离散数学集合论部分常考××题

合集下载

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分测试题离散数学集合论部分综合练习本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次是集合论部分的综合练习。

一、单项选择题1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A⊂B,且A∈B B.A∈B,但A⊄BC.A⊂B,但A∉B D.A⊄B,且A∉B2.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}∈A B.{ a }⊆AC.{2}∈A D.∅∈A3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}∈A B.{2}⊆AC.{a}⊆A D.∅∈A4.若集合A={a,b,{1,2 }},B={1,2},则().A.B⊂ A,且B∈A B.B∈ A,但B⊄AC.B ⊂ A,但B∉A D.B⊄ A,且B∉A5.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}6.若集合A的元素个数为10,则其幂集的元素个数为().A.1024 B.10 C.100 D.17.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R 的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.自反的B.对称的C.对称和传递的D.反自反和传递的9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.310.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},9.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 .三、判断说明题(判断下列各题,并说明理由.)1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1⋂R 2是自反的” 是否成立?并说明理由.3. 若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在. 4.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元不存在.5.设N 、R 分别为自然数集与实数集,f :N→R ,f (x )=x +6,则f 是单射.四、计算题 1.设集合A ={a , b , c },B ={b , d , e },求(1)B ⋂A ; (2)A ⋃B ; (3)A -B ; (4)B ⊕A .2.设A ={{a , b }, 1, 2},B ={ a , b , {1}, 1},试计算(1)(A -B ) (2)(A ∪B ) (3)(A ∪B )-(A ∩B ).3.设集合A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B .4.设A ={0,1,2,3,4},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R •S ,R -1,S -1,r (R ).5.设A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R 是A 上的整除关系,B ={2, 4, 6}.(1)写出关系R 的表示式; (2)画出关系R 的哈斯图;(3)求出集合B 的最大元、最小元.6.设集合A ={a , b , c , d }上的二元关系R 的关系图 如图三所示.(1)写出R 的表达式;(2)写出R 的关系矩阵;(3)求出R 2. 7.设集合A ={1,2,3,4},R ={<x , y >|x , y ∈A ;|x -y |=1或x -y =0},试(1)写出R 的有序对表示; (2)画出R 的关系图;(3)说明R 满足自反性,不满足传递性.五、证明题1.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).2.试证明集合等式A ⋂ (B ⋃C )=(A ⋂B ) ⋃ (A ⋂C ).图一 图二a dbc 图三3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ∈A ,存在b ∈A ,使得<a , b >∈R ,则R 是等价关系.4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ⋂也是A 上的偏序关系.参考解答一、单项选择题1.A 2.B 3.C 4.B 5.C 6.A 7.B 8.B 9.B 10.C 11.C 12.B 13.B二、填空题1.2n2.{∅,{a ,b },{a },{b }}3.{<2, 2>,<2, 3>,<3, 2>},<3, 3>4.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011000011 5.{<a . c >, <b , c >}6.反自反的7.{<1, 1>, <2, 2>}8.{<1, a >, <2, b >},{<1, b >, <2, a >}9.8三、判断说明题(判断下列各题,并说明理由.)1.解:错.设A ={1, 2},B ={1},C ={2},则A ∪B =A ∪C ,但B ≠C .2.解:成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2。

离散数学复习题含答案

离散数学复习题含答案

离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。

请写出集合{1, 2, 3}和{2, 3, 4}的交集。

答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。

请判断复合命题“p且q”的真值。

答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。

请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。

答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。

请计算表达式(A∨B)∧(¬A∨¬B)的值。

答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。

答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。

若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。

答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。

8. 正则表达式正则表达式用于描述字符串的模式。

请写出匹配任意长度的数字串的正则表达式。

答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。

请判断命题p∨¬p和命题¬(p∧¬p)是否等价。

答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。

请简述后序遍历的步骤。

答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。

离散数学形考任务2集合论部分例题及解答

离散数学形考任务2集合论部分例题及解答

离散数学形考任务2集合论部分例题及解

本文档将提供离散数学形考任务2集合论部分的例题及解答。

以下是几个例题及其解答:
1. 例题:设集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},求
A 与
B 的交集。

解答:A 与 B 的交集即为两个集合中共有的元素。

根据给定,A 与 B 的交集为 {3, 4, 5}。

2. 例题:设集合 A = {x | x 是奇数,且1 ≤ x ≤ 10},集合 B = {x | x 是质数,且1 ≤ x ≤ 10},求 A 与 B 的并集。

解答:A 与 B 的并集即为两个集合中所有元素的集合。

根据给定,A 中的元素为 {1, 3, 5, 7, 9},B 中的元素为 {2, 3, 5, 7},因此A 与 B 的并集为 {1, 2, 3, 5, 7, 9}。

3. 例题:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求 A 与
B 的差集。

解答:A 与B 的差集即为属于A,但不属于B 的元素的集合。

根据给定,A 与 B 的差集为 {1, 2}。

4. 例题:设集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},求
A 与
B 的补集。

解答:A 与 B 的补集即为 A 中不属于 B 的元素的集合。

根据
给定,A 与 B 的补集为 {1, 2}。

以上是离散数学形考任务2集合论部分的例题及解答。

希望对
你的研究有所帮助!。

离散数学集合论练习题

离散数学集合论练习题

、选择题1设B = { {2}, 3, 4, 2},那么下列命题中错误的是().A. {2} BC. {2} B2. 若集合A={ a, b, { 1, 2 }} , B={A. B A,且BAC. B A,但B A3. 设集合A = {1, a },则P(A)=(A . {{1}, { a}}C. { ,{1}, { a}, {1, a }}4•已知A B={1,2,3}, A C={2,3,4},若2A. 1 CB. 2 C5.下列选项中错误的是()A .B .6. 下列命题中不正确的:是()A .x {x}-{{ x}}C .A {x} x ,则x A且x A7. A, B 是集合,P(A),I P (B)为其幕集,且A .B .{ }C .8. 空集的幕集P()的基数;是(A . 0B .1C . 3B,U()C . 3 CD .4 CC .{ }D . { }B .{x} {x} {{ x}}D .A B A BA B ,则P(A) P(B)() {{ }} D.{ ,{ }})D . 49. 设集合A = {1 , 2, 3, 4, 5, 6 }上的二元关系R ={ a , b 具有的性质为().A.自反的C.对称和传递的B .对称的D .反自反和传递的集合论练习题B . {2, {2}, 3, 4} BD. {2, {2}} B1, 2},则( ).B . B A,但B AD . B A,且B A).B . { ,{1}, { a}}D . {{1}, { a}, {1, a }}a ,b A ,且a +b = 8},贝U R10. 设集合A={1 , 2,3,4}上的二元关系则S 是R 的( )闭包.12. 非空集合A 上的二元关系 R ,满足(A .自反性,对称性和传递性 C .反自反性,反对称性和传递性13. 设集合A={a, b },则A 上的二元关系A .是等价关系但不是偏序关系 C .既是等价关系又是偏序关系 14. 设R 和S 是集合A 上的等价关系,则 A .一定成立B .不一定成立15. 整数集合Z 上“V”关系的自反闭包是A . =B .工C .>16. 关系R 的传递闭包t(R)可由( A . t(R)是包含R 的二元关系 C . t(R)是包含R 的一个传递关系17. 设R 是集合A 上的偏序关系, ),则称R 是等价关系.B .反自反性,对称性和传递性 D .自反性,反对称性和传递性R={< a, a>, <b, b>}是 A 上的()关B .是偏序关系但不是等价关系 D .不是等价关系也不是偏序关系 R U S 的对称性( )C . 一定不成立D .不可能成立( )关系D . <A . R 1 ={<1 , 1>, <1, 2>, <2, 1>, <2 , 2>, <3,3>}B . R 2 ={<1 , 1>, <1, 3>, <2, 2>, <3, 3>, <4, 4>}C. R 3 ={<1 , 1>, <1, 3>, <2, 2>, <3, 1>, <3, 3>, <4, 4>}D . R 4 ={<1 , 1>, <1, 3>, <2, 2>, <3, 2>, <4, 4>},2, 3, 4},下列关系中为等价关系。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

《离散数学》题库及标准答案

《离散数学》题库及标准答案

《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。

在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

《离散数学》复习题及答案

《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学集合论练习题

离散数学集合论练习题

集合论练习题一、选择题1.设B = { {2}, 3, 4, 2},那么下列命题中错误的就是( ).A.{2}∈BB.{2, {2}, 3, 4}⊂BC.{2}⊂BD.{2, {2}}⊂B2.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ).A.B ⊂ A ,且B ∈AB.B ∈ A ,但B ⊄AC.B ⊂ A ,但B ∉AD.B ⊄ A ,且B ∉A3.设集合A = {1, a },则P (A ) = ( ).A.{{1}, {a }}B.{∅,{1}, {a }}C.{∅,{1}, {a }, {1, a }}D.{{1}, {a }, {1, a }}4、已知A ⊕B ={1,2,3}, A ⊕C ={2,3,4},若2∈ B,则( )A. 1∈CB.2∈CC.3∈CD.4∈C5、 下列选项中错误的就是( )A. ∅⊆∅B. ∅∈∅C. {}∅⊆∅D.{}∅∈∅6、 下列命题中不正确的就是( )A. x ∈{x }-{{x }}B.{}{}{{}}x x x ⊆-C.{}A x x =⋃,则x ∈A 且x A ⊆D. A B A B -=∅⇔=7、 A , B 就是集合,P (A ),P (B )为其幂集,且A B ⋂=∅,则()()P A P B ⋂=( )A. ∅B. {}∅C. {{}}∅D.{,{}}∅∅8、 空集∅的幂集()P ∅的基数就是( )A. 0B.1C.3D.49.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b >⎢a , b ∈A , 且a +b = 8},则R 具有的性质为( ).A.自反的B.对称的C.对称与传递的D.反自反与传递的10、 设集合A ={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S就是R的( )闭包.A.自反B.传递C.对称D.以上都不对11、设A={1,2,3,4},下列关系中为等价关系。

离散数学习题集(十五套)---答案.docx

离散数学习题集(十五套)---答案.docx

离散数学试题与答案试卷一一、填空20%(每小题 2 分)1.设A{ x | ( x N )且 ( x5)}, B{ x | x E 且 x7}( N:自然数集, E+正偶数)则 A B。

2.A ,B , C 表示三个集合,文图中阴影部分的集合表达式为A B。

C 3.设 P,Q 的真值为0,R, S 的真值为1,则(P(Q(R P)))( R S)的真值 =。

4.公式( PR)(S R)P的主合取范式为。

5.若解释 I 的论域 D 仅包含一个元素,则xP( x)xP( x)在 I 下真值为。

6.设 A={1 ,2, 3, 4} , A 上关系图为则 R2 =。

7.设 A={a , b,c, d} ,其上偏序关系R 的哈斯图为则 R=。

8.图的补图为。

9.设 A={a , b,c, d},A上二元运算如下:*a b c da abc db bcd ac cd a bd d a b c那么代数系统<A ,*> 的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择20%(每小题 2 分)1、下列是真命题的有()A .{ a}{{ a}};B .{{}}{ ,{ }};C.{{},} ;D.{ }{{}} 。

2、下列集合中相等的有()A . {4 , 3}; B. {,3, 4} ;C. {4 ,, 3,3} ;D . {3 , 4} 。

3、设 A={1 ,2, 3} ,则 A 上的二元关系有()个。

A . 23;B . 32;C. 23 3;D.32 2。

4、设 R,S 是集合 A 上的关系,则下列说法正确的是()A .若 R, S 是自反的,则RS 是自反的;B .若 R, S 是反自反的,则 R S 是反自反的;C.若 R, S 是对称的,则RS 是对称的;D .若 R, S 是传递的,则RS 是传递的。

5、设 A={1 ,2, 3, 4} , P( A )(A 的幂集)上规定二元系如下R{s,t| s,t p( A)(| s || t |}则 P(A ) / R=()A . A; B. P(A) ; C. {{{1}} , {{1 , 2}} , {{1 ,2, 3}} , {{1 , 2, 3, 4}}} ;D. {{} ,{2}, {2 ,3} , {{2 , 3, 4}} , {A}}6、设 A={, {1} , {1 , 3} , {1 , 2, 3}} 则 A上包含关系“”的哈斯图为()7、下列函数是双射的为()A . f : I E , f (x) = 2x;B. f : N N N, f (n) = <n , n+1> ;C. f : R I , f (x) = [x]; D . f :I N, f (x)= | x | 。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分测试题离散数学集合论部分综合练习本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次是集合论部分的综合练习。

一、单项选择题1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A⊂B,且A∈B B.A∈B,但A⊄BC.A⊂B,但A∉B D.A⊄B,且A∉B2.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}∈A B.{ a }⊆AC.{2}∈A D.∅∈A3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}∈A B.{2}⊆AC.{a}⊆A D.∅∈A4.若集合A={a,b,{1,2 }},B={1,2},则().A.B⊂ A,且B∈A B.B∈ A,但B⊄AC.B ⊂ A,但B∉A D.B⊄ A,且B∉A5.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}6.若集合A的元素个数为10,则其幂集的元素个数为().A.1024 B.10 C.100 D.17.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R 的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.自反的B.对称的C.对称和传递的D.反自反和传递的9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.310.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S 是R 的( )闭包.A .自反B .传递C .对称D .以上都不对11.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如图一所示,若A 的子集B = {3 , 4 , 5},则元素3为B 的( ).A .下界B .最大下界C .最小上界D .以上答案都不对 12.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( ).A .8、2、8、2B .无、2、无、2C .6、2、6、2D .8、1、6、113.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={<a ,2>, <b ,2>},R 2={<a ,1>, <a ,2>, <b ,1>},R 3={<a ,1>, <b ,2>},则( )不是从A 到B 的函数.A .R 1和R 2B .R 2C .R 3D .R 1和R 3二、填空题1.设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为 .2.设集合A ={a ,b },那么集合A 的幂集是 . 应该填写:{∅,{a ,b },{a },{b }}3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系, },,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的有序对集合为 .4.设集合A ={0, 1, 2},B ={0, 2, 4},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的关系矩阵M R =.5.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >,<c . a >},S ={<a , a >,<a , b >,<c , c >}则(R ∙S )-1= .6.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则二元关系R 具有的性质是 .7.若A ={1,2},R ={<x , y >|x ∈A , y ∈A , x +y =10},则R 的自反闭包为 .8.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是 . 2 4 1 3 5图一9.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 .三、判断说明题(判断下列各题,并说明理由.)1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1⋂R 2是自反的” 是否成立?并说明理由.3. 若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在. 4.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元不存在.5.设N 、R 分别为自然数集与实数集,f :N→R ,f (x )=x +6,则f 是单射.四、计算题 1.设集合A ={a , b , c },B ={b , d , e },求(1)B ⋂A ; (2)A ⋃B ; (3)A -B ; (4)B ⊕A .2.设A ={{a , b }, 1, 2},B ={ a , b , {1}, 1},试计算(1)(A -B ) (2)(A ∪B ) (3)(A ∪B )-(A ∩B ).3.设集合A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B .4.设A ={0,1,2,3,4},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R ∙S ,R -1,S -1,r (R ).5.设A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R 是A 上的整除关系,B ={2, 4, 6}.(1)写出关系R 的表示式; (2)画出关系R 的哈斯图;(3)求出集合B 的最大元、最小元.6.设集合A ={a , b , c , d }上的二元关系R 的关系图 如图三所示.(1)写出R 的表达式;(2)写出R 的关系矩阵;(3)求出R 2. 7.设集合A ={1,2,3,4},R ={<x , y >|x , y ∈A ;|x -y |=1或x -y =0},试(1)写出R 的有序对表示; (2)画出R 的关系图;(3)说明R 满足自反性,不满足传递性.五、证明题1.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).2.试证明集合等式A ⋂ (B ⋃C )=(A ⋂B ) ⋃ (A ⋂C ).图一图二a dbc 图三3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ∈A ,存在b ∈A ,使得<a , b >∈R ,则R 是等价关系.4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ⋂也是A 上的偏序关系.参考解答一、单项选择题1.A 2.B 3.C 4.B 5.C 6.A 7.B 8.B 9.B 10.C 11.C 12.B 13.B二、填空题1.2n2.{∅,{a ,b },{a },{b }}3.{<2, 2>,<2, 3>,<3, 2>},<3, 3>4.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011000011 5.{<a . c >, <b , c >}6.反自反的7.{<1, 1>, <2, 2>}8.{<1, a >, <2, b >},{<1, b >, <2, a >}9.8三、判断说明题(判断下列各题,并说明理由.)1.解:错.设A ={1, 2},B ={1},C ={2},则A ∪B =A ∪C ,但B ≠C .2.解:成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2。

离散数学期末复习题

离散数学期末复习题

离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. ( 错 )(2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}AA 22,1,2,1,2,1⊆=则. ( 对 ) (5)如果B A a ⋃∉,则A a ∉或B a ∉. ( 错 )解 B A a ⋃∉则B A B A a ⋂=⋃∈,即A a ∈且B a ∈,所以A a ∉且B a ∉(6)如果A ∪.,B A B B ⊆=则 ( 对 )(7)设集合},,{321a a a A =,},,{321b b b B =,则},,,,,{332211><><><=⨯b a b a b a B A ( 错 )(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A2到A 的关系. ( 对 )解 A 2}},1{},0{,{A φ=, =⨯A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><><A A φφ(9)关系的复合运算满足交换律. ( 错 )(10).条件具有传递性的充分必要上的关系是集合ρρρρA = ( 错 )(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 ) (12)集合A 上的对称关系必不是反对称的. ( 错 )(13)设21,ρρ为集合A 上的等价关系, 则21ρρ⋂也是集合A 上的等价关系( 对 )(14)设ρ是集合A 上的等价关系, 则当ρ>∈<b a ,时, ρρ][][b a = ( 对 )(15)设21,ρρ为集合 A 上的等价关系, 则 ( 错 )二、单项选择题(1)设R 为实数集合,下列集合中哪一个不是空集 ( A )A. {}R x x x ∈=-且,01|2 B .{}R x x x ∈=+且,09|2C. {}R x x x x ∈+=且,1|D. {}R x x x ∈-=且,1|2(2)设B A ,为集合,若φ=B A \,则一定有 ( C )A. φ=B B .φ≠B C. B A ⊆ D. B A ⊇(3)下列各式中不正确的是 ( C )A. φφ⊆ B .{}φφ∈ C. φφ⊂ D. {}}{,φφφ∈ (4)设{}}{,a a A =,则下列各式中错误的是 ( B )A. {}A a 2∈ B .{}A a 2⊆ C. {}A a 2}{∈ D. {}Aa 2}{⊆ (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A ⨯为 ( B ) A. {}><><c c ,2,1, B .{}><><c c ,2,,1C. {}><><2,,,1c cD. {}><><2,,1,c c(6)设{}b A ,0=,{}3,,1b B =,则B A 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0C. {}><><><3,3,,,0,0b bD. {}><><><><0,3,3,,,1,1,0b b(7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D )A. {}><><><><=a b b a a c c a ,,,,,,,1ρB . {}><><=a c c a ,,,2ρC. {}><><><><=c b a b c c b a ,,,,,,,3ρD. {}><=a a ,4ρ(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 ( B )A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈.(9)映射的复合运算满足 ( B )A. 交换律 B .结合律 C. 幂等律 D. 分配律(10)设A ,B 是集合,则下列说法中( C )是正确的.A .A 到B 的关系都是A 到B 的映射B .A 到B 的映射都是可逆的C .A 到B 的双射都是可逆的D .B A ⊂时必不存在A 到B 的双射(11)设A 是集合,则( B )成立.A .A A #22#=B .A X X A⊆↔∈2 C .{}A2∈φ D .{}AA 2∈ (12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有(B ).A .0个B .1个C .2个D .n 个三、填空题1. 设}}2,1{,2,1{=A ,则=A2____________.填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=2.设}}{,{φφ=A ,则A 2= . 填}}},{{},{,{2A A φφφ=3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=⋃B A ,则集合B A ⋂中元素的个数=⋂)(#B A .34.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A 中元素的个数为 .405.设 },{b a A =, ρ 是 A2 上的包含于关系,,则有ρ= .},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><><A A A b b b A a a a A b a φφφφφ6.设21,ρρ为集合 A 上的二元关系, 则=21ρρ .~1~2ρρ7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ⊆8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><b a ,|><b a ,A b a B A ∈⨯∈,且∩}=21,ρρ 则B ___________________. 填 }2,2,0,2,2,0,0,0{><><><><四、解答题1. 设 A d c b a A },,,,{=上的关系 },,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ(1)写出ρ的关系矩阵;(2)验证ρ是A 上的等价关系;(3)求出A 的各元素的等价类。

《离散数学》题库大全及答案

《离散数学》题库大全及答案

为离散数学领域的经典教材,全世界几乎所有知名的院校都曾经使用本书作为教材.以我个人观点看来,这本书可以称之为离散数学百科.书中不但介绍了离散数学的理论和方法,还有丰富的历史资料和相关学习网站资源.更为令人激动的便是这本书少有的将离散数学理论与应用结合得如此的好.你可以看到离散数学理论在逻辑电路,程序设计,商业和互联网等诸多领域的应用实例.本书的英文版(第六版)当中更增添了相当多的数学和计算机科学家的传记,是计算机科学历史不可多得的参考资料.作为教材这本书配有相当数量的练习.每一章后面还有一组课题,把学生已经学到的计算和离散数学的内容结合在一起进行训练.这本书也是我个人在学习离散数学时读的唯一的英文教材,实为一本值得推荐的好书。

《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

集合论部分习题离散数学

集合论部分习题离散数学

二元关系和函数习题1.设集合,A上的二元关系,则关系()(A) (B) (C) (D)2.设集合,A上的二元关系,则关系()(A)(B) (C) (D)3.设,,从R到S不同的二元关系共有()个。

A) 6 (B) 7 (C) 32 (D) 644.设集合上的二元关系,则R具有()(A) 自反性(B) 传递性(C) 对称性(D) 非自反性5.设集合上的二元关系,则关系R不具有()(A) 自反性(B) 传递性(C) 对称性(D) 反对称性6.设集合上的二元关系R的关系矩阵如下,则R具有的性质是()。

(A)非自反性(B)反对称性(C)传递性(D)以上都不对7.设集合上的二元关系,则S是R的()(A) 自反(B) 传递(C) 对称(D) 以上都不对8.设集合上的二元关系则R()。

(A) 是等价关系但不是偏序关系(B) 是偏序关系但不是等价关系(C) 既是等价关系又是偏序关系(D) 既不是等价关系也不是偏序关系9.设集合,偏序关系是A上的整除关系,则偏序集上元素10是集合A的()。

(A)最大元(B) 最小元(C)极大元(D)极小元10.判断下述结论的正确性(1) 存在这样的关系,它可以既满足自反性,又满足非自反性。

()(2)存在这样的关系,它可以既不满足自反性,又不满足非自反性。

()(3)存在这样的关系,它可以既满足对称性,又满足反对称性。

()(4)存在这样的关系,它可以既不满足对称性,又不满足反对称性。

()11.写出三个特殊的关系不具备五个重要性质(自反、非自反、对称、反对称、传递)中的哪几个。

(1)恒等关系不具备()(2)全域关系不具备()(3)空关系不具备()12.设,则S上可以定义()个不同的二元关系,其中有()个等价关系,()个偏序关系,(A)1 (B)2 (C)3 (D)4 (E)5 (F)16是();是()。

(A) 等价关系但不是偏序关系(B) 偏序关系但不是等价关系(C) 等价关系和偏序关系(D) 既不是等价关系也不是偏序关系13.如果A={0,1} B={1,2} 则A2×B= 。

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分综合练习本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。

本次是集合论部分的综合练习。

一、单项选择题1.若集合A ={a ,b },B ={ a ,b ,{ a ,b }},则( ). A .A ?B ,且A ?B B .A ?B ,但A ?B C .A ?B ,但A ?B D .A ?B ,且A ?B2.若集合A ={2,a ,{ a },4},则下列表述正确的是( ).A .{a ,{ a }}?AB .{ a }?AC .{2}?AD .∅?A3.若集合A ={ a ,{a },{1,2}},则下列表述正确的是( ). A .{a ,{a }}?A B .{2}?AC .{a }?AD .??A4.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ). A .B ? A ,且B ?A B .B ? A ,但B ?A C .B ? A ,但B ?A D .B ? A ,且B ?A 5.设集合A = {1, a },则P (A ) = ( ).A .{{1}, {a }}B .{∅,{1}, {a }}C .{∅,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }}6.若集合A 的元素个数为10,则其幂集的元素个数为( ). A .1024 B .10 C .100 D .1 7.集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={<x ,y >|x +y =10且x , y ∈A },则R 的性质为( ). A .自反的 B .对称的C .传递且对称的D .反自反且传递的8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b >?a , b ∈A , 且a +b = 8},则R 具有的性质为( ).A .自反的B .对称的C .对称和传递的D .反自反和传递的9.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有( )个. A .0 B .2 C .1 D .3 10.设集合A ={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S 是R 的( )闭包.A .自反B .传递C .对称D .以上都不对 11.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系 的哈斯图如图一所示,若A 的子集B = {3 , 4 , 5}, 则元素3为B 的( ).A .下界B .最大下界C .最小上界D .以上答案都不对12.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 ( ).A .8、2、8、2B .无、2、无、2C .6、2、6、2D .8、1、6、15 图一13.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={<a ,2>, <b ,2>},R 2={<a ,1>, <a ,2>, <b ,1>},R 3={<a ,1>, <b ,2>},则( )不是从A 到B 的函数. A .R 1和R 2 B .R 2 C .R 3 D .R 1和R 3二、填空题1.设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为 . 2.设集合A ={a ,b },那么集合A 的幂集是 . 应该填写:{?,{a ,b },{a },{b }}3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系, 则R 的有序对集合为 .4.设集合A ={0, 1, 2},B ={0, 2, 4},R 是A 到B 的二元关系, 则R 的关系矩阵M R =. 5.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >,<c . a >},S ={<a , a >,<a , b >,<c , c >}则(R ?S )-1= .6.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则二元关系R 具有的性质是 .7.若A ={1,2},R ={<x , y >|x ?A , y ?A , x +y =10},则R 的自反闭包为 . 8.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是 .9.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 . 三、判断说明题(判断下列各题,并说明理由.)1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由. 2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R2、R 1?R 2是自反的” 是否 成立?并说明理由.3. 若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.4.若偏序集<A ,R >的哈斯图如图二所示, 则集合A 的最大元为a ,最小元不存在.5.设N 、R 分别为自然数集与实数集,f :N →R ,f (x )=x +6,则f 是单射.四、计算题1.设集合A ={a , b , c },B ={b , d , e },求(1)B ?A ; (2)A ?B ; (3)A -B ; (4)B ?A .2.设A ={{a , b }, 1, 2},B ={ a , b , {1}, 1},试计算(1)(A ?B ) (2)(A ∪B ) (3)(A ∪B )?(A ∩B ). 3.设集合A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(A ?B ); (2)(A ∩B ); (3)A ×B .4.设A ={0,1,2,3,4},R ={<x ,y >|x ?A ,y ?A 且x +y <0},S ={<x ,y >|x ?A ,y ?A 且x +y ?3},试求R ,S ,R ?S ,R -1,S -1,r (R ).5.设A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R 是A 上的整除关系,B ={2, 4, 6}. (1)写出关系R 的表示式; (2)画出关系R 的哈斯图; (3)求出集合B 的最大元、最小元.6.设集合A ={a , b , c , d }上的二元关系R 的关系图 如图三所示.(1)写出R 的表达式;图一 图二图三(2)写出R 的关系矩阵;(3)求出R 2.7.设集合A ={1,2,3,4},R ={<x , y >|x , y ?A ;|x ?y |=1或x ?y =0},试 (1)写出R 的有序对表示; (2)画出R 的关系图; (3)说明R 满足自反性,不满足传递性.五、证明题1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ).2.试证明集合等式A ? (B ?C )=(A ?B ) ? (A ?C ).3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ?A ,存在b ?A ,使得<a , b >?R ,则R 是等价关系.4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ⋂也是A 上的偏序关系.参考解答一、单项选择题1.A 2.B 3.C 4.B 5.C 6.A 7.B 8.B9.B 10.C 11.C 12.B 13.B 二、填空题 1.2n2.{?,{a ,b },{a },{b }}3.{<2, 2>,<2, 3>,<3, 2>},<3, 3>4.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011000011 5.{<a . c >, <b , c >}6.反自反的7.{<1, 1>, <2, 2>}8.{<1, a >, <2, b >},{<1, b >, <2, a >}9.8三、判断说明题(判断下列各题,并说明理由.) 1.解:错.设A ={1, 2},B ={1},C ={2},则A ∪B =A ∪C ,但B ?C . 2.解:成立.因为R 1和R 2是A 上的自反关系,即I A ?R 1,I A ?R 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学常考题型梳理第2章关系与函数一、题型分析本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。

常涉及到的题型主要包括:2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。

2-3等价关系2-4偏序关系和哈斯图2-5 函数的概念和性质因此,在本章学习过程中希望大家要清楚地知道:1.有序对和笛卡尔积(1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。

(2)笛卡尔积:把集合A,B合成集合A×B,规定:{,|}⨯=<>∈∈且A B x y x A y B由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。

笛卡儿积的运算一般不满足交换律。

2.二元关系的概念和表示、几种特殊的关系和关系的运算(1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系R∈x∈<y=且>},x{B|yA记作xRy。

二元关系的定义域:ARam⊆R)(。

)RDom⊆(;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。

常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。

关系矩阵和关系图是有限集合上的二元关系的表示方法。

(2)特殊的关系:空关系、全关系和恒等关系 空关系(记作):是任何关系的子集全关系(记作E A ):A A A b a b a E A ⨯≡∈><=},|,{恒等全系(记作I A ):}|,{A a a a I A ∈><=(3)关系的集合运算、复合运算和逆运算:关系的集合运算与普通集合运算基本相同,主要为并运算、交运算、补运算、差运算和对称差运算。

关系复合运算,描述为1212{,|,,}R R R a c b a b R b c R =∙=<><>∈<>∈存在使且复合关系满足结合律:)()(T S R T S R ∙∙=∙∙关系的逆运算,描述为},|,{1R x y y x R >∈<><=-逆关系满足:111)(---∙=∙R S S R二元关系 R 的逆关系可以用关系矩阵和关系图表示.并且逆关系的关系矩阵就是关系R 的关系矩阵的转置,而逆关系的关系图就是把关系 R 的关系图中的有向弧的方向改变。

3.关系的性质:自反性、反自反性、对称性、反对称性、传递性(1)自反性:对任意R x x A x >∈<∈∀,,有,则关系R 是自反的。

自反关系的矩阵R M 主对角线元素全为1;自反关系图的每个结点都有自回路。

(2)反自反性:对R x x A x >∉<∈∀.,有,则关系R 是反自反的。

反自反关系矩阵R M 主对角线元素全为0;关系图的每个结点都没有自回路。

(3)对称性:对R x y R y x >∈<>∈<∀,,,有,则关系R 是对称的。

对称关系的矩阵R M 是对称矩阵,即ji ij r r =;关系图中有向弧成对出现,方向相反.(4)反对称性:对,,x y R y x R ∀<>∈<>∈,若,必有x y =,则关系R 是反对称的;或者R x y R y x >∉<>∈<∀,,,必有,则关系R 是反对称的.反对称关系的矩阵R M 不出现对称元素,关系图中任意两个顶点之间或者没有有向弧,或者仅有一条有向弧.(5)传递性:对,,,a b R b c R a c R ∀<>∈∃<>∈<>∈,若,使得,则关系R 是传递的.在传递关系的关系图中,若有从a 到b 的弧,且有从b 到c 的弧,则必有从a 到c 的弧。

4.关系的自反闭包、传递闭包和对称闭包求解方法 (1)求解关系的自反闭包集合法:把所有的A a ∈构成的有序对< a , a > 添加到A 上的关系R 中,就能够获得R 的自反闭包r (R )。

即:A I R R r ⋃=)(,其中,I A 是A 上的恒等关系。

矩阵法:若R 的关系矩阵M R ,通过公式E M M R r +=,就能够求出R 的自反闭包r (R ) 的关系矩阵M r ,其中E 是单位矩阵。

图像法:在R 的关系图上没有自回路的结点处都添上自回路,就得到了R 的自反闭包r (R ) 的关系图。

(2)求解关系的对称闭包集合法:若R 上的任意关系a , b ,若R a b >∉<,,则把b , a 添加到关系R 中,就能够获得R 的对称闭包s (R )。

即:1)(-⋃=R R R s 。

矩阵法:若R 的关系矩阵为M R ,利用公式T R R s M M M +=,就能够得出R 的对称闭包s (R )的关系矩阵M s ,其中R T RM M 是的转置矩阵. 图像法:把R 的关系图图上所有单向弧都画为双向弧,就能得到R 的对称闭包s (R )的关系图.(3)求解关系的传递闭包集合法:先求出R 2,…,R n ,再求它们的并n R R R R ⋃⋃⋃⋃...21,就能够获得R 的传递闭包t (R )。

即:231()ni t R R R R ==⋃⋃⋃⋅⋅⋅。

矩阵法:若已知R 的关系矩阵M R ,通过公式n R R R t M M M M +++=...2,便能求出R 的传递闭包t (R )的关系矩阵M t 。

图像法:若已知R 的关系图,从关系图的每个结点a i (i =1,2,…,n )出发,找出所有2步,3步,…,n 步长的路径,设路径的终点为k j j j a a a ,...,,21,从a I 依次用有向弧连接到k j j j a a a ,...,,21,当检查完所有结点后,就画出了R 的传递闭包t (R )的关系图。

5.等价关系等价关系概念:设R 是非空集合A 上的二元关系,如果R 是自反的、对称的和传递的,则称R 是A 上的等价关系。

设R 是一个等价关系,若<a , b >∈R ,则称a 等价于b ,记作a ~b 。

6.偏序关系和哈斯图(1)偏序关系设R 是非空集合A 上的二元关系,如果R 是自反的、反对称的和传递的,则称R 是A 上的偏序关系或者简称序关系。

偏序关系记作≤。

<a , b >∈≤,则称a 小于等于b ,记作a ≤ b 。

(2)哈斯图作图规则:i .去掉每个结点的自回路,用空心点表示集合的元素;ii .对于集合任意元素a 和b ,若a ≤b ,则将a 画在b 的下方;iii .对于集合任意元素a 和b ,若a <b ,且不存在c 使a <c <b ,则在a 和b 之间划一条弧。

(3)最小元、极小元、最大元和极大元,上界和下界一个子集的极大(小)元可以有多个,而最大(小)元若有,只能惟一;且极元、最元只在该子集内;而上界与下界可在子集之外确定,最小上界是所有上界中最小者,最小上界再小也不会小于子集中的任一元素;可以与某一元素相等,最大下界也是同样。

7.函数的概念与性质(1)函数的概念设 f 是集合 A 到 B 的二元关系,若任意 a ∈A ,存在 b ∈B ,且< a , b >∈ f ,Dom ( f ) = A ,则 f 是一个函数(映射).函数是一种特殊的关系。

注意:集合 A ×B 的任何子集都是关系,但不一定是函数。

函数要求对于定义域 A 中每一个元素 a ,B 中有且仅有一个元素与 a 对应,而一般的关系没有这个限制。

(2)单射、满射和双射的判断单射:若)()(2121a f a f a a ≠⇒≠;满射:f (A) = B ,即对任意 y ∈B ,存在 x ∈A ,使得 y = f (x ) ;双射:单射且满射。

(3)函数的复合若C B g B A f →→:,:,则C A g f →∙:,即))(())((x f g x f g =∙。

复合成立的条件是:二、常考知识点分析常考知识点1:关系的概念与性质(历年考核次数:4次,本课程共考过6次;重要程度:★★★★)(2010年1月试卷第7题)如果R 是非空集合A 上的等价关系,a ∈A ,b ∈A ,则可推知R 中至少包含 等元素[解题过程]:由等价关系的概念,知道R 具备了自反性、对称性和传递性。

根据已知A 上的元素a 和b ,根据自反的概念,知道R 中必须包含<a, a>和<b, b>,由对称和传递概念,得知{<a, a>,<b, b>}也具备对称性和传递性,因此对应A 上的关系R 至少应该包含元素<a, a>,<a, b>正确答案:<a, a>,<b, b>易错点:同学们对本题目中要求的最小等价关系没有理解清楚,容易将答案写为{<a, a>,<a, b>,<b, a>,<b, b>},仔细观察可以看出,该关系去掉<a, b>和<b, a>之后,仍然为等价关系。

提示:先加入自反关系,然后再根据等价关系加入必要的对称和传递所需的元素。

(2009年7月试卷第2题)集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={<x ,y >|x +y =10且x , y ∈A },则R 的性质为( ).A .自反的B .对称的C .传递且对称的D .反自反且传递的[解题过程]:首先,可以写出关系R 的有限集合表示,即 {<2,8>,<8,2>,<3,7>,<7,3>,<4,6>,<6,4>,<5,5>}容易看出,<1,1>∉ R ,因此R 不是自反的。

<5,5>∈R 因此,R 不是反自反的。

又因为<2,8>∈R ,且<8,2>∈R ,而<2,2>∉ R ,因此,R 不具备传递性。

因此,答案选择B 。

易错点:同学们对关系的自反性、对称性、传递性和反自反性没有理解清楚,往往是能够写出R 的有限集合表示却不能用相关概念进行判别。

相关文档
最新文档