苏科版苏科版八年级上册数学期末复习试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版苏科版八年级上册数学期末复习试卷
一、选择题
1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )
A .
B .
C .
D .
2.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )
A .y=-x+2
B .y=x+2
C .y=x-2
D .y=-x-2
3.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )
A .4s
B .3s
C .2s
D .1s
4.下列图书馆的馆徽不是..
轴对称图形的是( ) A . B . C . D .
5.下列四组数,可作为直角三角形三边长的是
A .456cm cm cm 、、
B .123cm cm cm 、、
C .234cm cm cm 、、
D .123cm cm cm 、、
6.关于x 的分式方程
7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-3
7.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )
A .
B .
C .
D .
8.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )
A .0m >
B .0m <
C .1m >
D .1m < 9.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限 10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )
A .A
B =A
C B .B
D =CD C .∠B =∠C D .∠BDA =∠CDA
11.下列四个图形中轴对称图形的个数是( )
A .1
B .2
C .3
D .4
12.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )
A .1
B .43
C .53
D .2
13.下列各点中,位于平面直角坐标系第四象限的点是( ) A .(1,2) B .(﹣1,2) C .(1,﹣2) D .(﹣1,﹣2)
14.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )
A .7cm
B .9cm
C .9cm 或12cm
D .12cm 15.将直线y =
12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +12
二、填空题
16.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
17.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.
18. 在实数范围内分解因式35x x -=___________.
19.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.
20.若分式293
x x --的值为0,则x 的值为_______. 21.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.
22.若代数式321
x x -+有意义,则x 的取值范围是______________. 23.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.
24.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是
__________。

25.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。

若BD=3,DE=5,则线段EC 的长为______.
三、解答题
26.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.
(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;
(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;
(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.
27.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱. (1)求y 关于x 的函数表达式;
(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?
28.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .
(1)求正比例函数和一次函数的解析式;
(2)根据图像,写出关于x 的不等式kx ax b >+的解集;
(3)求MOP ∆的面积.
29.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.
30.某商店准备购进,A B 两种商品,A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.
(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?
(2)商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?
(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m
(1020m <<)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.
31.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:
()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;
②开挖几小时后,两工程队挖掘隧道长度相差5米?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.
【详解】
解:∵油箱中有油4升,每小时耗油0.5升,
∴y=4-0.5x,
∵4-0.5x≥0,
∴x≤8,
∴x的取值范围是0≤x≤8,
所以,函数图象为:
故选:D.
【点睛】
本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.
2.B
解析:B
【解析】
【分析】
【详解】
解:设一次函数的解析式y=kx+b(k≠0),
∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,
∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).
把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b
得:
2
{
1
b
k b
=
-+=
,解得
2
{
1
b
k
=
=

该一次函数的表达式为y=x+2.故选B.
解析:B
【解析】
【分析】
【详解】
解:设运动时间为t秒,则CP=12-3t,BQ=t,
根据题意得到12-3t=t,
解得:t=3,
故选B.
【点睛】
本题考查一元一次方程及平行四边形的判定,难度不大.
4.D
解析:D
【解析】
【分析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
解:A、是轴对称图形,不符合题意;
B、是轴对称图形,不符合题意;
C、是轴对称图形,不符合题意;
D、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;
故选:D.
【点睛】
此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
5.D
解析:D
【解析】
【分析】
根据勾股定理的逆定理对四个选项进行逐一判断即可.
【详解】
A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;
B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;
C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;
D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.
故选:D.
本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.
6.A
解析:A
【解析】
当x =1时,分母为零,没有意义,所以是增根.故选A .
7.D
解析:D
【解析】
【分析】
易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.
【详解】
解:如下图,
∴正确的图像是D ;
故选择:D.
【点睛】
解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.
8.D
解析:D
【解析】
【分析】
先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.
【详解】
解:∵当12x x >时,有12y y <
∴ y 随x 的增大而减小
∴m-1<0
∴ m <1
故选 D.
【点睛】
此题主要考查了一次函数的图像性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小.
9.B
解析:B
【解析】
【分析】
【详解】
∵-20,2x+10,
∴点P (-2,2x+1)在第二象限,
故选B.
10.B
解析:B
【解析】
试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;
B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定
△ABD≌△ACD;故B符合题意;
C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;
D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.
故选B.
考点:全等三角形的判定.
11.C
解析:C
【解析】
【分析】
根据轴对称图形的概念求解.
【详解】
解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,
故选:C.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
12.C
解析:C
【解析】
【分析】
先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.
【详解】
解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,
设AD=x,则DE=x,DO=3-x
∴=4,
∴OE=1,
在Rt△DOE中,DO2+OE2=DE2,
解得x=5
3

∴AD=5
3

故选C.
【点睛】
本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.
13.C
解析:C
【解析】
【分析】
根据各象限内点的坐标特征对各选项分析判断利用排除法求解.
【详解】
A、(1,2)在第一象限,故本选项错误;
B、(﹣1,2)在第二象限,故本选项错误;
C、(1,﹣2)在第四象限,故本选项正确;
D、(﹣1,﹣2)在第三象限,故本选项错误.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
14.D
解析:D
【解析】
【分析】
因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.
【详解】
解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;
当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,
此时周长是5+5+2=12cm.
故选:D.
【点睛】
考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.15.C
解析:C
【解析】
【分析】
直接根据“左加右减”的原则进行解答即可.
【详解】
由“左加右减”的原则可知,将直线y=1
2
x﹣1向右平移3个单位,所得直线的表达式是
y=1
2
(x﹣3)﹣1,
即y=1
2
x﹣
5
2

故选:C.
【点睛】
此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.
二、填空题
16.【解析】
【分析】
【详解】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.
考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
解析:【解析】
【分析】
【详解】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
∴斜边上的中线长=1
2
×10=5.
考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
17.(-1,-3)
【解析】
【分析】
让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.
【详解】
点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标
解析:(-1,-3)
【解析】
【分析】
让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.
【详解】
点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),
故填:(-1,-3).
【点睛】
本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.
18.【解析】
提取公因式后利用平方差公式分解因式即可,
即原式=.故答案为
解析:(x x x -
【解析】
提取公因式后利用平方差公式分解因式即可,
即原式=2(5)(x x x x x -=-.故答案为(.x x x
19.200
【解析】
【分析】
【详解】
设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,
根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时
解析:200
【解析】
【分析】
【详解】
设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,
根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x 50
=-,
解得:x=200.
检验:当x=200时,x(x﹣50)≠0.
∴x=200是原分式方程的解.
∴现在平均每天生产200台机器.
20.-3
【解析】
【分析】
根据分式的值为零的条件可以求出x的值.
【详解】
解:根据题意得:,
解得:x=-3.
故答案为:-3.
【点睛】
若分式的值为零,需同时具备两个条件:(1)分子为0;(2 解析:-3
【解析】
【分析】
根据分式的值为零的条件可以求出x的值.
【详解】
解:根据题意得:
29=0
30 x
x
⎧-

-≠


解得:x=-3.
故答案为:-3.
【点睛】
若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
21.15°
【解析】
【分析】
根据等边对等角和三角形的内角和定理,即可求出∠ABC,然后根据垂直平分线的性质和等边对等角即可求出∠EBA,从而求出的度数.
【详解】
解:∵,
∴∠ABC=∠ACB=(
解析:15°
【解析】
【分析】
根据等边对等角和三角形的内角和定理,即可求出∠ABC ,然后根据垂直平分线的性质和等边对等角即可求出∠EBA ,从而求出EBC ∠的度数.
【详解】
解:∵AB AC =,50A ∠=︒
∴∠ABC=∠ACB=
12
(180°-∠A )=65° ∵ED 垂直平分线段AB
∴EA=EB ∴∠EBA=∠A=50°
∴EBC ∠=∠ABC -∠EBA=15°
故答案为:15°.
【点睛】
此题考查的是等腰三角形的性质、垂直平分线的性质和三角形的内角和,掌握等边对等角、垂直平分线的性质和三角形的内角和定理是解决此题的关键.
22.【解析】
【分析】
代数式有意义,则它的分母2x+1≠0,由此求得x 的取值范围.
【详解】
∵代数式有意义,
∴2x+1≠0,
解得x≠.
故答案为:x≠.
【点睛】
本题考查了分式有意义的条件. 解析:12
x ≠-
【解析】
【分析】 代数式
321
x x -+有意义,则它的分母2x+1≠0,由此求得x 的取值范围. 【详解】 ∵代数式321
x x -+有意义, ∴2x+1≠0,
解得x≠12
-.
故答案为:x≠
1
2 -.
【点睛】
本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.
23.m+3n=120
【解析】
【分析】
根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.

解析:m+3n=120
【解析】
【分析】
根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得
∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.
【详解】
解:∵点D是BC边的中点,DE⊥BC,
∴PB=PC,
∴∠PBC=∠PCB,
∵BP平分∠ABC,
∴∠PBC=∠ABP,
∴∠PBC=∠PCB=∠ABP=n°,
∵∠A=60°,∠ACP=m°,
180,
A ABC ACB
∠+∠+∠=︒
∴∠PBC+∠PCB+∠ABP=120°-m°,
∴3∠ABP=120°-m°,
∴3n°+m°=120°,
故答案为:m+3n=120.
【点睛】
本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.
24.a<b
【解析】
【分析】
先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,
再比较出其大小即可.
【详解】
∵点M(-1,a)和点N(-2,b)是一次函数y=-2x
解析:a<b
【解析】
【分析】
先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.
【详解】
∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,
∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,
∴a<b.
故答案为:a<b.
【点睛】
本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.
25.2
【解析】
【分析】
根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF =∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=
∠BCF,即
解析:2
【解析】
【分析】
根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=
∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.
【详解】
∵∠ABC和∠ACB的平分线相交于点F,
∴∠DBF=∠FBC,∠ECF=∠BCF,
∵DF∥BC,交AB于点D,交AC于点E.
∴∠DFB=∠FBC,∠EFC=∠BCF,
∴∠DFB=∠DBF,∠CFE=∠ECF,
∴BD=DF=3,FE=CE,
∴CE=DE−DF=5−3=2.
故选:C.
【点睛】
此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题难度不大,是一道基础题.
三、解答题
26.(1)(4,0)B '-,132
y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒
或102
秒或3.75秒. 【解析】
【分析】
(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),
在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;
(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴
于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132
y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:
【详解】
(1)(6,0),(0,8)A B ,
6,8OA OB ∴==,
90AOB ︒∠=,
222OA OB AB ∴+=,
22268AB ∴+=,
10AB ∴=,
点B ′、B 关于直线AC 的对称,
AC ∴垂直平分BB ',
,10CB CB AB AB ''∴===,
(4,0)B '∴-,
设点C 坐标为(0,)m ,则OC m =,
8CB CB m '∴==-,
在Rt COB ∆'中,COB ∠'=90°,
222OC OB CB ''∴+=,
2224(8),m m ∴+=-
3m ∴=,
∴点C 坐标为(0,3).
设直线AC对应的函数表达式为(0)
y kx b k
=+≠,
把(6,0),(0,3)
A C代入,

60
3
k b
b
+=


=


解得
1
2
3
k
b

=-


⎪=


∴直线AC对应的函数关系是为
1
3
2
y x
=-+,
(2)AC垂直平分BB',
DB DB
='
∴,
BDB
∆'
∴是等腰直角三角形,
90
BDB
∠'=
∴°
过点D作DE x
⊥轴于点E,DF y
⊥轴于点F.
90
DFO DFB DEB'︒
∴∠=∠=∠=,
360
EDF DFB DEO EOF

∠=-∠-∠-∠,90
EOF︒
∠=,90
EDF︒
∴∠=,
EDF BDB'
∴∠=∠,
BDF EDB'
∴∠=∠,
FDB EDB
∴∆∆'
≌,
DF DE
∴=,
∴设点D坐标为(,)
a a,
把点(,)
D a a代入
1
3
2
y x
=-+,
得0.53
a a
=-+
2
a
∴=,
∴点D坐标为(2,2),
(3)同(2)可得PDF QDE
∠=∠
又2,90
DF DE PDF QDE︒
==∠=∠=
PDF QDE
∴∆∆

PF QE ∴= ①当DQ DA =时,
DE x ⊥∵轴,
4QE AE ==∴
4PF QE ∴==
642BP BF PF ∴=-=-=
∴点P 运动时间为1秒.
②当AQ AD =时,
(6,0),(2,2)A D
20,AD ∴=
204AQ ∴=-,
204PF QE ∴==-
6(204)1020BP BF PF ∴=-=--=-
∴点P 运动时间为10202
-秒.
③当QD QA =时,
设QE n =,则4QD QA n ==-
在Rt DEQ ∆中,90DEQ ∠=°,
222DE EQ DQ ∴+=
2222(4), 1.5n n n ∴+=-∴=
1.5PF QE ∴==
6 1.57.5BP BF PF ∴=+=+=
∴点P 运动时间为3.75秒.
综上所述,点P 运动时间为11020-秒或3.75秒. 【点睛】
此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解. 27.(1)3245
y =-
+;(2)应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元
【解析】
【分析】 (1)根据A 水果总价+B 水果总价=1200列出关于x 、y 的二元一次方程,对方程进行整理变形即可得出结论;
(2)设利润为W 元,找出利润W 关于x 的函数关系式,由购进A 水果的数量不得少于B 水果的数量找出关于x 的一元一次不等式,解不等式得出x 的取值范围,再利用一次函数的性质即可解决最值问题.
【详解】
(1)∵30501200x y
∴y 关于x 的函数表达式为:3245
y =-
+. (2)设获得的利润为w 元,根据题意得510w x y , ∴240w x =-+
∵A 水果的数量不得少于B 水果的数量,
∴x y ≥,解得15x ≥.
∵10-<,∴w 随x 的增大而减小,
∴当15x =时,w 最大225=,此时120315155
y -⨯==. 即应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元.
【点睛】
本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键.
28.(1)22y x =-,y x =;(2)2x <;(3)1.
【解析】
【分析】
(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.
(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.
(3)作MN 垂直x 轴,然后根据三角形面积求得即可.
【详解】
解:(1)∵y ax b =+经过()1,0和()0,2-
∴02k b b
=+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-
∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2
又∵M 在函数y kx =上,∴2122m k =
==. ∴正比例函数为y x =.
(2)由图像可知,2x <时,22x x >-
(3)作MN 垂直x 轴,由M 的纵坐标知2MN =,
∴故11212
MOP S ∆=⨯⨯=.
【点睛】
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变
量系数相同,即k 值相同.
29.见解析
【解析】
【分析】
由CE=DE 易得∠ECD=∠EDC ,结合AB ∥CD 易得∠AEC=∠BED ,由此再结合AE=BE ,CE=DE 即可证得△AEC ≌△BED ,由此即可得到AC=BD.
【详解】
∵CE DE =,
∴ECD EDC ∠=∠,
∵//AB CD ,
∴AEC ECD ∠=∠,BED EDC ∠=∠,
∴AEC BED ∠=∠,
又∵E 是AB 的中点,
∴AE BE =,
在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩

∴AEC ≌BED .
∴AC BD =.
【点睛】
熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.
30.(1A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,(2)问中所有进货方案获利相同,③当14a =时,获利最大,即买14件A 商品,26件B 商品.
【解析】
【分析】
(1)设A 商品每件进价为x 元,B 商品每件的进价为(x-20)元,根据A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同,列方程求解;
(2)设购买A 种商品a 件,则购买B 商品(40a -)件,根据商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,列出不等式组即可
(3)先设销售,A B 两种商品共获利y 元,然后分析求解新的进货方案
【详解】
(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是()20x -元, 由题意得:3000180020
x x =-,
解得:50x =,
经检验,50x =是原方程的解,且符合题意,
502030-=,
答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;
(2)设购买A 种商品a 件,则购买B 商品(40a -)件,
由题意得:()5030401560402a a a a ⎧+-⎪⎨-≥⎪⎩
, 解得:
40183
a ≤≤, ∵a 为正整数,
∴a =14、15、16、17、18, ∴商店共有5种进货方案;
(3)设销售,A B 两种商品共获利y 元,
由题意得:()()()8050453040y m a a =--+--
()15600m a =-+,
①当1015m <<时,150m ->,y 随a 的增大而增大,
∴当18a =时,获利最大,即买18件A 商品,22件B 商品,
②当15m =时,150m -=,
y 与a 的值无关,即(2)问中所有进货方案获利相同,
③当1520m <<时,150m -<,y 随a 的增大而减小,
∴当14a =时,获利最大,即买14件A 商品,26件B 商品.
【点睛】
此题考查一元一次不等式组的应用,分式方程的应用,解题关键在于根据题意列出方程
31.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.
【解析】
【分析】
(1)分别根据速度=路程除以时间列式计算即可得解;
(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;
②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.
【详解】
()1甲队:60610÷=米/小时,
乙队: 30215÷=米/小时:
故答案为:10,15;
()2①当26x <<时,设z y kx b =+,
则230650k b k b +=⎧⎨+=⎩
, 解得520k b =⎧⎨=⎩
, ∴当26x <<时,520z y x =+;
②易求得:当02x ≤≤时,
15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,
由()10520x x =+解得4x =,
1° 当02x ≤≤, 15105x x -=,解得:1x =,
2°当24x <≤,()520105x x +-=
解得:3x =,
3°当46x <≤,()105205x x -+=,
解得: 5x =
答:挖掘1小时或3小时或5小时后,两工程队相距5米.
【点睛】
本题考查了一次函数的应用, 主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.。

相关文档
最新文档