高考物理动量守恒定律及其解题技巧及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动量守恒定律及其解题技巧及练习题(含答案)
一、高考物理精讲专题动量守恒定律
1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的
1
2
反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2
10m/s g =。

求:
(1)碰撞后瞬间,小球受到的拉力是多大?
(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】
解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:
22
1111011=22
m gL m v m v μ--
解之可得:1=4m/s v 因为1v v <,说明假设合理
滑块与小球碰撞,由动量守恒定律:21111221
=+2
m v m v m v - 解之得:2=2m/s v
碰后,对小球,根据牛顿第二定律:2
22
2m v F m g l
-=
小球受到的拉力:42N F =
(2)设滑块与小球碰撞前的运动时间为1t ,则()0111
2
L v v t =+ 解之得:11s t =
在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=
设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅
⎪⎝⎭
解之得:22s t =
滑块向左运动最大位移:121122m x v t ⎛⎫
=
⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度
11
2
v <v , 说明滑块与小球碰后在传送带上的总时间为22t
在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程
22212X vt m ∆==
因此,整个过程中,因摩擦而产生的内能是
()112Q m g x x μ=∆+∆=13.5J
2.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2
.问:
(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?
【答案】(1)1
0v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】
试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:220111
22
mv mgR mv += 解得:v 1=5m/s
P 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:11
2mv mv mv ''=+ 22211
2111
222mv mv mv ''=+ 解得:1
0v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左)
设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 2
2220.4m/s 5f m
a m M m
=
==+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2

(3)P 2滑到C 点速度为2v ',由22
1
2
mgR mv '= 得2
3m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:
22
()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:2222
11
()22
f L mv m M v '=++ 代入数值得:L=3.8m
滑板碰后,P 1向右滑行距离:2
110.08m 2v s a ==
P 2向左滑行距离:22
22
2.25m 2v s a '==
所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m
考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.
【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.
3.28.如图所示,质量为m a =2kg 的木块A 静止在光滑水平面上。

一质量为m b = lkg 的木块B 以初速度v 0=l0m/s 沿水平方向向右运动,与A 碰撞后都向右运动。

木块A 与挡板碰撞后立即反弹(设木块A 与挡板碰撞过程无机械能损失)。

后来木块A 与B 发生二次碰撞,碰后A 、B 同向运动,速度大小分别为1m/s 、4m/s 。

求:木块A 、B 第二次碰撞过程中系统损失的机械能。

【答案】9J
【解析】试题分析:依题意,第二次碰撞后速度大的物体应该在前,由此可知第二次碰后A 、B 速度方向都向左。

第一次碰撞 ,规定向右为正向 m B v 0=m B v B +m A v A 第二次碰撞 ,规定向左为正向 m A v A -m B v B = m B v B ’+m A v A ’ 得到v A =4m/s v B =2m/s
ΔE=9J
考点:动量守恒定律;能量守恒定律.
视频
4.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:
①物块A相对B静止后的速度大小;
②木板B至少多长.
【答案】①0.25v0.②
2
16
v L
g
μ=
【解析】
试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,
mv0=2mv1,① (2分)
2mv1=4mv2② (2分)
联立①②得,v2=0.25v0.(1分)
(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,
③ (2分)
联立①②③得,L=
考点:动量守恒,能量守恒.
【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.
5.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条
件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u 表示,1u 等于1个
12
C 原子质量的十二分之一.取氢核和氦核的质量分别为1.0u 和14u .)
【答案】m =1.2u 【解析】
设构成铍“副射”的中性粒子的质量和速度分别为m 和v ,氢核的质量为m H .构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和v H ′.由动量守恒与能量守恒定律得 mv =mv′+m H v H ′ ①
12mv 2=
12mv′2+1
2m H v H ′2② 解得
v H ′=
2H
mv
m m +③
同理,对于质量为m N 的氮核,其碰后速度为
V N ′=2N
mv m m +④
由③④式可得
m =''''
N N H H H N m v m v v v --⑤
根据题意可知 v H ′=7.0v N ′ ⑥
将上式与题给数据代入⑤式得 m =1.2u ⑦
6.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比m 1∶m 2=2,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .
【答案】8R 【解析】 【分析】 【详解】
两演员一起从从A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为m ,则
21
2
mgR mv =
女演员刚好能回到高处,机械能依然守恒:22211
2
m gR m v =
女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:
122112m m v m v m v +=-+()③
根据题意:12:2m m = 有以上四式解得:222v gR = 接下来男演员做平抛运动:由2
142
R gt =,得8 t g R =
因而:28s v t R ==; 【点睛】
两演员一起从从A 点摆到B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.
7.如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v 0向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹.设木板足够长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间.
【答案】0
43v t g
μ= 【解析】
解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,
再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次撞墙.
木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度v ,动量守恒,有: 2mv 0﹣mv 0=(2m+m )v ,解得:v=
木板在第一个过程中,用动量定理,有:mv ﹣m (﹣v 0)=μ2mgt 1 用动能定理,有:

=﹣μ2mgs
木板在第二个过程中,匀速直线运动,有:s=vt 2 木板从第一次与墙碰撞到再次碰撞所经历的时间t=t 1+t 2=+
=
答:木板从第一次与墙碰撞到再次碰撞所经历的时间为
【点评】本题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出运动规律是关键.
8.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:
(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】
试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s
(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s
设小球下落时间为t ,则: 212
h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m
(3)由能量守恒得:()()22
01122
B A B A B E m gh m m v m m m v ∆=++-++共
损 带入数据解得:14.4E J ∆=损
点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.
9.如图所示,固定的光滑圆弧面与质量为6kg 的小车C 的上表面平滑相接,在圆弧面上有一个质量为2kg 的滑块A ,在小车C 的左端有一个质量为2kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上表面高h =1.25m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.已知滑块A 、B 与小车C 的动摩擦因数均为μ=0.5,小车C 与水平地面的摩擦忽略不计,取g =10m/s 2. 求: (1)滑块A 与B 弹性碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度.
【答案】(1) v =2.5m/s (2) L =0.375m 【解析】
【试题分析】(1)根据机械能守恒求解块A 滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A 与B 碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C 上表面的最短长度.
(1)设滑块A 滑到圆弧末端时的速度大小为1v ,由机械能守恒定律有:2
A A 11m gh m v 2
= 代入数据解得12gh 5m/s v ==.
设A 、B 碰后瞬间的共同速度为2v ,滑块A 与B 碰撞瞬间与小车C 无关,滑块A 与B 组成的系统动量守恒, ()12A A B m v m m v =+ 代入数据解得2 2.5m/s v =.
(2)设小车C 的最短长度为L ,滑块A 与B 最终没有从小车C 上滑出,三者最终速度相同设为3v ,
根据动量守恒定律有:()()A B 2A B C 3m m v m m m v +=++ 根据能量守恒定律有:()()()222311
gL=22
A B A B A B C m m m m v m m m v μ++-++ 联立以上两代入数据解得0.375m L =
【点睛】本题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.
10.(20分)如下图所示,光滑水平面MN 左端挡板处有一弹射装置P ,右端N 与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ 的长度L=8m ,皮带轮逆时针转动带动传送带以v = 2m/s 的速度匀速转动。

MN 上放置两个质量都为m = 1 kg 的小物块A 、B ,它们与传送带间的动摩擦因数μ = 0.4。

开始时A 、B 静止,A 、B 间压缩一轻质弹簧,其弹性势能E p = 16 J 。

现解除锁定,弹开A 、B ,并迅速移走弹簧。

取g=10m/s 2。

(1)求物块B 被弹开时速度的大小;
(2)求物块B 在传送带上向右滑行的最远距离及返回水平面MN 时的速度v B ′; (3)A 与P 相碰后静止。

当物块B 返回水平面MN 后,A 被P 弹出,A 、B 相碰后粘接在一起向右滑动,要使A 、B 连接体恰好能到达Q 端,求P 对A 做的功。

【答案】(1) 4.0/B v m s =(2)'2/B v m s =(3)162 W J = 【解析】
试题分析:(1)(6分)解除锁定弹开AB 过程中,系统机械能守恒:
2
B 2A p 2
121mv mv E +=
……2分 设向右为正方向,由动量守恒 0B A mv mv -= ……2分 解得 4.0/B A v v m s == ①……2分
(2)(6分)B 滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远。

由动能定理得 2
B M 2
10mv mgs -
=-μ ……2分 解得2
22B M v S m g
μ=
= ……1分 ② 物块B 在传送带上速度减为零后,受传送带给它的摩擦力,向左加速,若一直加速,则受力和位移相同时,物块B 滑回水平面MN 时的速度'4/B v m s = ,高于传送带速度,说明B 滑回过程先加速到与传送带共速,后以2/m s 的速度做匀速直线运动。

……1分 物块B 滑回水平面MN 的速度'2/B v v m s == ……2分

(3)(8分)弹射装置将A 弹出后与B 碰撞,设碰撞前A 的速度为A
v ',碰撞后A 、B 共同的速度为V ,根据动量守恒定律,mV v m v m 2B A ='-'
……2分

A 、
B 恰好滑出平台Q 端,由能量关系有
mgL mV 222
1
2⋅=⨯μ ……2分⑤ 设弹射装置对A 做功为W ,2
A
2
1v m W '= ……2分 ⑥ 由④⑤⑥ 解得162 W J = ……2分
考点:相对运动动能定理动量守恒
11.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O点为弹簧原长位置,O点左侧水平面光滑,水平段OP长L=1m,P点右侧一与水平方向成的足够长的传送带与水平面在P点平滑连接,皮带轮逆时针转动速率为3m/s,一质量为1kg可视为质点的物块A压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP段动摩擦因数
,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数,传送带足够长,A与B的碰撞时间不计,碰后A.B交换速度,重力加速度,现释放A,求:
(1)物块A.B第一次碰撞前瞬间,A的速度
(2)从A.B第一次碰撞后到第二次碰撞前,B与传送带之间由于摩擦而产生的热量(3)A.B能够碰撞的总次数
【答案】(1)(2)(3)6次
【解析】
试题分析:(1)设物块质量为m,A与B第一次碰前的速度为,则:
解得:
(2)设A.B第一次碰撞后的速度分别为,则,
碰后B沿传送带向上匀减速运动直至速度为零,加速度大小设为,
则:,解得:
运动的时间,位移
此过程相对运动路程
此后B反向加速,加速度仍为,与传送带共速后匀速运动直至与A再次碰撞,
加速时间为
位移为
此过程相对运动路程
全过程生热
(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰
撞.则对A.B和弹簧组成的系统,从第二次碰撞后到不再碰撞:
解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律
【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度
12.如图所示,一质量为m=1.5kg的滑块从倾角为θ=37°的斜面上自静止开始滑下,斜面末端水平(水平部分光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.已知斜面长s=10m,小车质量为M=3.5kg,滑块与斜面及小车表面的动摩擦因数μ=0.35,小车与地面光滑且足够长,取g=10m/s2.
求:(1)滑块滑到斜面末端时的速度
(2)当滑块与小车相对静止时,滑块在车上滑行的距离
【答案】(1)8 m/s(2)6.4m
【解析】
试题分析:(1)设滑块在斜面上的滑行加速度a,
由牛顿第二定律,有 mg(sinθ-μcosθ)=ma
代入数据得:a=3.2m/s2
又:s=1
2
at2
解得 t=2.5s
到达斜面末端的速度大小 v0=at=8 m/s
(2)小车与滑块达到共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,则:mv0=(m+M)v
代入数据得:v=2.4m/s
滑块在小车上运动的过程中,系统减小的机械能转化为内能,得:
μmgL=1
2
mv02−
1
2
(m+M)v2
代入数据得:L=6.4m
考点:牛顿第二定律;动量守恒定律;能量守恒定律
【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择合适的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题。

相关文档
最新文档