凌源市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凌源市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知双曲线C :

=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C
的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )
A .
B .
C .2
D .
2. 已知函数()21
11
x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )
A .1
B .1-
C .2
D .2-3. 若函数则“a=1”是“函数y=f (x )在R 上单调递减”的(

A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是(

A .i ≥7?
B .i >15?
C .i ≥15?
D .i >31?
5. 函数f (x )=lnx ﹣的零点所在的大致区间是( )
A .(1,2)
B .(2,3)
C .(1,)
D .(e ,+∞)
6. 椭圆的左右顶点分别为,点是上异于的任意一点,且直线斜率的
22
:143
x y C +=12,A A P C 12,A A 1PA 取值范围是,那么直线斜率的取值范围是( )
[]1,22PA
A .
B .
C .
D .31,42⎡⎤-
-⎢⎥⎣⎦33,48⎡⎤
--⎢⎥⎣⎦
1,12⎡⎤⎢⎥⎣⎦3,14⎡⎤⎢⎥
⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.
7. 已知空间四边形,、分别是、的中点,且,,则( )ABCD M N AB CD 4AC =6BD =A .
B .
C .
D .15MN <<210MN <<15MN ≤≤25
MN <<8. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )
A . =1.23x+4
B . =1.23x ﹣0.08
C . =1.23x+0.8
D . =1.23x+0.08
9. 函数f (x )=﹣x 的图象关于(

A .y 轴对称
B .直线y=﹣x 对称
C .坐标原点对称
D .直线y=x 对称
10.已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且
P 22
221(0,0)x y a b a b
-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率
12PF PF ⊥2PF M N N 2PF 是( )
A.
B.2
D.5
2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.
11.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1
B .
C .
D .
12.正方体的内切球与外接球的半径之比为( )
A .
B .
C .
D .
二、填空题
13.设
,则
14.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项n = .
15.已知为常数,若,则_________.
,a b ()()2
2
4+3a 1024f x x x f x b x x =++=++,5a b -=
16.设S n 是数列{a n }的前n 项和,且a 1=﹣1, =S n .则数列{a n }的通项公式a n = .
17.在(1+x )(x 2+)6的展开式中,x 3的系数是 .
18.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .
三、解答题
19.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.
(Ⅰ)求证:EF ⊥平面DCE ;
(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.
20.(本小题满分12分)
数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.
{}n a n S
21.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.
(1)求数列{a n}、{b n}的通项公式;
(2)设c n=,求{c n}的前n项和S n.
22.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).
(1)求f(x)的最小值,并求取最小值时x的范围;
(2)若f(x)的最小值为2,求证:f(x)≥+.
a b
23.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
分数段理科人数文科人数
[40,50)
[50,60)
[60,70)
[70,80)正正
[80,90)正
[90,100]
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频
率分布直方图.
(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
24.(本小题满分10分)选修:几何证明选讲
41-如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相PA O A P C B ,AP CD //BC AD ,交于点,为上一点,且.E F CE EC EF DE ⋅=2(Ⅰ)求证:;
P EDF ∠=∠(Ⅱ)若,求的长.
2,3,2:3:===EF DE BE CE PA
【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
凌源市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1. 【答案】D
【解析】解:设F 1(﹣c ,0),F 2(c ,0),则l 的方程为x=﹣c ,
双曲线的渐近线方程为y=±x ,所以A (﹣c , c )B (﹣c ,﹣ c )∵AB 为直径的圆恰过点F 2∴F 1是这个圆的圆心∴AF 1=F 1F 2=2c ∴c=2c ,解得b=2a
∴离心率为==
故选D .
【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式. 
2. 【答案】A 【解析】
试题分析:由已知得()2112x f x x x -=
=-,则()21
'f x x
=,所以()'11f =.考点:1、复合函数;2、导数的几何意义.3. 【答案】A
【解析】解:设g (x )=,h (x )=﹣x+a ,则g (x ),h (x )都是单调递减
∵y=
在(﹣∞,0]上单调递减且h (x )≥h (0)=1
若a=1时,y=﹣x+a 单调递减,且h (x )<h (0)=1∴
,即函数y=f (x )在R 上单调递减
若函数y=f (x )在R 上单调递减,则g (0)≤h (0)
∴a ≤1
则“a=1”是“函数y=f (x )在R 上单调递减”的充分不必要条件故选A
【点评】本题以充分必要条件的判断为载体,主要考查了分段函数的单调性的判断,解题 中要注意分段函数的端点处的函数值的处理 
4. 【答案】C
【解析】解:模拟执行程序框图,可得S=2,i=0
不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15
由题意,此时退出循环,输出S 的值即为14,结合选项可知判断框内应填的条件是:i ≥15?故选:C .
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查. 
5. 【答案】B
【解析】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.又∵f (2)﹣ln2﹣1<0,f (3)=ln3﹣>0∴f (2)•f (3)<0,
∴函数f (x )=lnx ﹣的零点所在的大致区间是(2,3).故选:B . 
6. 【答案】B
7. 【答案】A 【解析】
试题分析:取的中点,连接,,根据三角形中两边之和大于第三边,两边之BC E ,ME NE 2,3ME NE ==差小于第三边,所以,故选A .
15MN <<
考点:点、线、面之间的距离的计算.1
【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.
8.【答案】D
【解析】解:设回归直线方程为=1.23x+a
∵样本点的中心为(4,5),
∴5=1.23×4+a
∴a=0.08
∴回归直线方程为=1.23x+0.08
故选D.
【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.
9.【答案】C
【解析】解:∵f(﹣x)=﹣+x=﹣f(x)
∴是奇函数,所以f(x)的图象关于原点对称
故选C.
10.【答案】A.
【解析】
11.【答案】C
【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.
因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.
因此可知:A,B,D皆有可能,而<1,故C不可能.
故选C.
【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.
12.【答案】C
【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,
设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,
所以,正方体的内切球与外接球的半径之比为:
故选C
二、填空题
13.【答案】9
【解析】由柯西不等式可知
14.【答案】 2n﹣1 .
【解析】解:∵a1=1,a n+1=a n+2n,
∴a2﹣a1=2,
a3﹣a2=22,

a n﹣a n﹣1=2n﹣1,
相加得:a n﹣a1=2+22+23+2…+2n﹣1,
a n =2n ﹣1,
故答案为:2n ﹣1,
15.【答案】
【解析】
试题分析:由,得,()()224+3a 1024f x x x f x b x x =++=++,22
()4()31024ax b ax b x x ++++=++即,比较系数得,解得或
222224431024a x abx b ax b x x +++++=++22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩
1,7a b =-=-,则.
1,3a b ==5a b -=考点:函数的性质及其应用.
【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.()f ax b +16.【答案】 .
【解析】解:S n 是数列{a n }的前n 项和,且a 1=﹣1,
=S n ,∴S n+1﹣S n =S n+1S n ,∴
=﹣1, =﹣1,∴{
}是首项为﹣1,公差为﹣1的等差数列,∴=﹣1+(n ﹣1)×(﹣1)=﹣n .
∴S n =﹣,
n=1时,a 1=S 1=﹣1,
n ≥2时,a n =S n ﹣S n ﹣1=
﹣+=.
∴a n =.
故答案为:.
17.【答案】 20 .
【解析】解:(1+x)(x2+)6的展开式中,
x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;
又(x2+)6的展开式中,
通项公式为T r+1=•x12﹣3r,
令12﹣3r=3,解得r=3,满足题意;
令12﹣3r=2,解得r=,不合题意,舍去;
所以展开式中x3的系数是=20.
故答案为:20.
18.【答案】63
【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.
因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,
所以a1=1,a3=4.
设等比数列{a n}的公比为q,则,所以q=2.
则.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题. 
三、解答题
19.【答案】
【解析】证明:(Ⅰ)在△BCE中,BC⊥CF,BC=AD=,BE=3,∴EC=,
∵在△FCE中,CF2=EF2+CE2,∴EF⊥CE由已知条件知,DC⊥平面EFCB,
∴DC⊥EF,又DC与EC相交于C,∴EF⊥平面DCE
解:(Ⅱ)
方法一:过点B作BH⊥EF交FE的延长线于H,连接AH.
由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,
AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.
所以∠AHB为二面角A﹣EF﹣C的平面角.
在Rt△CEF中,因为EF=2,CF=4.EC=
∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,

由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,
所以当时,二面角A﹣EF﹣C的大小为60°
方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz .
设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,
设平面AEF的法向量为,由得,,取x=1,
则,即,
不妨设平面EFCB的法向量为,
由条件,得
解得.所以当时,二面角A﹣EF﹣C的大小为60°.
【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I )的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II )的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题. 
20.【答案】(1);(2).
122n n b +=-222(4)n n S n n +=-++【解析】
试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比122n n b b +=+数列的通项公式可得,变形形式为;(2)由(1)可知,n b 12()n n b x b x ++=+122(2)n
n n n a a b n --==-≥这是数列的后项与前项的差,要求通项公式可用累加法,即由{}n a 112()()n n n n n a a a a a ---=-+-+ 求得.
211()a a a +-+试题解析:(1),∵,
112222(2)n n n n b b b b ++=+⇒+=+12
2
2
n n b b ++=+又,
121224b a a +=-+=∴.
231
2(21)(2222)22222221n n n n a n n n +-=++++-+=-+=-- ∴.
224(12)
(22)
2(4)122n n n n n S n n +-+=-=-++-考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式.
21.【答案】
【解析】解:(1)由等差数列通项公式可知:a n =2+(n ﹣1)2=2n ,
当n=1时,2b 1=a 1=2,b 4=a 8=16, (3)
设等比数列{b n}的公比为q,则, (4)
∴q=2, (5)
∴ (6)
(2)由(1)可知:log2b n+1=n (7)
∴ (9)
∴,
∴{c n}的前n项和S n,S n=. (12)
【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
22.【答案】
【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|
=|a+b|得,
当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,
∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.
(2)证明:由(1)知a+b=2,
(+)2=a+b+2≤2(a+b)=4,
a b ab
∴+≤2,
a b
∴f(x)≥a+b=2≥+,
a b
即f(x)≥+.
a b
23.【答案】
【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.
(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,
即估计选择理科的学生的平均分为79.5分.
24.【答案】
【解析】(Ⅰ)∵,EC EF DE ⋅=2DEF
DEF ∠=∠∴∽,∴……………………2分
DEF ∆CED ∆C EDF ∠=∠又∵,∴, ∴.
AP CD //C P ∠=∠P EDF ∠=∠(Ⅱ)由(Ⅰ)得,又,∴∽,
P EDF ∠=∠PEA DEF ∠=∠EDF ∆EPA ∆∴,∴,又∵,∴.ED
EP EF EA =EP EF ED EA ⋅=⋅EB CE ED EA ⋅=⋅EP EF EB CE ⋅=⋅∵,,∴ ,∵,∴,解得.EC EF DE ⋅=22,3==EF DE 29=EC 2:3:=BE CE 3=BE 4
27=EP ∴.∵是⊙的切线,∴4
15=-=EB EP BP PA O PC PB PA ⋅=2∴,解得.……………………10分)29427(4152+⨯=PA 4315=PA。

相关文档
最新文档