苏教版小学四年级数学奥数竞赛试卷及答案图文百度文库(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版小学四年级数学奥数竞赛试卷及答案图文百度文库(2) 一、拓展提优试题
1.三个连续自然数的乘积是120,它们的和是.
2.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.
3.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.4.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.
5.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.
6.在□中填上适当的数,使竖式成立.
7.两数相除,商是12,余数是3,被除数最小是.
8.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.
9.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.
10.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.
11.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.
12.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.
13.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.
14.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.
15.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.
【参考答案】
一、拓展提优试题
1.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.
解:120=2×2×2×3×5=(2×2)×(2×3)×5,
2×2=4,2×3=6,5,
即,三个连续自然数的乘积是120,这三个数是4、5、6,
所以,和是:4+5+6=15.
故答案为:15.
【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.
2.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.
解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.
30,60,90,120,15,45,75,105,135共9个数字满足条件.
对应的数字就有9对.
故答案为:9.
【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.
3.解:一位偶数有:0,2和4,3个;
两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;
三位偶数:
位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,
当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,
根据分类计数原理知共有12+18=30种结果;
四位偶数:
当个位数字为0时,这样的四位数共有:=24个,
当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,
一共是24+36=60(个)
五位偶数:
当个位数字为0时,这样的五位数共有:A44=24个,
当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,
所以组成没有重复数字的五位偶数共有24+36=60个.
一共是:3+10+30+60+60=163(个);
答:可以组成 163个没有重复数字的偶数.
故答案为:163.
4.解:个位数1~9页共有9个数码;
两位数10~99共用2×90=180个数码;
此时还剩888﹣9﹣180=699个数码,
699÷3=233,
699个数码可组成233个三位数,
所以上下册共有:
233+100﹣1=332页,
则下册书有:
(332+8)÷2
=340÷2,
=170(页).
即下册书有170页.
故答案为:170.
5.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1
枚面值5角的硬币和5枚面值1元的硬币.
解:由以上分析,得出下列情况:
这6枚硬币的面值的和有6种.
故答案为:6.
【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.
6.解:根据题干分析可得:
7.解:除数最小为:3+1=4
12×4+3
=48+3
=51
故答案为:51.
8.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17
=714÷17
=42(名);
答:这个班共有学生42名.
故答案为:42.
【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.
9.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.
解:(50+20)×2+(12+4)×2
=70×2+16×2
=140+32
=172(厘米)
答:剩余部分图形的周长是172厘米.
故答案为:172.
【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.
10.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.
解:21×48÷28
=1008÷28
=36(盒)
答:可以装36盒.
故答案为:36.
【点评】此题主要考查的是乘法意义和除法意义的应用.
11.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.
解:3÷()
=3÷()
=3×
=28(岁)
28×=35(岁)
答:爸爸今年35岁.
故答案为:35.
【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.
12.解:因为2015÷4=503…3,
所以2015年是平年,2月有28天,
(31×3+30+28)÷7
=151÷7
=21(个)…4(天)
因为2015年1月1日是星期四,
4+4﹣7=1
所以2015年6月1日是星期一.
故答案为:一.
13.解:(35﹣7)×7÷2
=28×7÷2
=98(平方米)
答:这块养猪场的面积是 98平方米.
故答案为:98.
14.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.
解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:
(31﹣1×2)÷(2×2﹣3)
=29÷1
=29(次)
3×29+31
=87+31
=118(个)
答:袋中原有黑子 118个.
故答案为:118.
【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.
15.解:最大正方形的边长是11厘米,
次大正方形的边长:19﹣11=8(厘米)
最小正方形的边长是:11﹣8=3(厘米)
阴影长方形的长是3厘米,
宽是8﹣3﹣3=2(厘米)
3×2=6(平方厘米)
答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.
故答案为:6.。

相关文档
最新文档