船舶主机转速测量处理技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船舶主机转速测量处理技术
随着电控柴油机技术的飞速发展以及计算机数字技术的广泛应用,对于无凸轮轴的电喷柴油机,主机转速信号已从转速测量提高到曲柄角度的精确测量.而一些老旧船的测速发电机或机械部分已至老化期,亟待更新.因此,开发出1套主机转速信号测量与转换系统和曲柄角度的精确测量系统,尤其是能在静止状态下精确测量主机曲柄角度的系统,显得十分重要.
1 主机转速信号的采样方法
目前,主机转速测量的方法主要有:
(1)电磁脉冲测量.最常用的是从飞轮端齿轮处测取脉冲信号,利用传感器与齿轮之间的间隙变化,生成脉冲信号,经过整形,与时钟频率比较计数后,获得转速信号输出;
(2)光电脉冲测量.光电传感器或光电编码器大多安装在凸轮轴处,或者安装在调速器输出轴上;
(3)主轴测速发电机电压测量.这是老旧船主机转速测量的主要方法,一般安装在主轴的链轮上,通过链条与测速发电机连接,由测速发电机输出电压信号.
目前,大多数船舶都从飞轮端齿轮处测取脉冲信号,其优点是安装便捷、易于管理,但飞轮的位置较低,极易受到舱底水的污染,只有采用电磁脉冲测量,才能使信号受到的影响和干扰达到最小.
从船上使用的结果看,垂直在飞轮上方45°左右的位置较好,安装也较方便,具体测量点的选取见图1.
图1 主机转速信号探头安装示意
以6个气缸的二冲程柴油机为例,其相邻发火的2个气缸曲柄夹角为60°,以1号气缸曲柄上止点记号在飞轮上的垂直位置为基准(0°),与TDC传感器的安装位置在空间上相差12°~25°(考虑到喷油提前角),先确定1号缸上止点曲柄角度,再通过测试,依次确定其他各缸的
上止点曲柄角度位置.
探头T1和T2探测的信号相差半个齿间脉冲,可确定正倒车和脉冲计数.T1和T2传感器拾起信号经过放大电路放大转换后,数字脉冲信号进入1个相位触发器,输出正倒车信号.图2为主机转速信号脉冲示意图.
图2 主机转速信号脉冲示意
T1和T2的数字脉冲信号是S信号采样频率计数的时间周期,并对S信号采样频率脉冲个数进行计数,从而计算出转速,转换成数字信号(可输出到数字通信模块中,通过CAN总线输出到数字仪表)后,再进入D/A转换器,转换成模拟量的信号输出到显示仪表.
G点为1号气缸上止点曲柄角度提前角的信号位置,从G
点脉冲开始,可对T1和T2的数字脉冲信号进行计数,按采样频率输出曲柄角度.
从图2可知,飞轮端齿轮的齿数越多,测量精度就越高.一般最少需60个齿,多的可以用120,240或360个齿.
2 曲柄位置的测量
在全电控的柴油机中,当主机在气动启动时,需对各缸的曲柄位置进行静态测量和识别,从而确定各缸空气启动阀门的开启与关闭,并且对排气阀门的开启与关闭进行控制.6缸二冲程柴油机的发火顺序为:1—5—3—6—2—4,见图3.需对二冲程直流扫气柴油机的曲柄位置,主要是上止点的位置、扫气口打开的位置和扫气口关闭的位置,进行测量.
图3 主机曲柄静态位置的测量示意
从图3可知,气缸2,4,1处于活塞下行阶段,此时,这3个气缸的排气阀门应关闭,启动空气阀门应打开,压缩空气推动活塞下行;转过一定角度后,2号缸的空气阀门关闭,排气阀门打开(开始对T1和T2数字脉冲信号进行计数,在该缸的扫气口被关闭前,关闭排气阀门),随着活塞下行,该缸的扫气口被打开;当曲轴转到5缸的上止点曲柄角度位置时,该缸的排气阀门应关闭,启动空气阀门应打开,压缩空气继续推动
活塞下行.其他各缸依次进行,使柴油机的转速达到发火转速以上,调速器给出启动油量的供油信号,各缸按照启动油量和供油提前角发火,直至在调速器给定的转速运行.
在这一过程中,主机启动时有3个气缸的排气阀门处于开启状态,而常规的柴油机只有1个气缸的排气阀门处于开启状态,2个气缸处于压缩状态.因此,电控柴油机的启动比常规的柴油机前半转轻松一些.
此外,电子气缸注油装置的定时基于曲轴转速的计速器反馈信号,通过传感器将活塞的运动信号反馈到注油装置,使活塞处于最合适的位置时(如当第1道活塞环通过喷孔时)向气缸注射润滑油.根据需求,可依据柴油机工况自动或手动调节注油量.
采用光电编码器测量静态位置是个很好的方法,但在全电控无凸轮轴的柴油机中,需要考虑安装在自由端的输出轴.
3 信号的转换与处理
从传感器输入的信号有T1和T2的2个数字脉冲信号以及各缸的上止点曲柄角度位置G点脉冲信号.经过信号转换与处理后,需输出的信号包括:
(1)转速或角速度信号.获得的转速信号输出有3种:①模拟量输出,信号由T1和T2传感器拾起,经放大电路放大转换整形后,脉冲频率信号进入计数处理,经过D/A转换器转换后,可输出0~20 mA的信号或-10 V~+10 V,-5 V~+5 V以及-65 V~+65 V等各种模拟信号,满足一些老旧船的测速发电机或机械部分老化时更新替换的需要;②数字量输出,可输出到数字通信模块中,通过CAN总线输出到数字仪表;③满足电子调速器的数字量输出.
(2)各缸的曲柄角度信号.具有实时、连续和高采样频率的数字信号,满足输送给电喷、电控柴油机的控制单元ECU的通信要求,满足提供柴油机启动时各缸曲柄的静态位置信号的要求.
(3)正倒车信号输出.
(4)通信与故障信号输出.
(5)其他输出,如飞车保护信号,气缸注油控制单元信号等.
在由微机芯片处理器组成电路板内部,设置计数时间周期S脉冲(约0.1 s),曲柄角度信号采样频率(考虑柴油机实际使用的转速≤300 r/min时,最低约5 kHz).硬件电路由微机和集成电路的芯片组成,设有1个由低通滤波器以及脉冲整形组成的预处理电路,能除去低频率的杂波和高频率的交叠.取样信号经预处理电路和高速采样转换电路处理后,由微机芯片计算和控制通信及信号的输出,使信号得到实时处理和传输.硬件电路布置结构见图4.编制软件时,首先考虑CAN总线通信接口的协议,并将可调整的飞轮齿轮数、转速范围和输出信号类型作为调试时的基本参数.在初次上电后,系统自动进入自检程序,对所有的传感器、传感器线路以及输出回路进行检查和故障判断.然后,系统进入1个模拟的输入输出程序,检查和判断输入输出信号有无错误(如曲柄角度从0°~359°,转速从0到飞车转速),相关的输出信号是否正常等,如无出错,系统进入正常工作状态.
图4 硬件电路布置结构
4 电源、驱动电路与信号输出
设计时,坚持简单、实用和可靠原则.在电源和信号输出电路设计上,采用隔离保护与短路保护.
在电源的制作和元件的选择过程中,使用双电源(220 V交流/24 V 直流),并使电源不间断自动切换.电源要有承受较大过载电流的能力,输出电流分路输出并在每个回路作限流保护.
驱动电路的制作过程中,所有的信号输入回路和信号输出回路都单独设定隔离与保护措施,并设置一定数量空置的输入输出回路备用.D/A转换电路使用可编程的TLC 5618集成芯片,如采用可编程的AD 5750集成芯片,输出电流0~20 mA的信号或输出电压-10 V~+10 V,-5 V~+5 V和-65 V~+65 V等的各种模拟量信号.
模拟量信号的输出采用专用电源,与其他电路电源完全隔离.脉冲信号和数字量输出信号全部采用光隔离加驱动输出回路.
当柴油机的转速在1 r/min以下时,转速或角速度信号及各缸的曲柄角度信号输出都为0,即无信号输出,此时,只有主机曲柄静态位置的
输出信号;当柴油机的转速在1 r/min以上且转过2转后,才有转速或角速度信号及各缸的曲柄角度信号输出.
5 结束语
本文设计的主机转速信号测量与转换系统、曲柄角度的精确测量和静态位置测量系统,具有广泛的应用前景和市场,特别是对全电控柴油机具有重要意义.在老旧船的测速发电机改造中,取得很好的效果.。

相关文档
最新文档