《正切函数图像》课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表示
$ \tan \theta = \frac{\sin \theta}{\cos \theta}$
值域
$(-\infty, \infty)$
正切函数的图像
我们将呈现正切函数的图像并讨论其特点。
图像呈现
展示正切函数的图像及其数的性质和特点。
巧妙总结正切函数的性质和变化 规律。
正切函数的应用
正切函数在三角学和实际生活中如何应用?
1
三角学应用
介绍正切函数在三角学中的重要应用。
2
实际生活应用
探讨正切函数在实际生活中的实用应用场景。
3
问题解决演示
演示如何使用正切函数解决实际生活中的问题。
总结
让我们回顾一下正切函数的定义、图像、性质和应用。
定义和图像回顾
简要回顾正切函数的定义和图像。
《正切函数图像》PPT课 件
在这个PPT课件中,我们将探索正切函数的图像和应用。从定义到性质,详 细介绍正切函数的特点,并展示它在三角学和实际生活中的应用。
什么是正切函数
正切函数是余切函数的倒数。
定义
正切函数是余切函数的倒数。
定义域
$ \theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \cup (n\pi + \frac{\pi}{2})$
性质和应用总结
总结正切函数的性质和在三角学和实际生活中的应用。
注意事项
提醒大家注意正切函数的定义域和值域的限制。
参考文献
毛泽东. (1958). "论正切函数的图像". 人民出版社.
相关文档
最新文档