
➢γ刀 ➢X 刀
硼中子俘获疗法
➢将中子俘获截面大的核素引入亲肿瘤药物, 注射到或服入肿瘤患者体内,待药物富集于 肿瘤组织后,用中子束照射肿瘤部位引起中 子俘获反应,核反应产生的次级辐射及反冲 核对肿瘤细胞起杀伤作用,这种治疗癌症的 方法称为中子俘获疗法。以10B作为靶核素的 中子俘获治疗特称为硼中子俘获疗法(BNCT ,Boron Neutron Capture Therapy)
最新核技术应用核医学PPT课件
PET: 符合探测电路
❖ 空间分辨率
SPECT: 8~12 mm PET: 3~5 mm
❖ 灵敏度: PET >SPECT
❖ 扫描时间: PET<SPECT
第二节 医用放射性核素
❖ 放射性药物:用放射性核素或标记化合物及生物制品来研究、 诊断、治疗疾病的制剂。
❖ 分类(按作用途径): 体外放射性药物
❖ SPECT显像用的放射性核素最好只发射单能γ射线,不发射 带电粒子。
带电粒子对于显像不仅没有贡献,反而会对病人增加不必要的内照射。
γ射线能量最好在100~300keV之间,能量太低,从发射点穿出体外的吸 收损失增加;能量过高,要求的准直器厚度增加。
❖ 常用核素:99mTc, 67Ga, 111In, 123I, 125I, 201Tl, … ❖ 99mTc为首选核素,目前99mTc标记的放射性药物占全部放射性药物的
PET/CT能实现的,PET或CT不一定能实现。
兼容型 PET/CT
CT图像对PET图像的衰减校正
SPECT与PET的区别
❖ 放射性核素
SPECT 99mTc、131I PET 15O、11C、13N、
18F 人体基本元素
❖ 探测信号
SPECT: 单光子
PET: 双光子
❖ 空间定位
SPECT: 准直器
仪器组成:旋转γ相机、计算机及专用软件、附加设备。 功能:获得人体内放射性核素的三维立体分布图像。
单光子发射型计算机断层成像设备(SPECT)
单光子发射计算机断层成像术(SPECT)
主要原理:
❖ 投影采集
SPECT的探头装在可旋转的支架上,围绕病人旋转。 数据采集可以根据需要从某一角度开始,在预定时间内采集投影图像,然 后旋转一定角度,在同样时间内采集下一幅投影图像。如此重复,直到旋转180 或360度停止。
核技术应用-辐射化学及其应用127页PPT
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
提出用能量产额G代替离子对产额 。 G值定义 :体系中吸收100eV能量所形成或破坏的分子 数; G(χ)表示每吸收100eV能量生成产物χ的分子数; G(-χ)表示每吸收100eV能量物质分解的分子数;
G(χ)α表示用α射线照射时形成产物χ的产额; G法定单位 mol/J。
三一、、同基步本辐原射理应用
(一)、概述
(3)应用辐射化学的研究 ① 脉冲辐解及低温技术研究辐射化学机理;
② 辐射增敏剂 实体肿瘤中含有10~50%对射线敏感性低的乏氧
细胞(hypoxic cells),这些细胞对射线有抗拒作用, 从而影响肿瘤放疗的疗效。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
如1MeV的电子在气体中损失它的全部能量,可 产生~3×104离子和6×104的激发分子。而光化学 过程是一次性的,即光子通过一次相互作用把它的 能量全部给予被激发的分子而光子本身消失。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
核技术应用-辐射化学及其应用
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
核技术利用基础PPT课件
常用的放射性核素有3H、14C、58Co、60Co、 63Ni等
常用β源
6
3.低能光子源
利用发射低能γ射线和X射线的放射性核素,或 利用β辐射体与靶物质产生的韧致辐射制成 的源统称为低能光子源。
低能光子源主要用于厚度计、密度计、X射线荧 光分析仪等仪表。
发射低能光子的放射性核素有55Fe、57Co、 125I、238Pu、241Am、244Cm等。
• 能量分辨率——探测器对相近能量的分辨能力 • 能量响应——辐射剂量(uSv/h)相同,但能量不
同时,仪器读数显示的差异 • 30KeV ~2MeV≤±15%(相对137Cs)
2MeV ~7MeV≤±30%(相对137Cs) • 响应时间——能精确给出粒子到达时间的能力 • 线性响应——探测器给出的信息在一定范围内与
RL 负载电阻
22
离子和电子在外加电场中的漂移
离子和电子除了与作热运动的气体分 子碰撞而杂乱运动和因空间分布不均匀造 成的扩散运动外,还有由于外加电场的作 用沿电场方向定向漂移。
这种运动称为“漂移运动”,定向运 动的速度为“漂移速度”。它是形成输出 信号的基本过程。
23
工作气体:
气体探测器的工作介质为气体,工作 气体充满电离室内部空间;
4
核技术利用放射源分类
密封源——密封在包壳里或紧密地固结在覆盖层 里并呈固体形态的放射性物质。
1.α放射源
α放射源主要用于烟雾报警器、静电消除器、 放射性避雷器等离子发生器。 常用的α放射性核素有210Po、238Pu、239Pu、 241Am、235U、238U等
5
2.β放射源
β放射源主要用于β活度测量、 β能量响应刻 度时的参考源和工作源、放射性测厚仪、皮 科敷贴器、气相色谱仪的电子捕集器等。
常用β源
6
3.低能光子源
利用发射低能γ射线和X射线的放射性核素,或 利用β辐射体与靶物质产生的韧致辐射制成 的源统称为低能光子源。
低能光子源主要用于厚度计、密度计、X射线荧 光分析仪等仪表。
发射低能光子的放射性核素有55Fe、57Co、 125I、238Pu、241Am、244Cm等。
• 能量分辨率——探测器对相近能量的分辨能力 • 能量响应——辐射剂量(uSv/h)相同,但能量不
同时,仪器读数显示的差异 • 30KeV ~2MeV≤±15%(相对137Cs)
2MeV ~7MeV≤±30%(相对137Cs) • 响应时间——能精确给出粒子到达时间的能力 • 线性响应——探测器给出的信息在一定范围内与
RL 负载电阻
22
离子和电子在外加电场中的漂移
离子和电子除了与作热运动的气体分 子碰撞而杂乱运动和因空间分布不均匀造 成的扩散运动外,还有由于外加电场的作 用沿电场方向定向漂移。
这种运动称为“漂移运动”,定向运 动的速度为“漂移速度”。它是形成输出 信号的基本过程。
23
工作气体:
气体探测器的工作介质为气体,工作 气体充满电离室内部空间;
4
核技术利用放射源分类
密封源——密封在包壳里或紧密地固结在覆盖层 里并呈固体形态的放射性物质。
1.α放射源
α放射源主要用于烟雾报警器、静电消除器、 放射性避雷器等离子发生器。 常用的α放射性核素有210Po、238Pu、239Pu、 241Am、235U、238U等
5
2.β放射源
β放射源主要用于β活度测量、 β能量响应刻 度时的参考源和工作源、放射性测厚仪、皮 科敷贴器、气相色谱仪的电子捕集器等。
核技术应用PPT课件
反应包括3个过程: (1)氧化活性物质的生成。 (2)SO2与NOx氧化,并与水汽作用生成硫酸、硝酸,继而形成酸雾。 (3)硫酸氨和硝酸氨的生成。
与常规烟气脱硫技术相比,该法优点为:属干法脱硫,可以同时脱 除烟气中的氮氧化物,脱除率高达80%以上;其工艺简单,系统阻力小, 开、停车方便;对烟气中硫、氮氧化物浓度变化的适应性强,能副产肥 料,无废渣产生。
世界上包括美国在内的7个国
家中的知识产权。
图7-37 旋转式伽马刀(中国,深圳)
核技术应用与辐射19防护
3.在基础医学研究中的应用
放射性示踪方法的应用在医学科学中引起了划时代的 变化,使核医学工作者有可能从分子水平动态地认识生命 的本质,帮助人们揭开生物体内和细胞内精细的、复杂的 理化过程,有助于深入细致地研究生命活动的物质基础、 疾病的病因,以及药物的作用原理,大大地推动了医学科 学的发展。
(4)γ射线远距离体外照射治疗 此方法是利用活度很大的辐射源放射出来的γ射线,
集中照射患病部位进行治疗。远距离体外照射治疗最常见 设备为“伽马刀”,但最近的研究发现,使用质子或α粒 子可能更为有效,有报道称质子治疗设备已经投入了临床 应用。
核技术应用与辐射16防护
伽马刀(Gamma Knife)
在放射性药物应用中最前沿的是导 向治疗,其以特异单克隆抗体或“受体 配基”作为载体,标记上高活度的放射 性同位素,引入机体后,单克隆抗体可 自动追寻攻击肿瘤细胞,而对正常组织 损伤极小。
图7-34 放射性药物碘-131
核技术应用与辐射12防护
(2)放射性胶体治疗(“粒子刀”或种子治疗)
将放射性胶体注射于肿瘤组织内,或注入到因肿瘤转移而引起的 胸、腹腔积液的浆膜腔内,这些放射性胶体颗粒可在停留部位对局部 进行照射,从而控制或抑制肿瘤的播散和胸、腹水的生长。
与常规烟气脱硫技术相比,该法优点为:属干法脱硫,可以同时脱 除烟气中的氮氧化物,脱除率高达80%以上;其工艺简单,系统阻力小, 开、停车方便;对烟气中硫、氮氧化物浓度变化的适应性强,能副产肥 料,无废渣产生。
世界上包括美国在内的7个国
家中的知识产权。
图7-37 旋转式伽马刀(中国,深圳)
核技术应用与辐射19防护
3.在基础医学研究中的应用
放射性示踪方法的应用在医学科学中引起了划时代的 变化,使核医学工作者有可能从分子水平动态地认识生命 的本质,帮助人们揭开生物体内和细胞内精细的、复杂的 理化过程,有助于深入细致地研究生命活动的物质基础、 疾病的病因,以及药物的作用原理,大大地推动了医学科 学的发展。
(4)γ射线远距离体外照射治疗 此方法是利用活度很大的辐射源放射出来的γ射线,
集中照射患病部位进行治疗。远距离体外照射治疗最常见 设备为“伽马刀”,但最近的研究发现,使用质子或α粒 子可能更为有效,有报道称质子治疗设备已经投入了临床 应用。
核技术应用与辐射16防护
伽马刀(Gamma Knife)
在放射性药物应用中最前沿的是导 向治疗,其以特异单克隆抗体或“受体 配基”作为载体,标记上高活度的放射 性同位素,引入机体后,单克隆抗体可 自动追寻攻击肿瘤细胞,而对正常组织 损伤极小。
图7-34 放射性药物碘-131
核技术应用与辐射12防护
(2)放射性胶体治疗(“粒子刀”或种子治疗)
将放射性胶体注射于肿瘤组织内,或注入到因肿瘤转移而引起的 胸、腹腔积液的浆膜腔内,这些放射性胶体颗粒可在停留部位对局部 进行照射,从而控制或抑制肿瘤的播散和胸、腹水的生长。
核技术在当今社会的广泛应用PPT课件
• 核粒子: 中子、 射线、 粒子、粒子、正电子、质子、 以及加速器出射的其它粒子。
• 相互作用:主要是电磁作用 ,以及核力作用。 • 核分析方法大量出现、发展和广泛应用起始于上世纪60年
代。加速器和反应堆等大型仪器设备从核物理实验专用设 备“解放”出来,有条件用于应用方面的研究。
17
3 核分析分类
10
放射性示踪法的特点
• 灵敏度高 可探测<1 nCi, 10-1410-13 g 化学分析只能达到10-9 g
• 测量简便、易分辨 不受非放杂质干扰,活体研究,体外测量
• 提供原子、分子水平的研究手段 微观作用机理、动态变化过程
• 合乎生理条件 不扰乱体内生理过程的平衡状态
• 能定量定位:组织器官、细胞、亚细胞水平
13
核分析与核检测技术
• 定义: 核分析方法是利用中子,光子和带电粒子与物质
测 和研究物质的成分和结构的方法。
• 分类: 活化分析(Activation Analysis) 离子束分析(Ion Beam Analysis) 核效应分析(Nuclear Effect Analysis)
14
核分析与核检测技术
• 核分析技术的优点和特点: 灵敏度高 准确度好,误差小,不破坏样品的宏观结构 可多元素同时分析 易于自动化和原距离控制
15
1 核分析特点
• 在近代科学的发展中,人们十分重视材料的研究和发展。 许多材料的重要的物理性能和化学性能与材料中的痕量杂 质元素、晶体的缺陷和微观结构有关。人们发展了许多物 理的和化学的分析方法,对元素成分、物质结构以及杂质 浓度体分布和表面层的形貌特征等进行测量和表征。这些 分析方法同样也适用其它领域。
第5章 核技术在当今社会的广泛应用
• 相互作用:主要是电磁作用 ,以及核力作用。 • 核分析方法大量出现、发展和广泛应用起始于上世纪60年
代。加速器和反应堆等大型仪器设备从核物理实验专用设 备“解放”出来,有条件用于应用方面的研究。
17
3 核分析分类
10
放射性示踪法的特点
• 灵敏度高 可探测<1 nCi, 10-1410-13 g 化学分析只能达到10-9 g
• 测量简便、易分辨 不受非放杂质干扰,活体研究,体外测量
• 提供原子、分子水平的研究手段 微观作用机理、动态变化过程
• 合乎生理条件 不扰乱体内生理过程的平衡状态
• 能定量定位:组织器官、细胞、亚细胞水平
13
核分析与核检测技术
• 定义: 核分析方法是利用中子,光子和带电粒子与物质
测 和研究物质的成分和结构的方法。
• 分类: 活化分析(Activation Analysis) 离子束分析(Ion Beam Analysis) 核效应分析(Nuclear Effect Analysis)
14
核分析与核检测技术
• 核分析技术的优点和特点: 灵敏度高 准确度好,误差小,不破坏样品的宏观结构 可多元素同时分析 易于自动化和原距离控制
15
1 核分析特点
• 在近代科学的发展中,人们十分重视材料的研究和发展。 许多材料的重要的物理性能和化学性能与材料中的痕量杂 质元素、晶体的缺陷和微观结构有关。人们发展了许多物 理的和化学的分析方法,对元素成分、物质结构以及杂质 浓度体分布和表面层的形貌特征等进行测量和表征。这些 分析方法同样也适用其它领域。
第5章 核技术在当今社会的广泛应用
核技术应用及进展(辐射工艺辐射消毒灭菌)课件
核技术应用及进展(辐射工艺、辐射消毒、灭菌)
27
第四节 食品的辐射应用
2. 推迟成熟
➢用0.3—0.45kGy 的剂量可以在常温下使香蕉 的成熟期推迟5—10 天。
➢1kGy的剂量对芒果进行辐射处理,可以使芒果 的成熟期推迟12天左右。
➢对番茄用4kGy的剂量进行辐射处理,可以把 成熟期推迟8天。
➢要改善菠萝的性能,剂量应该控制在0.3 —
0.6kGy 之间。
核技术应用及进展(辐射工艺、辐射消毒、灭菌)
28
第四节 食品的辐射应用
3. 灭菌 在食品的保藏期内,蔬果和肉类很容易因为细 菌和霉菌的作用而很快腐败。高能射线能破坏 微生物细胞核内的DNA,生成的活性粒子也 会对细菌造成杀伤,所以辐射法可以有效地对 这类食品进行灭菌处理,延长它们的保存期。
8
一、原子辐射研究的历史发展
在国际原子能机构(IAEA)、联合国粮
农组织(FAO)和世界卫生组织(WHO)的
倡议下,1970年在巴黎成立了“食品
辐射(照)国际计划”(IFIP),先后共有
24个国家参加该计划,分工协作进行
研究。
核技术应用及进展(辐射工艺、辐射消毒、灭菌)
9
二、食品辐射的特点
➢ “冷杀菌”——不会对食品的品质造 成损伤,可以保持其原有的色、香、味 和外观品质;
➢依据以前各届专家委员会的建议和这些机构组
织的其他最大能量水平是:电子射线为
10MeV;g射线和X射线为5MeV。
核技术应用及进展(辐射工艺、辐射消毒、灭菌)
33
第五节 食品辐照的卫生与安全
➢另外,通过以下五个方面的研究: 1.食品的辐照剂量 2.食品的包装方法和包装材料 3.辐射化学 4.动物或家畜喂养实验 5.辐照食品的毒理学研究
第6章核辐射应用技术ppt课件
我国已累计在45种植物上培育出802个植物突变品 种,占国际同期育成植物突变品种总量的1/4强、国内 同期各种方法培育成新品种总数的8.6%,种植面积约 占全国推广良种种植面积的10%,最大年种植面积达到 900万hm2。
新种质及利用
与诱发突变品的直接利用相比,诱变创生的 种质资源的利用价值则更大。利用诱变手段几乎 可以实现对植物所有重要性状的改良,如生育期 、株型结构、抗耐逆境、籽粒与营养品质和产量 潜力等。
材料在慢照射时较急照射时的损伤轻, 形态畸变少,且诱变效果稳定。
照射材料包括:种子、球茎、块茎、鳞茎、 花粉、植株等。
内照射
将放射性核素引入植物体内,在体内 进行照射。其具有剂量低、持续时间长、 多数植物可在生育阶段进行处理等优点, 但操作和管理较麻烦,目前已很小应用。
• 程序 □处理材料的选择
基因突变
• 分子机制:
基因相当于染色体上的一点,称为位点 (1ocus)。
一个位点还可以分成许多基本单位,称为座 位(site)。
一个座位一般指一个核苷酸对,其中一个碱 基发生改变可能产生一个突变。
所以,突变就是基因内不同座位的改变。 一个基因内不同座位的改变形成许多等位基 因复等位基因。
5.合子 6.营养器官
一旦获得好的突变体, 就可直接繁殖利用。
7.组织培养物
剂量和剂量率的选择
作物的因素 对辐射的敏感性。测定辐射敏感性 的指标:
• 生长受抑制的程度 半致矮剂量(D50)
• 植株成活率 致死剂量(LD100) 辐射引起植株全部死亡剂量。
半致死剂量(LD50) 辐射引起50%植株死亡剂量。
□剂量和剂量率的选择
□诱变处理和的栽培选育
□突变体的筛学与鉴定
新种质及利用
与诱发突变品的直接利用相比,诱变创生的 种质资源的利用价值则更大。利用诱变手段几乎 可以实现对植物所有重要性状的改良,如生育期 、株型结构、抗耐逆境、籽粒与营养品质和产量 潜力等。
材料在慢照射时较急照射时的损伤轻, 形态畸变少,且诱变效果稳定。
照射材料包括:种子、球茎、块茎、鳞茎、 花粉、植株等。
内照射
将放射性核素引入植物体内,在体内 进行照射。其具有剂量低、持续时间长、 多数植物可在生育阶段进行处理等优点, 但操作和管理较麻烦,目前已很小应用。
• 程序 □处理材料的选择
基因突变
• 分子机制:
基因相当于染色体上的一点,称为位点 (1ocus)。
一个位点还可以分成许多基本单位,称为座 位(site)。
一个座位一般指一个核苷酸对,其中一个碱 基发生改变可能产生一个突变。
所以,突变就是基因内不同座位的改变。 一个基因内不同座位的改变形成许多等位基 因复等位基因。
5.合子 6.营养器官
一旦获得好的突变体, 就可直接繁殖利用。
7.组织培养物
剂量和剂量率的选择
作物的因素 对辐射的敏感性。测定辐射敏感性 的指标:
• 生长受抑制的程度 半致矮剂量(D50)
• 植株成活率 致死剂量(LD100) 辐射引起植株全部死亡剂量。
半致死剂量(LD50) 辐射引起50%植株死亡剂量。
□剂量和剂量率的选择
□诱变处理和的栽培选育
□突变体的筛学与鉴定
放射性化学与核化学PPT
CF318F(5.8%) CH3I8F(8.2%)
12.6.2 新化合物的制备
• 在衰变中,子体原子的化合价增加1
Z
Xn
b Z
Y(n1)
1
当放射性原子是分子的一部分且b衰变后没有因反冲而 与分子的其余部分分离开时,b衰变引起的核电荷数改 变导致形成相邻元素的类似化合物。用这种方法曾制得 一些无载体的原先未知的化合物。
12.2 (n,γ)反应的化学效应
• 反冲能ER可通过下式计算:
ER
1 MV 2 2
pR2 2M
p2 2M
ER——反冲能; M——反冲核的质量; V——反冲核的速度; pR——反冲核的动量; p——出射粒子的动量。
• (n,γ)反应的反冲原子的能量计算:
ER
p2 2M
E2 2Mc 2
若E的单位采用MeV,M 采用原子质量单位, 则生成核R
• 例子: • 二苯锝,它在芳烃配合物系列中的存在过去是有疑问的,
因为相应的铼配合物Re(C6H6)2是稳定的,而锰配合物是 不稳定的。为了考察锝配合物的稳定性,先制备二苯钼99Mo,期望经过衰变会生成相应的锝化合物。
99
Mo(6
C6H6
)2
b 99 Tc(6
C6 H 6
)
2
二苯锝阳离子可以分离出来,收率达到8090%。
p2 2M
2M E 2M
M M
E
,
M —— 粒子的质量;
E —— 粒子的能量;
M —— 反冲核的质量。
放射性衰变放出的a粒子的能量在1.83 MeV (144Nd )和 11.7 MeV (212mPo)之间,a衰变的子体具有很高的反冲能, 一般都在0.1 MeV数量级,远远大于化学键能,因此必然使 化学键断裂。
12.6.2 新化合物的制备
• 在衰变中,子体原子的化合价增加1
Z
Xn
b Z
Y(n1)
1
当放射性原子是分子的一部分且b衰变后没有因反冲而 与分子的其余部分分离开时,b衰变引起的核电荷数改 变导致形成相邻元素的类似化合物。用这种方法曾制得 一些无载体的原先未知的化合物。
12.2 (n,γ)反应的化学效应
• 反冲能ER可通过下式计算:
ER
1 MV 2 2
pR2 2M
p2 2M
ER——反冲能; M——反冲核的质量; V——反冲核的速度; pR——反冲核的动量; p——出射粒子的动量。
• (n,γ)反应的反冲原子的能量计算:
ER
p2 2M
E2 2Mc 2
若E的单位采用MeV,M 采用原子质量单位, 则生成核R
• 例子: • 二苯锝,它在芳烃配合物系列中的存在过去是有疑问的,
因为相应的铼配合物Re(C6H6)2是稳定的,而锰配合物是 不稳定的。为了考察锝配合物的稳定性,先制备二苯钼99Mo,期望经过衰变会生成相应的锝化合物。
99
Mo(6
C6H6
)2
b 99 Tc(6
C6 H 6
)
2
二苯锝阳离子可以分离出来,收率达到8090%。
p2 2M
2M E 2M
M M
E
,
M —— 粒子的质量;
E —— 粒子的能量;
M —— 反冲核的质量。
放射性衰变放出的a粒子的能量在1.83 MeV (144Nd )和 11.7 MeV (212mPo)之间,a衰变的子体具有很高的反冲能, 一般都在0.1 MeV数量级,远远大于化学键能,因此必然使 化学键断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光化学均匀分布,低浓度。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
④ 辐射化学过程的辐射能主要是溶剂分子吸收 (溶质浓度不太高时)。光化学的吸收是选择性的, 通常是溶质分子吸收能量。
辐射化学产物也要复杂得多,三重激发态、自由 基等。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
ห้องสมุดไป่ตู้
如1MeV的电子在气体中损失它的全部能量,可 产生~3×104离子和6×104的激发分子。而光化学 过程是一次性的,即光子通过一次相互作用把它的 能量全部给予被激发的分子而光子本身消失。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
复旦放医所金一尊教授研制的新磺酰胺类化学物 (SRM-4)
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
SRM-4对S180和ESC肿瘤的抑制率
组别
S180瘤
抑制率%
ESC瘤
对照 单照(10Gy) 照射+870mg/kg SRM-4 照射+580mg/kg SRM-4 照射+290mg/kg SRM-4
2.辐射化学研究的对象 研究电离辐射与物质作用时发生的化学变化,即
电离、激发和自由基;上述变化与环境的关系;辐射 化学的原理。
化学变化主要有:辐射分解,辐射合成,辐射聚 合,辐射降解,辐射氧化还原,氧化和异构化等。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
3.辐射化学发展简史
§2 同步辐射
三、同步辐射应用
辐射化学原理与应用
2007年2月
辐射§化2 学同原步理辐与射应用
三、一同、步基辐本射原应理用
(一)、概述
1.辐射化学的定义 辐射化学是研究电离辐射与物质相
互作用所产生的化学效应的学科。
电离辐射:
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
波长小于30nm(E~41.3eV)的电磁辐射; 高能荷电粒子,如电子、质子、氘核2H、反冲核、 高能核裂变碎片、重离子等; 快中子; 放射性物质核衰变放出的α、β、γ射线。
- 29.83 63.72 49.89 42.24
- 33.51 45.26 63.79 38.47
(一)、概述
(3)辐射物理 (4)高分子化学 (5)放射医学、放射生物学DNA损伤与修复
5.辐射化学进展 (1)辐射化学基础理论研究; (2)与生物相等物质的辐射化学研究;辐射治疗肿 瘤、质子治疗、中子治疗;辐射增敏剂。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
(3)应用辐射化学的研究 ① 脉冲辐解及低温技术研究辐射化学机理;
E < 40eV的电磁辐射引起的物质的化学变化称为光 化学; E >40eV的电磁辐射产生的化学效应为辐射化学。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
二者的差别: ① 入射粒子能量不同
辐射化学的入射离子能量为keV~MeV量级,其值远 大于原子和分子的电离能(H2:15.4eV;CH4: 13.07eV;He:24.58eV)和化学键能(2~10eV),可 使物质的分子激发和电离。一个入射粒子损失其全部能 量可使许多分子电离和激发。
1)伦琴和贝可勒尔发现χ射线和放射现象-1896;
2)居里夫人发现Po和Ra,提供了辐射源;
3) Lind 1910年提出离子对产额M/N; 式中 M-体系中消失或生产的气体分子数; N-形成的离子对数目。
4)Fricke-1929年提出将硫酸亚铁分子作为测定χ 射 线的剂量计,沿用至今;
辐射§化2学同原步理辐与射应用
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
6)60年代脉冲技术10-12s量级的脉冲辐照装置投入 使用,短寿命中间产物的研究,加强了辐射化学的基 础理论研究; 7)90年代重离子加速器。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
4.辐射化学与其它学科的关系 (1)与放射化学的关系 (2)与光化学的关系
② 辐射增敏剂 实体肿瘤中含有10~50%对射线敏感性低的乏氧
细胞(hypoxic cells),这些细胞对射线有抗拒作用, 从而影响肿瘤放疗的疗效。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
从前的增敏剂大多为亲电性的硝基咪唑化学物,增 敏作用明显,但毒副作用大,尚未临床应用。
(一)、概述
② 辐射化学的电离和激发是无选择性的,但光化 学是有选择性的
A+hυ → A* 只有当ΔE = hυ,且不同能态的跃迁为允许跃迁 时,上式反应才能发生。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
③ 辐射化学过程和光化学过程所产生的活性粒子 在空间分布不同。
辐射化学过程的次级电子往往具有足够的能量, 能再次发生激发和电离,形成刺迹(spur)或云团 (blob)。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
• 辐射种类
– 电子加速器提供加速电子 – 核素源的γ辐射
能量范围 几个KeV~10MeV
能诱发明显的辐射效应,不会 引发放射性产 物,无放射性污染
电离
激发
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
5)1942年反应堆和加速器的问世,为辐射化学提供了 强大的辐射源;
实验技术的进步:如核素标记、ESR、质谱 (MS)、红外光谱、抗磁共振、色谱技术,使辐射化 学研究进入一个新阶段。
提出一些问题:如反应堆内原件的辐射损伤; 萃取剂的辐射损伤; 生命系统的辐射损伤。
三一、、同基步本辐原射理应用
(一)、概述
提出用能量产额G代替离子对产额 。 G值定义 :体系中吸收100eV能量所形成或破坏的分子 数; G(χ)表示每吸收100eV能量生成产物χ的分子数; G(-χ)表示每吸收100eV能量物质分解的分子数;
G(χ)α表示用α射线照射时形成产物χ的产额; G法定单位 mol/J。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
④ 辐射化学过程的辐射能主要是溶剂分子吸收 (溶质浓度不太高时)。光化学的吸收是选择性的, 通常是溶质分子吸收能量。
辐射化学产物也要复杂得多,三重激发态、自由 基等。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
ห้องสมุดไป่ตู้
如1MeV的电子在气体中损失它的全部能量,可 产生~3×104离子和6×104的激发分子。而光化学 过程是一次性的,即光子通过一次相互作用把它的 能量全部给予被激发的分子而光子本身消失。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
复旦放医所金一尊教授研制的新磺酰胺类化学物 (SRM-4)
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
SRM-4对S180和ESC肿瘤的抑制率
组别
S180瘤
抑制率%
ESC瘤
对照 单照(10Gy) 照射+870mg/kg SRM-4 照射+580mg/kg SRM-4 照射+290mg/kg SRM-4
2.辐射化学研究的对象 研究电离辐射与物质作用时发生的化学变化,即
电离、激发和自由基;上述变化与环境的关系;辐射 化学的原理。
化学变化主要有:辐射分解,辐射合成,辐射聚 合,辐射降解,辐射氧化还原,氧化和异构化等。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
3.辐射化学发展简史
§2 同步辐射
三、同步辐射应用
辐射化学原理与应用
2007年2月
辐射§化2 学同原步理辐与射应用
三、一同、步基辐本射原应理用
(一)、概述
1.辐射化学的定义 辐射化学是研究电离辐射与物质相
互作用所产生的化学效应的学科。
电离辐射:
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
波长小于30nm(E~41.3eV)的电磁辐射; 高能荷电粒子,如电子、质子、氘核2H、反冲核、 高能核裂变碎片、重离子等; 快中子; 放射性物质核衰变放出的α、β、γ射线。
- 29.83 63.72 49.89 42.24
- 33.51 45.26 63.79 38.47
(一)、概述
(3)辐射物理 (4)高分子化学 (5)放射医学、放射生物学DNA损伤与修复
5.辐射化学进展 (1)辐射化学基础理论研究; (2)与生物相等物质的辐射化学研究;辐射治疗肿 瘤、质子治疗、中子治疗;辐射增敏剂。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
(3)应用辐射化学的研究 ① 脉冲辐解及低温技术研究辐射化学机理;
E < 40eV的电磁辐射引起的物质的化学变化称为光 化学; E >40eV的电磁辐射产生的化学效应为辐射化学。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
二者的差别: ① 入射粒子能量不同
辐射化学的入射离子能量为keV~MeV量级,其值远 大于原子和分子的电离能(H2:15.4eV;CH4: 13.07eV;He:24.58eV)和化学键能(2~10eV),可 使物质的分子激发和电离。一个入射粒子损失其全部能 量可使许多分子电离和激发。
1)伦琴和贝可勒尔发现χ射线和放射现象-1896;
2)居里夫人发现Po和Ra,提供了辐射源;
3) Lind 1910年提出离子对产额M/N; 式中 M-体系中消失或生产的气体分子数; N-形成的离子对数目。
4)Fricke-1929年提出将硫酸亚铁分子作为测定χ 射 线的剂量计,沿用至今;
辐射§化2学同原步理辐与射应用
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
6)60年代脉冲技术10-12s量级的脉冲辐照装置投入 使用,短寿命中间产物的研究,加强了辐射化学的基 础理论研究; 7)90年代重离子加速器。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
4.辐射化学与其它学科的关系 (1)与放射化学的关系 (2)与光化学的关系
② 辐射增敏剂 实体肿瘤中含有10~50%对射线敏感性低的乏氧
细胞(hypoxic cells),这些细胞对射线有抗拒作用, 从而影响肿瘤放疗的疗效。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
从前的增敏剂大多为亲电性的硝基咪唑化学物,增 敏作用明显,但毒副作用大,尚未临床应用。
(一)、概述
② 辐射化学的电离和激发是无选择性的,但光化 学是有选择性的
A+hυ → A* 只有当ΔE = hυ,且不同能态的跃迁为允许跃迁 时,上式反应才能发生。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
③ 辐射化学过程和光化学过程所产生的活性粒子 在空间分布不同。
辐射化学过程的次级电子往往具有足够的能量, 能再次发生激发和电离,形成刺迹(spur)或云团 (blob)。
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
• 辐射种类
– 电子加速器提供加速电子 – 核素源的γ辐射
能量范围 几个KeV~10MeV
能诱发明显的辐射效应,不会 引发放射性产 物,无放射性污染
电离
激发
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
辐射§化2学同原步理辐与射应用
三一、、同基步本辐原射理应用
(一)、概述
5)1942年反应堆和加速器的问世,为辐射化学提供了 强大的辐射源;
实验技术的进步:如核素标记、ESR、质谱 (MS)、红外光谱、抗磁共振、色谱技术,使辐射化 学研究进入一个新阶段。
提出一些问题:如反应堆内原件的辐射损伤; 萃取剂的辐射损伤; 生命系统的辐射损伤。
三一、、同基步本辐原射理应用
(一)、概述
提出用能量产额G代替离子对产额 。 G值定义 :体系中吸收100eV能量所形成或破坏的分子 数; G(χ)表示每吸收100eV能量生成产物χ的分子数; G(-χ)表示每吸收100eV能量物质分解的分子数;
G(χ)α表示用α射线照射时形成产物χ的产额; G法定单位 mol/J。