桐坪镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桐坪镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列图形中,线段AD的长表示点A到直线BC距离的是()
A. B.
C. D.
【答案】D
【考点】点到直线的距离
【解析】【解答】解:∵线段AD的长表示点A到直线BC距离
∴过点A作BC的垂线,
A、过点A作DA⊥AB,故A不符合题意;
B、AD与BC相交,故B不符合题意;
C、过点A作DA⊥AB,故C不符合题意;
D、过点A作AD⊥BC,交BC的延长线于点D,故D符合题意;
故答案为:D
【分析】根据已知条件线段AD的长表示点A到直线BC距离,因此应该过点A作BC的垂线,观察图形即可得出答案。
2、(2分)实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()
A. 4种
B. 3种
C. 2种
D. 1种
【答案】C
【考点】二元一次方程的解,二元一次方程的应用
【解析】【解答】根据题意可得:5x+6y=40,根据x和y为非负整数可得:或,共两种,故选C.
【分析】根据总人数为40人,建立二元一次方程,再根据x和y为非负整数,,用含y的代数式表示出x,得到x=,求出y的取值范围为0<y<,得出满足条件的x、y的值即可。
3、(2分)利用加减消元法解方程组,下列做法正确的是()
A. 要消去z,先将①+②,再将①×2+③
B. 要消去z,先将①+②,再将①×3-③
C. 要消去y,先将①-③×2,再将②-③
D. 要消去y,先将①-②×2,再将②+③
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:利用加减消元法解方程组,要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③.
故答案为:A.
【分析】观察方程组的特点:若要消去z,先将①+②,再将①×2+③,要消去y,先将①+②×2,再将②+③,即可得出做法正确的选项。
4、(2分)若m是9的平方根,n= ,则m、n的关系是()
A.m=n
B.m=-n
C.m=±n
D.|m|≠|n|
【答案】C
【考点】平方根
【解析】【解答】因为(±3)2=9,所以m=±3;因为()2=3,所以n=3,所以m=±n
故答案为:C
【分析】由正数的平方根有两个,可以求得9的平方根,进而求得m的值,根据,可以求得n 的值,比较m与n的值即可得到它们的关系。
5、(2分)若,,则b-a的值是()
A. 31
B. -31
C. 29
D. -30
【答案】A
【考点】实数的运算
【解析】【解答】∵,,∴a=-27,b=4,则b-a=4+27=31,故答案为:A.
【分析】由平方根的意义可得b=4,由立方根的意义可得a=-27,再将求得的a、b的值代入所求代数式即可求解。
6、(2分)不等式3x<18 的解集是()
A.x>6
B.x<6
C.x<-6
D.x<0
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:(1)系数化为1得:x<6
【分析】不等式的两边同时除以3即可求出答案。
7、(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()
①②③④
A. ①②
B. ②③
C. ③④
D. ①④
【考点】解二元一次方程组
【解析】【解答】解:试题分析:
把y的系数变为相等时,①×3,②×2得,
,
把x的系数变为相等时,①×2,②×3得,
,
所以③④正确.
故答案为:C.
【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,①×2,②×3,即可得出答案。
8、(2分)若2m-4与3m-1是同一个数的平方根,则m的值是()
A.-3
B.1
C.-3或1
D.-1
【答案】C
【考点】平方根
【解析】【解答】解:当2m-4=3m-1时,则m=-3;
当2m-4≠3m-1时,则2m-4+3m-1=0,
故答案为:C.
【分析】分2m-4与3m-1相等、不相等两种情况,根据平方根的性质即可解答。
9、(2分)下列计算正确的是()
A. B. C. D. (-2)3×(-3)2=72【答案】B
【考点】实数的运算
【解析】【解答】A、,A不符合题意;
B、,B符合题意;
C、,C不符合题意;
D、(-2)3×(-3)2=-8×9=-72,D不符合题意.
故答案为:B
【分析】(1)由算术平方根的意义可得=3;
(2)由立方根的意义可得=-2;
(3)由立方根的意义可得原式=;
(4)由平方和立方的意义可得原式=-89=-72.
10、(2分)如果2x a﹣2b﹣3y a+b+1=0是二元一次方程,那么a,b的值分别是()
A.1,0
B.0,1
C.﹣1,2
D.2,﹣1
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:∵2x a﹣2b﹣3y a+b+1=0是二元一次方程,
∴a﹣2b=1,a+b=1,解得:a=1,b=0.
故答案为:A
【分析】根据二元一次方程的定义:含有两个未知数,且两个未知数的最高次数是1次的整式方程,就可建立关于a、b的二元一次方程组,解方程组求出a、b的值。
11、(2分)下列不等式中,是一元一次不等式的是()
A. 2x-1>0
B. -1<2
C. 3x-2y≤-1
D. y2+3>5
【答案】A
【考点】一元一次不等式的定义
【解析】【解答】解:A、是一元一次不等式;
B、不含未知数,不符合定义;
C、含有两个未知数,不符合定义;
D、未知数的次数是2,不符合定义;
故答案为:A
【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的最高次数是一次,这样的不等式就是一元一次不等式,即可作出判断。
12、(2分)下列说法正确的是()
A. |-2|=-2
B. 0的倒数是0
C. 4的平方根是2
D. -3的相反数是3
【答案】D
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根
【解析】【解答】A、根据绝对值的代数意义可得|﹣2|=2,不符合题意;
B、根据倒数的定义可得0没有倒数,不符合题意;
C、根据平方根的定义可4的平方根为±2,不符合题意;
D、根据相反数的定义可得﹣3的相反数为3,符合题意,
故答案为:D.
【分析】根据绝对值的意义,可对选项A作出判断;利用倒数的定义,可对选项B作出判断;根据正数的平方根有两个,它们互为相反数,可对选项C作出判断;根据相反数的定义,可对选项D作出判断。
二、填空题
13、(1分)化简()2+ =________.
【答案】6-2a
【考点】算术平方根,二次根式的非负性
【解析】【解答】解:∵3-a≥0,∴a≤3,原式=3-a+|a-3|=3-a+3-a=6-2a.故答案为:6-2a.
【分析】根据二次根式有意义的条件可得,3-a≥0,所以a≤3,根据算术平方根的非负性可得原式=3-a+3-a=6-2a。
14、(4分)将下列各数的序号填在相应的集合里.
①,②,③4.3,④,⑤42,⑥0,⑦,⑧,⑨3.3030030003……
有理数集合:{________ … };
正数集合:{________… };
负数集合:{________… };
无理数集合:{________… }.
【答案】①②③④⑤⑥⑦;③⑤⑦⑧⑨;①②④;⑧⑨
【考点】正数和负数,有理数,无理数
【解析】【解答】解:
有理数集合:{ ①②③④⑤⑥⑦… };
正数集合:{ ③⑤⑦⑧⑨… };
负数集合:{ ①②④… };
无理数集合:{ ⑧⑨… }.
【分析】根据有理数的意义可得有理数集合:{ ①②③④⑤⑥⑦… };
根据正数的意义可得正数集合:{ ③⑤⑦⑧⑨… };
根据负数的意义可得负数集合:{ ①②④… };
根据无限部循环小数是无理数可得无理数集合:{ ⑧⑨… }.
15、(1分)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.则本次抽样调查的书籍有________
本.
【答案】40
【考点】扇形统计图,条形统计图
【解析】【解答】解:本次抽样调查的书籍有8÷20%=40(本),故答案为:40
【分析】根据统计图中艺术类所占的百分比和对应的本数可得调查的书籍数量.
16、(3分)分析统计图.
①小玲家6月份生活费总支出是1600元.其中支出最多的一项是________,文化教育费支出了________元.
②如果小玲家每个月生活费都是1600元,请你对她家7月份(暑期)的生活费用提出调整建议.________
【答案】伙食;400;建议7月份(暑期)多朝文化教育上投资,如:家长可多给孩子买一下课外书看,带领孩子出去旅游,让孩子增长见识,等等
【考点】扇形统计图
【解析】【解答】解:①小玲家6月份生活费总支出是1600元.其中支出最多的一项是伙食,文化教育费支出:1600×25%=400(元);
故文化教育费支出了400元。
②家长可多给孩子买一下课外书看,带领孩子出去旅游,让孩子增长见识,等等。
【分析】①根据扇形统计图中的各项支出占的百分数,确定出支出最多的一项是伙食支出;根据生活费总支出是1600元,文化教育费支出占了25%,用乘法计算求出文化教育费支出;②根据自己的理解,提出合理的调整建议.本题先根据扇形统计图找出单位“1”,读出数据,然后根据数量关系求解.
17、(7分)如图,AB∥DE,试问:∠B、∠E、∠BCE有什么关系?
解:∠B+∠E=∠BCE
理由:过点C作CF∥AB
则∠B=∠________(________)
∵AB∥DE,AB∥CF
∴ ________(________)
∴∠E=∠________(________)
∴∠B+∠E=∠1+∠2(________)
即∠B+∠E=∠BCE
【答案】1;两直线平行内错角相等;CF//DE;平行于同一条直线的两条直线互相平行;2;两直线平行内错角相等;等式的基本性质
【考点】等式的性质,平行线的判定与性质
【解析】【分析】第1个空和第2个空:因为CF∥AB,根据两直线平行,内错角相等,即可求出∠B=∠1;第3个空和第4个空:由题意CF∥AB,AB∥DE,根据平行于同一条直线的两条直线互相平行可求CF∥DE;第5个空和第6个空:根据平行线的性质,两直线平行,内错角相等,即可进行求证。
第7个空:根据等式的性质,等式两边同时加上相同的数或式子,两边依然相同。
18、(1分)如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.已知∠ABC=135°,∠BCD =65°,则∠CDE=________.
【答案】110°
【考点】平行公理及推论,平行线的性质
【解析】【解答】解:过点C作CF∥AB,如图:
∵AB∥DE,CF∥AB,
∴DE∥CF,
∴∠CDE=∠FCD,
∵AB∥CF,∠ABC=135°,
∴∠BCF=180°-∠ABC=45°,
又∵∠FCD=∠BCD+∠BCF,∠BCD=65°,
∴∠FCD=110°,
∴∠CDE=110°.
故答案为:110°.
【分析】过点C作CF∥AB,由平行的传递性得DE∥CF,由平行线性质得∠CDE=∠FCD,由AB∥CF得∠BCF=45°,由∠FCD=∠BCD+∠BCF即可求得答案.
三、解答题
19、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
20、(5分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,求∠2的度数.
【答案】解:∵AB⊥BC,
∴∠ABC=90°,
∴∠1+∠3=90°,
∵∠1=55°,
∴∠3=35°,
∵a∥b,
∴∠2=∠3=35°.
【考点】对顶角、邻补角,平行线的性质
【解析】【分析】因为∠ABC=,可知∠1与∠3互余,已知∠1的度数,可知∠3的度数,再利用两直线
平行,同位角相等,可得到∠2=∠3,即可得到∠2的值.
21、(5分)若,试求x与y的值.
【答案】解:依题可得:
,
(1)×3-(2)×2得:
13x=22,
∴x=,
将x=代入(1)得:
y=-.
∴方程组的解为:.
【考点】解二元一次方程组,绝对值的非负性
【解析】【分析】根据绝对值的非负性可得一个关于x和y的二元一次方程组,解之即可得x和y的值. 22、(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。
23、(5分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种
上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?
【答案】解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,
因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).
【考点】平移的性质
【解析】【分析】将两条横向的道路向上平移,再将纵向的路向左平移,即可用矩形的面积减去两个小长方形的面积,注意重叠部分面积不能进行两次计算.
24、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
25、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|-
3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
26、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.。