用向量法求二面角的平面角教案
立体几何中的向量方法---求二面角教学设计
课题3.2立体几何中的向量方法—求二面角教材:人民教育出版社高中数学选修2-1一、教学内容解析本节课是人民教育出版社高中数学选修2-1第三章第二节《立体几何中的向量方法》的第三课时内容.属于新授课性质原理课。
本单元的学习可以帮助学生在学习平面向量的基础上,利用类比的方法理解空间向量的概念,运算基本定理和应用,体会向量方法和综合几何方法的共性和差异,运用向量方法解决简单的数学问题和实际问题,感悟向量是研究几何问题的有效工具。
二、学生学情分析求二面角是高中数学立体几何学习的一个重点也是难点,学生在必修二学习过程中,主要采取“形到形”的综合推理方法,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。
学生在必修4中已经学习了平面向量的基本概念与基本运算,对向量的坐标化运算有了一定程度的了解,已经初步具备利用向量工具解题的意识和能力。
选修2-1中向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。
它能利用代数方法解决立体几何问题,体现了数形结合的思想。
并且引入向量,对于求二面角问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。
三、教学目标设置①会求平面的法向量,并利用平面的法向量法求二面角,感悟向量是研究立体几何问题的有效工具。
②培养学生利用图形,描述、分析数学问题的能力。
体现了数形结合的思想。
③进一步发展学生的数学运算能力,促进学生数学思维发展,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神。
四、教学重点与难点教学重点:应用法向量法求二面角教学难点:理解法向量与二面角的关系。
五、教学策略分析新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课的教学采用的教学方法为:启发引导教学法和问题教学法六、教学过程设计1. 创设情境,复习引入课题师:经过前一阶段立体几何的学习,同学们已经知道,在立体几何中有三个重要的角,他们分别是:异面直线所成角,直线与平面所成的角和二面角。
用向量法求二面角的平面角教案
第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。
高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。
它能利用代数方法解决立体几何问题,体现了数形结合的思想。
并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。
为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。
本文举例说明如何用向量法解决立体几何的空间角问题。
以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。
利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。
空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。
教学目标1.使学生会求平面的法向量;2.使学生学会求二面角的平面角的向量方法;3.使学生能够应用向量方法解决一些简单的立体几何问题;4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点求平面的法向量;求解二面角的平面角的向量法. 教学难点求解二面角的平面角的向量法. 教学过程Ⅰ、复习回顾一、回顾相关公式:1、二面角的平面角:(范围:],0[πθ∈)结论:或统一为:2、法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。
3.2向量法求二面角
3.2向量法求二面角(16-1)编制人:闵小梅 审核人:王志刚【使用说明及学法指导】 1.完成预习案中的相关问题;2.尝试完成探究案中合作探究部分,注意书写规范;3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。
【学习目标】会用法向量求二面角的大小 【教学重点】向量法求二面角的大小【教学难点】建立适当的坐标系,准确写出点的空间坐标 一、复习引入 【复习】知识点1.向量法求两条异面直线所成的角(范围:]2,0(πθ∈)|||||,cos |cos n m=><=θ知识点2.向量法求直线与平面所成角(范围:[θ∈sin |cos ,|n AB θ=<>=r uu u r类比以上求法,思考如何用向量法求二面角? 回顾二面角的有关概念: (1) 二面角的定义平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角。
(2)二面角的平面角①过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角,[0,]AOB π∠∈。
②一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角,[0,]AOB π∠∈。
abαθO12)【引入】知识点3.向量法求二面角(范围:[0,]θπ∈)①方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。
如图,设二面角βα--l 的大小为θ,其中βα⊂⊥⊂⊥CD l CD AB l AB ,,,.结论:②法向量法如图1、2所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即 ;如图3、4所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即结论:cos θ= 或 cos θ=二面角l αβ--为锐二面角时,cos θ=二面角l αβ--为钝二面角时,cos θ= 【尝试练习】1.已知两平面的法向量分别为1n r =(0,1,0),2n r=(0,1,3),则两平面所成的二面角余弦值为____ 2.(课本P107练习2改编)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB 。
公开课用向量的方法求二面角
AB=1,依题意得B(1,0,0),
C(1,1,0),D(0,2,0),E(0,1,1),F(0,0,1),
1 1 M ( ,1, ). 2 2
BF (1,0,1), DE (0,1,1), 0 0 1 1 于是 cos BF , DE . 2 2 2 | BF || DE |
启示:
求二面角的平面角可转化为求两法向量的夹角。 如图,ABCD是直角梯形,ABC BAD 90,
又SA 面ABCD, SA
1 AB BC 1, AD 2 ,
求面 SCD
与面SAB 所成的二面角的余弦值。 解:建立如图所示的空间直角坐标系 A xyz, 则 A (0,0,0), D ( 1 ,0,0), C (1,1,0), S (0,0,1), z S 2 设n ( x, y, z )是面SCD的法向量, 则 y B n DC, n SD. 1 1 A D DC ( 2 ,1,0), SD ( 2 ,0,1),
BF DE
CDE,所以平面AMD⊥平面CDE.
(3)解
设平面CDE的法向量为u=(x,y,z),
u CE 0, x z 0, 则 于是 u DE 0. y z 0. 令x=1,可得u=(1,1,1).
又由题设,平面ACD的一个法向量v=(0,0,1).
B
C
SA AB BC 1, AD
求面 SCD 与面 SAB 所成的锐二面角的余弦值。
【审题指导】本题是求二面角的余弦值,可重点关注向量法求二面角 的余弦值.本题的特点是图中没有出现两个平面的交线,不能直接 利用二面角的平面角或者垂直于棱的向量的夹角解决,利用法向量
空间向量法求二面角
徐沟中学高二年级数学学案 命制人: 董晓燕 郭凯丽 复查人:段红蕊空间向量法求二面角学习目标:1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题.新知自学:让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的夹角解图1 图2课堂互学:例1;在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B ACD --的正弦值例3:如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=21。
求侧面SCD 与面SB A 所成的二面角的大小。
总结提炼:随堂检测:1.如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小;能力提升:1.如图,在直三棱柱ABC-A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,且AA 1=AB=2.(1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为6π,求锐二面角A-A 1C-B 的大小.A BC DEF ϕω θ βlα2n 1nθ β lαϕ1n2n O (A ) B A 1 C 1 B 1D 1 D CQ zy x 图4AzyDCBS 图5ABCD1A1C1B。
向量法求二面角
用向量法求二面角
思考:能否用法向量求二面角的大小?
A n
B O
n2
n1
n1, n2
用向量法求二面角
n2 n1
同
进
同
出
n2 n1
取 补 角
n2来自n2n1 一
进
一
出
取
n1
等 角
法2:图形的特征来判定相等、互补
用向量法求二面角
例1 如所示,ABCD是一直角梯形,ABC=900 ,
SA 平面ABCD, SA AB BC 1, AD 1 , 2
求面SCD与面SBA所成二面角 z
的余弦值. 方法一:几何法
S n1
n2
方法二:向量法
B
C
易知面SBA的法向量n1
AD
1 (0, , 0)
A
x
2
面SCD的法向量可取n2 (1, 2,1)
Dy
用向量法求二面角
变式练习 如图所示,ABCD是一直角梯形,ABC=900 ,
二面角及其度量
用向量法求二面角
一、教材分析
二面角及其度量是高中数学选修2--1第3章空间向量在立体几 何中的应用中的部分内容。空间向量的引入为代数方法处理立 体几何问题提供了一种重要的工具和方法。本节课是在学生掌 握了用空间向量求线面角的基础上进行的延伸和拓展。求空间 角是立体几何的一类重要的问题,也是高考的热点之一。
二、教学目标
知识目标 :
掌握空间向量求二面角的方法;.
能力目标:
培养学生观察分析、类比转化的能力; 培养空间想象能力
法向量求解二面角的平面角
法向量求解二面角的平面角求二面角是高考中必考内容,学习过程中要备受关注,利用传统方法求解二面角的关键是首先知道二面角的平面角,再转化到三角形中解决,而利用法向量可以降低问题的难度,把问题转化为程序化的求解过程,本文就剖析如何利用法向量求解二面角.一、法向量求二面角步骤1、建立适当的直角坐标系,当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系;如果没有明显交于一点的三条直线,但图形中有一定对称关系,(如正三棱柱、正四棱柱等)利用图形对称性建立空间直角坐标系解题;此外页可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.2、求法向量:一般用待定系数法求解,一般步骤如下:(1)设出平面的法向量为n =(x ,y ,z );(2)找出(求出)平面内的两个不共线的向量的坐标),,(111c b a a =,),,(222c b a b =;(3)根据法向量的定义建立关于x 、y 、z 的方程组⎩⎨⎧=⋅=⋅00b n a n ;(4)解方程组,取其中的一个解,即得法向量£®3、利用数量积公式求角:设1n ,2n 分别是两个半平面的法向量,则由21,cos n n n n >=<求得><21,n n ,而><21,n n 的大小或其补角的大小即为二面角的大小,应注意1n ,2n 的方向。
所以二面角的大小可以通过该二面角的两个面的法向量的夹角求得,他等于两法向量的夹角或其补角.二、考题剖析例1、在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,1(0)AB PA BC a a==>. (Ⅰ)当1a =时,求证:BD PC ⊥;(Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角Q PD A --的余弦值.A BQ DCP解:(Ⅰ)当1a =时,底面ABCD 为正方形,∴BD AC ⊥ 又因为BD PA ⊥,BD ∴⊥面PAC 又PC ⊂面PAC ,BD PC ∴⊥(Ⅱ) 因为AP AD AB ,,两两垂直,分别以它们所在直线为x 轴、y 轴、z 轴建立坐标系,如图所示,令1AB =,可得BC a =,则)1,0,0(),0,,1()0,,0(),0,0,1(P a C a D B .设m BQ =,则)0)(0,,1(a m m Q ≤≤.要使QD PQ ⊥,只要0)(1=-+-=⋅m a m QD PQ ,即210m am -+=. 由0∆=2a ⇒=,此时1m =.所以BC 边上有且只有一个点Q ,使得QD PQ ⊥时,Q 为BC 的中点,且2=a . 设面PQD 的法向量)1,,(y x p =,则00p QD p DP ⎧⋅=⎪⎨⋅=⎪⎩即⎩⎨⎧=+-=+-0120y y x 解得)1,21,21(=p ,取平面PAD 的法向量)0,0,1(=q ,则〉〈q p .的大小与二面角Q PD A --的大小相等,所以66.cos ==〉〈q p q p , 因此二面角Q PD A --的余弦值为66.点评:一般情况下求法向量用待定系数法.由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把n 的某个坐标设为1,再求另两个坐标.求解法向量一般借助方程思想,几何问题代数化,求得法向量再结合向量数量积公式求得二面角.例2、在如图所示的四面体ABCD 中,AB 、BC 、CD 两两互相垂直,且BC = CD = 1.求二面角C -AB -D 的大小;分析:由于本题中没有垂直关系,需要寻找(或作出三线垂直的直线).解:根据已知容易证明BCD AB 平面⊥,设以过B 点且∥CD 的向量为x 轴,BC BA 、为y 轴和z 轴建立如图所示的空间直角坐标系,设AB = a ,则A (0,0,a ),C (0,1,0),D (1,1,0),BD = (1,1,0),BA = (0,0,a )平面ABC 的法向量CD = (1,0,0).设平面ABD 的一个法向量为n = (x ,y ,z ),则0000BD x y az BA ⎧⋅=+=⎧⎪⇒⎨⎨=⋅=⎩⎪⎩n n ,取n = (1,-1,0).∴cos ||||CD CD CD ⋅<>==⋅n n n ,∴二面角C -AB -D 的大小为45°点评:解决本题关键是建立合适的直角坐标系,求得点的坐标,从而求得法向量。
3.2利用空间向量求二面角
SD. 得n (2, 1,1)
0, 0)是平面SAB的法向量,
cos AD, n AD n 6 | AD || n | 3
4.求两法向量夹角
所求二面角的余弦值为: 6 3
5.定值
巩固练习1: 正方体ABCD—A1B1C1D1的棱长为2,点Q 是BC的中点,求二面角A—DQ—A1的余弦 值.
3.2利用空间向量求二面角
温故知新
已学习:二面角及二面角的平面角的概念
会:建立空间直角坐标系 进行向量坐标运算 求平面的法向量
已掌握:用向量求解线线角、线面角的方法
温故知新 1.二面角的定义
从一条直线出发的两个半平面所组成的图形叫做二面角。
2.二面角的范围: [0, ]
O
探究方法
问题1:
求直线和平面所成的角可转化成直线的方向向量与 平面的法向量的夹角,那么二面角的大小与两个半 平面的法向量有着怎样的关系呢?
高考链接
(2019.18)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4, AB=2,∠BAD=60°,E,M,N 分别是BC,BB1,A1D 的中点.
(1)证明:MN∥平面C1DE; (2)求二面角A-MA1-N的正弦值.
z
【点睛】
本题考查线面平行关系的证明、空
间向量法求解二面角的问题.求解二
面角的关键是能够利用垂直关系建
立空间直角坐标系,从而通过求解
O
法向量夹角的弦值来得到二面角
的正弦值,属于常规题型.
x
y
n
a
n1 n2
l
探究方法
问题2:二面角的大小与两个平面法向量夹角的关系?
n1,n2
n1,n2
向量法求二面角
二、教学目标
知识目标 :
掌握空间向量求二面角的方法;.
能力目标:
培养学生观察分析、类比转化的能力; 培养空间想象能力
情感目标:
激发学生的学习热情和求知欲,体现学生的主体地位;.
三、教学重难点
教学重点: 用向量法求二面角 教学难点:二面角与法向量成角间的关系
三、教学方法与手段
教学方法:启发式讲解 研究式探索 学习方法:自主探索 类比猜想 教学手段:借助多媒体辅助教学
SA 平面ABCD, SA AB BC 1, AD 1 , 2
求面SCD与面SBA所成二面角 z
的余弦值. 方法一:几何法
S n1
n2
方法二:向量法
B
C
易知面SBA的法向量n1
AD
1 (0, , 0)
A
x
2
面SCD的法向量可取n2 (1, 2,1)
Dy
用向量法求二面角
变式练习 如图所示,ABCD是一直角梯形,ABC=900 ,
3.
用向量法求二面角
思考:能否用法向量求二面角的大小?
A n
B O
n2
n1
n1, n2
用向量法求二面角
n2 n1
同
进
同
出
n2 n1
取 补 角
n2
n2
n1 一
进
一
出
取
n1
等 角
法2:图形的特征来判定相等、互补
用向量法求二面角
例1 如所示,ABCD是一直角梯形,ABC=900 ,
SA 平面ABCD, SA AB BC 1, AD 1 ,
立体几何-利用空间向量求二面角的平面角
利用空间向量求二面角的平面角2 解:过D 作DF BC 于F ,过D 作DEFED 为二面角B AC D 的平面角, 又AB 平面BCD , AC 于E ,连结EF ,则AC 垂直于平面DEF ,• AB DF , AB CD , • DF 平面ABC ,• DF EF又••• AB CD , BD CD , • CD 平面 ABD , • CD AD ,设BD a ,贝U AB BC 2a , 在Rt BCD 中,S BCD 1-BC DF 21-BD CD , • DF 2.3 a1. 二面角的概念:二面角的定义•从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做 二面角的面.若棱为I ,两个面分别为 ,的二面角记为 丨2. 二面角的平面角:(1) 过二面角的棱上的一点 0分别在两个半平面内作棱的两条垂线 OA,OB ,则 AOB 叫做二面角 I 的平面角+(2)一个平面垂直于二面角 I 的棱I ,且与两半平面交线分别为 OA,OB, 0为垂足,则 AOB也是 I 的平面角+说明:(1) 二面角的平面角范围是 [0°,180°];(2) 二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 引导:请学生归纳已学过的求二面角的大小的方法,教师作必要的补充与引导•明确本节课的课题. 二. 求二面角的平面角:【回顾复习定义法求二面角的平面角】例 1:在棱长为1的正方体AC !中,求平面C^D 与底面ABCD 所成二面可以求得: sin COC 16,所以,平面GBD 与底面ABCD 所成3二面角C 1 BDC 的平面角的正弦值大小为63【回顾复习用三垂线法求二面角的平面角】例 2.如图,AB 平面BCD , BD CD ,若AB BC 2BD ,求.面角B AC D 的正弦值•分析:要求二面角的正弦值,首先要找到二面角的平面角角C 1 BD C 的平面角正弦值大小. 解:过C 1作C 1O BD 于点O ,•••正方体 AC 1 ,••• CC 1 平面 ABCD , 二 COC 1为平面GBD 与平面ABCD 所成二面角C 1G BD C 的平面角,C所以,二面角B AC D 的正弦值为一10 .5通过观察探究利用法向量解决: 例1 :解:建立空间直角坐标系得:DC i (0,1,1),DB (1,1,0),DC (0,1,0)设平面 GBD 的法向量 n-i(x 1, y 1, Z |),平面 CBD 的法向量 n 2 (x 2,y 2,z 2),可得 n (1, 1,1), n 2 (0,0,1),口 (0,0,1) , n 2所以,二面角B AC D 的正弦值为一105三. 归纳小结:本节课回忆巩固了求解二面角的一些方法,并且通过类比用空间向量知识求解二面角,我们感受到空 间向量的巧妙之处,但要让同学们认识到法向量之间的夹角与二面角的平面角的异同之处。
利用空间向量求二面角的平面角
O C 1B 1A 1D 1DAB C利用空间向量求二面角的平面角授课教师:沈张军 班级:高二(10)班 时间:2010.01.12【教学目标】 1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题.2.通过本节课的学习,培养学生观察、分析与推理、从特殊到一般的探究能力和空间想象能力.3.培养学生主动获取知识的学习意识,激发学生学习兴趣和热情,获得积极的情感体验.【教学重点】 利用空间向量计算二面角的大小【教学难点】 求两个面的法向量及判断二面角大小与两个面的法向量的夹角的关系【教学方式】 体验式【课时安排】 1课时【教学过程】 一、复习引入:1.二面角的概念:二面角的定义.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--.2.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AO B ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180] ;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直引导:请学生归纳已学过的求二面角的大小的方法,教师作必要的补充与引导.明确本节课的课题.二.求二面角的平面角:【回顾复习定义法求二面角的平面角】例1:在棱长为1的正方体1AC 中,求平面1C BD与底面ABCD 所成二面角1C BD C --的平面角正弦值大小.解:过1C 作1C O BD ⊥于点O ,∵正方体1AC ,∴1CC ⊥平面ABCD ,∴1COC ∠为平面1C BD 与平面ABCD 所成二面角1C BD C --的平面角, 可以求得:36sin 1=∠COC ,所以,平面1C BD 与底面ABCD 所成 二面角1C BD C --的平面角的正弦值大小为36 【回顾复习用三垂线法求二面角的平面角】例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值 分析:要求二面角的正弦值,首先要找到二面角的平面角解:过D 作BC DF ⊥于F ,过D 作AC DE ⊥于E ,连结EF ,则AC 垂直于平面DEF , FED ∠为二面角B AC D --的平面角,又AB ⊥平面BCD ,∴AB DF ⊥,AB CD ⊥, ∴DF ⊥平面ABC ,∴DF EF ⊥ 又∵AB CD ⊥,BD CD ⊥, ∴CD ⊥平面ABD ,∴CD AD ⊥, 设BD a =,则2AB BC a ==,在Rt BCD ∆中, 1122BCD S BC DF BD CD ∆=⋅=⋅,∴32DF a = 同理,Rt ACD ∆中,1522DE a =, ∴3102sin 51522a DF FED DE a ∠===, 所以,二面角B AC D --的正弦值为105. 让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的夹角解决。
利用向量方法求二面角学案
3.2.2 利用向量方法求二面角学习目标:理解用平面法向量的夹角求二面角的方法。
学习重点难点:用平面法向量的夹角求二面角的方法学习过程:回顾:二面角的定义:从一条直线出发的两个半平面所组成的图形叫做 。
这条直线叫做 ,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做 。
二面角的求法AB 与CD →的夹角(如图①所示).(2)设n 1、n 2是二面角α—l —β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)就是二面角的平面角的大小(如图②所示).二面角:><-=><=2121,cos cos ,cos cos n n n n θθ或例1.如图所示,在正方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2,E 、F 分别是线段AB 、BC 上的点,且EB =FB =1,(1)求二面角C —DE —C 1的余弦值;(2)求直线EC 1与FD 1所成角的余弦值.例2:如图,四棱锥P -ABCD 中,PB ⊥底面ABCD ,CD ⊥PD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB =AD =PB =3.点E 在棱PA 上,且PE =2EA.求二面角A -BE -D 的余弦值.练习:若PA ⊥平面ABC ,AC ⊥BC ,PA =AC =1,BC =2,求二面角A —PB —C 的余弦值.当堂检测,2,4,A B C B SA A B C SA B C A B M N A B B C S N M A ∆∠⊥===--是以为直角的直角三角形。
平面、分别是、的中点。
求二面角的余弦值。
3.2.2 利用向量方法求二面角(作业)基础作业1.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.222.若两个平面α,β的法向量分别是n =(1,0,1),ν=(-1,1,0).则这两个平面所成的锐二面角的度数是________.3.01111160ABC A B C AB AC AA ABC -==∠=在直三棱柱中,,.11.A B A C A A C B ⊥--(1)证明(2)求二面角的平面角的余弦值。
向量法求异面直线的夹角线面角和二面角的平面角及距离PPT学习教案
cosDA ,CK 1
CK
= DA 1· CK | DA |· | 1
F
1
2
| 2 • 1 1
4x
A
D E
10 10
DA与CK的夹角为
∴
1
arccos 10 10
第9页/共23页
y C
B
②求点B到平面EFG的距离;
z
E 1 ,0,0, 2
F
1,0,
1 2
,G1,
1 2
,1.
EF 1 ,0, 1 ,EG 1 , 1 ,1 A1
不妨令二面角A—B1P—B的平面角为
1
tan
1
cos2 n, m
∴二面角A—B1P—B的正切值为
2 5 5
z D1
m , n A1
D A x
25 5
第17页/共23页
C1 B1
P
y C B
例3 在三棱锥D—ABC中,底面△ABC是等腰 直角三 角形,侧 面△DBC 是等边三角形,平面DBC⊥平面ABC,AB=AC= 4,E,F 分别为 BD,AD 中点。
A
B
① A 2 2,0,0 , B 0,2 2,0 C 0,2 2,0 D 0,0,2 6 E 0, 2, 6 F 2,0, 6
第18页/共23页
O
O
A x
Cy
C y
① A 2 2,0,0 , B 0,2 2,0 C 0,2 2,0
z
D 0,0,2 6 E 0, 2, 6 F 2,0, 6
∴二面角G—EF—D1为
3
arccos
3 第11页/共23页
④ DD1与平面EFG所成的角; (用三角函数表示)
空间向量求二面角学案
向量的方法求二面角【教学目标】运用二面角的概念及两个平面的法向量的夹角与二面角大小的关系求二面角的大小. 【教学重点】用向量法求解二面角的大小. 【教学难点】运用向量的数量积求二面角. 【学习时间】一课时 【教学过程】 一.问题与情境情境1.两条异面直线所成的角:(1)定义:设a 、b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的________________叫做a 与b 所成的角.(2)范围:两异面直线所成的角θ的取值范围是________________. (3)向量求法:设直线a 、b 的方向向量为21,n n ,有cos θ=_________. 情境2.直线与平面所成的角:(1)定义:直线和平面所成的角,是指直线与它在这个平面内的________所成的角. (2)范围:直线和平面所成的角θ的取值范围是_____________.(3)向量求法:设直线l 的方向向量为1n ,平面的法向量为2n ,直线与平面所成的角为θ,则有 sin θ=__________(4)①三棱锥⊥-PA ABC P ,平面AC AB PA ABC ==,, 090=∠BAC ,E 为PC 中点 ,则PA 与BE 所成角的余弦值为② 直三棱柱111C B A ABC -中, 21=AA 1900===∠AC AB BAC ,, 则1AC 与截面11CC BB 所成角的余弦值为情境3.平面与平面所成的角(1)二面角的平面角的定义:一般的一二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的射线,这两两条射线所成的角叫做二面角的平面角。
(2)二面角的范围:问题:如何用向量的方法求二面角的大小? 二.学生活动活动1:如果已知二面角α—l —β棱l 的垂线AB ,CD (AB ,CD 分别在平面α、β内),试讨论AB ,CD 的方向向量,活动2:如果已知平面α,β的法向量分别为21,n n ,试讨论二面角的大小与平面的法向量21,n n 的夹角三.建构数学二面角的向量求法:利用向量求二面角的平面角有两种方法:①若AB ,CD 分别是二面角α—l —β的两个面内与棱l 垂直的异面直线,则二面角的大小θ是向量AB →与CD →的夹角(如图①所示).即cos θ= .②设21,n n 是二面角α—l —β的两个面α、β的法向量,则向量1n 与2n 的夹角(或其补角)就是二面角的平面角的大小(如图②所示).即二面角α—l —β的大小θ的余弦值为: cos θ= 或 cos θ= . 四.数学运用 1.例题分析例1.在正方体1111ABCD A BC D -中,求二面角11A BD C --的余弦值. 解法1:A BCDA 1B 1C 1D 1解法2:例2.已知E ,F 分别是正方体1111D C B A ABCD -的棱BC 和CD 的中点,求:(1)A 1D 与EF 所成角的大小; (2)A 1F 与平面B 1EB 所成角的余弦值; (3)二面角B B D C --11的余弦值.AD C B FEA 1B 1C 1D 12.反馈练习1、正方体1111D C B A ABCD 的棱长为1,点E 、F 分别为CD 、DD 1的中点。
导学案立体几何中的向量方法—求二面角
立体几何中的向量方法—求二面角导学案【教学目标】1.会求平面的法向量,并利用平面的法向量求二面角,感悟向量是研究立体几何问题的有效工具,培养数学建模的核心素养。
2.培养学生利用图形,描述、分析数学问题的能力。
体现了数形结合的思想,培养数学抽象、逻辑推理和直观想象的核心素养。
3.进一步发展学生的数学运算能力,促进学生数学思维发展,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神,培养数学运算和数据分析的核心素养。
【教学重点与难点】教学重点:应用坐标法求二面角。
教学难点:理解法向量与二面角的关系,以及如何在具体问题中建立坐标系。
【学习过程】一、复习引入1.二面角的定义:从出发的所组成的图形叫做二面角。
2.取值范围:二、求二面角的方法1.定义法(几何法)2.法向量法(坐标法):两平面法向量成角与二面角的平面角之间的关系θθ三、例题解析及拓展变式1.例题: 正方体ABEF-DCE ′F ′中, M,N 分别为AC,BF 的中点(如图),求二面角A-MN-B 的余弦值.2.拓展变式1:正方体ABEF-DCE ′F ′中, M 为AC 的中点(如图), N 是对角线BF 上一点,当直线MN 与平面ABEF 所成的角为45 °时,求二面角A-MN-B 的余弦值.3.拓展变式2:正方体ABEF-DCE ′F ′中, M 为AC 的中点(如图),在对角线BF 上是否存在一点N ,使平二面角A-MN-B 的余弦值为 - ? 若存在,确定点D 的位置,若不存在,说明理由。
1.3四、链接高考1.2017高考新课标全国1卷(理)第18题如图,在四棱锥P-ABCD中,AB//CD,且90∠=∠=.BAP CDP(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,90APD∠=,求二面角A-PB-C的余弦值.2. 2016高考新课标全国1卷(理)第18题如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,,且二面角D -AF -E 与二面角C -BE -F 都是.(I )证明:平面ABEF EFDC ;(II )求二面角E -BC -A 的余弦值.3. 2018高考新课标全国1卷(理)第18题 如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且. (1)证明:平面平面;(2)求与平面所成角的正弦值.五、课堂小结及作业。
向量法求二面角
n1, n2 , cos n1 • n2
n1 n2
2、
n1, n2 n1, n2
cos n1 • n2 n1 n2
cos n1 • n2 n1 n2
SA、AB、AD 两两垂直,以 A 为坐标原点, AD、AB、AS 所在的直线分别为 x 轴, y 轴,z 轴建立空间直角坐标系 A-xyz,
向量法求二面角的大小
四、教学过程的设计与实施
1 温故知新
如何度量二面角α—l—β的大小
B O
A
l
四、教学过程的设计与实施
2 探究方法
问题1:
二面角的平面角AOB 能否转化成向量的夹角?
B
O l
A
AOBO,AOB
二面 角 O,A OB
四、教学过程的设计与实施
2 探究方法
二 面 角 n 1 ,n 2
1 x z 0, 2 x y z 0.
则 A(0,0,0),S(0,0,1),D ( 1 ,0,0) , 2
C(1,1,0, SC (1,1,1) , SD (1 ,0,1) , 2
取 z=1,得 n (2,1,1) , cos n, AD n AD 6
n AD 3
AD (1 ,0,0) 为平面 SAB 的法向量, 2
钝角,得出问题的结果.
四、教学过程的设计与实施
3 实践操作
巩固练习: 正方体ABCD—A1B1C1D1的棱长为2,点Q是BC 的中点,求二面角A—DQ—A1的余弦值.
四、教学过程的设计与实施
4 归纳总结
➢两种方法
半平面内分别垂直于棱的向量的夹角 两个平面的法向量的夹角求解
➢一个步骤
用法向量求二面角大小的步骤
1 温故知新
向量法求二面角
高三年级数学学科问题式自主高效课堂导学案
时间: 年 月 日 专题名称: 向量法求二面角
班级 姓名
一、学习目标(考点内容)
1.掌握用向量法求二面角
注:二面角的平面角的取值范围:0°≤α≤180°,用向量法求二面角时,最后一步不要忘了判断二面角的平面角是钝角还是锐角。
二、问题导学
题型一:向量法求二面角
例1、如图,直三棱柱111ABC A B C -中,
1AA AC CB AB ===
(Ⅰ)证明:1BC //平面1
ACD ; (Ⅱ)求二面角1D AC E --的正弦值.
1
A
B
C
D
E
例2、如图,四面体ABCD 中,ABC ∆是正三角形,
ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =. (1)证明:平面ACD ⊥平面ABC ;
(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.
三、对点训练
1、图1是由矩形ADEB、R t△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B-CG-A的大小.
2、如图,且AD=2BC,,且EG=AD,且CD=2FG,
,DA=DC=DG=2.
(I)若M为CF的中点,N为EG的中点,求证:
;
(II)求二面角的正弦值;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用向量法求二面角的平面
角教案
Prepared on 24 November 2020
第三讲:立体几何中的向量方法
——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。
高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。
它能利用代数方法解决立体几何问题,体现了数形结合的思想。
并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。
为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。
本文举例说明如何用向量法解决立体几何的空间角问题。
以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。
利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。
空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。
教学目标
1.使学生会求平面的法向量;
2.使学生学会求二面角的平面角的向量方法;
3.使学生能够应用向量方法解决一些简单的立体几何问题;
4.使学生的分析与推理能力和空间想象能力得到提高.
教学重点
求平面的法向量;
求解二面角的平面角的向量法. 教学难点
求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式:
1、二面角的平面角:(范围:],0[πθ∈)
角的补角.
3、用空间向量解决立体几何问题的“三步曲”:
(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)
(3)把向量的运算结果“翻译”成相应的几何意义。
(回到图形) Ⅱ、典例分析与练习
例1、如图,ABCD 是一直角梯形,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,
2
1
=
AD ,求面SCD 与面SBA 所成二面角的余弦值. 分析 分别以,,BA AD AS 所在直线为,,x y z 轴,
建立空间直角坐标系,求出平面SCD 的法向量1n , 平面SBA 法向量2n ,利用12,n n 夹角 求平面SCD 与平面SBA 的夹角余弦值。
解:如图建立空间直角坐标系xyz A -,则
易知面SBA 的法向量为)0,21,0(1==n ,)1,21
,0(),0,21,1(-=-=
设面SCD 的法向量为),,(2z y x n =,则有⎪⎪⎩⎪⎪⎨⎧
=-=-02
02
z y y x ,取1=z ,得2,1==y x ,
)1,2
1
,1(2=∴n
又1n 方向朝面内,2n 方向朝面外,属于“一进一出”的情况,二面角等于法向量夹角 即所求二面角的余弦值为
3
6. 点拨 求二面角的方法有两种:(1)利用向量的加法及数量积公式求出与两半平面的棱垂直的向量的夹角,从而确定二面角的大小;(2)根据几何体的特征建立空间直角坐标系,先求二面角两个半平面的法向量,再求法向量的夹角,从而确定二面角的大小。
练习1:正方体1111D C B A ABCD -的棱长为1,点E 、F 分别为CD 、1DD 的中点.求二面角D AE F --的余弦值。
解:由题意知,)0,1,21(),21,1,0(E F ,则)21,1,0(=AF )0,1,2
1
(,=AE
设平面AEF 的法向量为),,(z y x n =,则
⎪⎪⎩⎪⎪⎨⎧=+=+⇒⎪⎩⎪⎨
⎧=⋅=⋅02
10210
0y x z y ,取1=y ,得2-==z x 又平面AED 的法向量为)1
,0,0(1=AA 观察图形知,二面角D AE F --为锐角,所以所求二面角D AE F --的余弦值为
3
2
练习2:如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩
形,。
平面平面ABCD B B A A ⊥''
试问:当A A '的长度为多少时,二面角A C A D -'-的大小为? 60 解: 如图建立空间坐标系A xyz -,则 '(1,0,)DA a =- (0,1,0)DC =
设面'DAC 的法向量为1(,,1)n x y =
则'1100DA n DC n ⎧⋅=⎪⎨⋅=⎪⎩ 得1(,0,1)n a = 易得面'AAC 的法向量2(1,1,0)n =-
∴向量12,n n 的夹角为60
由12122121
cos ,2
||||12n n a n n n n a ⋅-〈〉=
==+⋅ 得 1a =
∴ 当A A '=1时,二面角A C A D -'-的大小为60.
设计说明:复习面面角转化为两向量的夹角或其补角的方法,也可借此机会说明为什么这两个角相等或互补,就没有其他情况.
练习3:正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点. 当11BC B P ⊥时,求二面角11C B P C --的平面角的余弦值. 解:如图建立空间坐标系O xyz -,设AP a =
则1,,,A C B P 的坐标分别为(0,1,0),(0,1,0),(3,0,2)(0,1,)a -- ∵
, 1
(3,1,2)BC =-
由11BC B P ⊥,得110BC B P = 即22(2)0a +-= 1a ∴= 又11BC B C ⊥ 11BC CB P ∴⊥面
∴1(3,1,2)BC =-是面1CB P 的法向量
设面11C B P 的法向量为(1,,)n y z =,由1110
B P n B
C n ⎧⋅=⎪⎨⋅=⎪⎩得(1,3,23)n =-,
设二面角11C B P C --的大小为α,则116
cos 4||||
BC n BC n α== Ⅲ、小结与收获
1、二面角的平面角的正弦值弦值:
2、求平面法向量的方法. Ⅳ、课后练习
1、如图,已知四棱锥P ABCD -的底面是直角梯形,90ABC BCD ∠=∠=,
2AB BC PB PC CD ====,侧面PBC ⊥底面ABCD . 求二面角P BD C --的大小.
2、如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均相等,点D 是BC 上一点,AD ⊥C 1D.
求二面角C -AC 1-D 的大小.。