实变函数集合规范标准答案

合集下载

实变函数论课后答案第一章2

实变函数论课后答案第一章2

实变函数论课后答案第一章2(p20-21)第一章第二节1. 证明平面上坐标为有理数的点构成一可数集合。

证明:将全体有理数排成一列 12,nr r r ,则平面上的有理点)({}1,;,j j Q Q r s r Q s Q A ∞=⨯=∈∈=,其中)({},;1,2,j ijA r r i n==为可列集,故作为可数个j A 的并1j j Q Q A ∞=⨯=为可数集。

(第20页定理5)。

2. 以直线上的互不相交的开区间为元素的任意集合至多只有可数多个元素. 证明:设这里Λ为某指标集。

则我们可在任意I α∈A 这一开区间中选定一个有理数r α,与之对应,从而给出一个对应,A Q I r αα→→由于I α互不相交,当αβαβ∈Λ≠,,时,显然r r αβ≠,故上述对应是11-的. 故A 与有理数集的一个子集对等,所以A 的势最多与Q 的势相同,不会超过Q 的势, 故A 要么为有限,要么为可数集.3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0ℵ. 事实上,∀ n 阶有理数()()12,,,,ni n i i n i X x a x a Q a a a ==∈∑令与之对应,这一对应显然是11-的,即0,m mm Q Q Q Q ∀⨯⨯=ℵ的势是,这是因为由第一题:已知2Q Q Q =⨯是可数集,利用归纳法,设kkQ Q Q Q =⨯⨯是可数集,,待证1k k Q Q Q +=⨯是可数集,.将Q 中的点排成一列12,,m γγγ,将kQ 中的点排成一列12,,ml l l ,则11k kj j QQ Q A ∞+==⨯=,其中(){},,,1,2,3,j i j A l i j γ==显然为可数集,故11k j j QA ∞+==也是可数集,这表明0,n n ∀≥阶有理多项式全体是一可数集,而全体有理多项式{}0n n ∞=全体阶有理多项式作为可数集的并也是可数集.4. 如果()f x 是(),-∞∞上的单调函数,则()f x 的不连续点最多有可数多个.证明:我们在数学分析中知道(),-∞∞上的单调函数的不连续点,只能是跳跃间断点,其任取(),-∞∞上的单调函数()f x ,设其可能的间断点为{};,A x αα=∈ΛΛ 为某指标集,在x A α∀∈,令()()lim ,lim ,x xx xf x y f x y αααα+-+-→→==则,y y αα+-=故A α∀∈,有一1R 上的开区间(),y y αα-+与之对应.不妨设x x αβ>,设0δ∃>使x x αβδδ->+,()(),,,x x x y x x ααββδδ∀∈-∀∈+, 有()()f x f y ≥,故()()lim lim x xx xf x y y f x αααα-+-+→→=≥=,所以()(),,y y yy αααβ-+-+=∅..故()f x 的间断点的集合A 与1R 上的一族互不相交的开区间11-对应,而后者的势为0ℵ,故()f x 的间断点至多为可数多个.5.设A 是一无穷集合,证明必有A A *⊂,使~A A *,且A A *-可数. 证明:若A 为可数集,则不妨设{};1,2,i A a i n==,令{}2;1,2,i A a in*==,则~A A *,且{}21,1,2,,i A A a i n *+-==.显然仍为可数集,故此时结论成立.若A 为无穷集,且不是可数集,则由P19定理1,A 中包含一个可数子集B ,令A A B *=-,则由于A 是无穷集,且不是可数集,A B -是无穷集. 由P21定理7和B 为可数集知:.A ABA **= 证毕6. 若A 为一可数集合,则A 的所有有限子集构成的集合也是可数集.证明:由第一,第三题的证明已知,m mm N Q Q Q Q ∀∈⨯⨯⨯=(Q 为有理数集).由于A是可数集,故m 个由全体A 中的一个元素组成的集合{}{}1;A a a A N =∈,1A 是可数集.由全体A 中的两个元素组成的集合{}{}221212,;,A a a a aA N =∈,2A 是可数集若{}{}12,,,;,1,2,m m i A a a a a A i n =∈=,记A 中的m 个元素组成的子集全体,则mm m A N N N N ⨯⨯⨯=故是可数集.显然A 的所有有限子集构成的集合可表示为1m m A ∞=,m A 为可数集,故1m m A ∞=作为可数个可数集的并也是可数集.注意:A 的全体子集构成的集合不是可数集.7. 若A 是有非蜕化的(即左,右端点不相等的)开区间组成的不可数无穷集合,则有0δ>,使A 中无穷多个区间的长度大于δ.证明:设Λ为一指标集,{};,A I I ααα=∈Λ为非蜕化的开区间, 记I α的长度为I α.若本题的结论不成立,则n N ∀∈,只有有限个12,,n m I I I ∈Λ,使1,I nα>{}12,,n n m A I I I =记,由于A 中的区间都是非蜕化的,,0I A I αα∀∈>,{}1;0n n A A I I αα∞===>由于n A 是有限集,故作为可数个可数集的并,A 也是可数集,这与A 是不可数无穷集矛盾. 故0,δ∃>,使A 中有无穷多个区间的长度大于0δ>. 事实上,A 中有不可数无穷多个区间的长度大于δ.8. 如果空间中的长方形(){}121212,,;,,I x y z a x a b y b c z c =<<<<<<,中的121212,,,,,a a b b c c ()121212,,a a b b c c <<<都是有理数,则称I 为有理长方形,证明全体有理长方形构成一可数集合.证明:由前面题3,6中已知mmQ Q Q Q =⨯⨯⨯是可数集(Q 为有理数组成的集合)设{};A I I =为有理长方形,任取(){}121212,,;,,I x y z a x a b y b cz c A =<<<<<<∈,记之为()1212126,,,,,121212,,,,,,a a b b c c I a a b b c c Q ∈. 与之对应,由于两有理长方形121212121212,,,,,,,,,,,a ab bc c a a b b c c I I 相等112211221122,,,,,a a a a b b b b c c c c ⇔======,故上述对应是单射,故A 与6Q 这一可数集的一个子集Q 11-对应.反过来,01111,,r I r Q ∈与Q 显然11-对应,故6Q 与01111,,r I r Q ⎧⎫∈⎨⎬⎩⎭11-对应所以6Q 与A 的一个子集对等. 由Berrstein 定理 6A Q 对等所以A 是可数集.。

实变函数答案

实变函数答案

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A = c c C B A )( =)(C B A c = )()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂; (2) ()A B B A =\ 的充分必要条件是:=B A Ø; (3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条 是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则cB A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,l i mn n A x ∞→∈存)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max {21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+,从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m c n n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm m n n A E A E A E A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm cm n nm n nm cm m n n A E A E A E A Ecn nm m n c nm m n n m cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E = , 111{0,1,,,}234F = ,(0,1)\D E =,则(0,1)E D = ,[0,1]F D = .定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc adx x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++ ,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4] ; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4] 不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R .证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯.任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b = , 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+== , \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+ .则,A E D B F D == . 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ. 习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a a =≤≤. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c≤=,故c b a F 2],[=.4.证明:c n=C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E E F E E F E E F E E E F E F ==== ,()\()()()\c c c E F F E F F E F F F E F === .所以\\()()\E F E E F E F F == .(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccnn n n n n n n AB A B A B A B ∞∞∞∞======= .(2)1111\()()(\)c c nn n n n n n n AB A B A B A B ∞∞∞∞======= .3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥ ,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥ , 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥ .4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ (推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数? 6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R~][R 1n +x n 所以,R 1n c n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <. 11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求bE E E E ,,,'.解 E =∅;[0,1][0,1]bE E E '===⨯。

实变函数论课后答案第二章2

实变函数论课后答案第二章2

实变函数论课后答案第二章2第二章第二节习题1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂ 从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>,使()(){}00,,;a xx N x x f x a δ∈⊂≥.这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥. 故(){};x f x a ≥是闭集.3.证明任何邻域(),N p δ都是开集,而且()(){}'',;,N p p p p δρδ=<(N 通常称为一闭邻域)证明:()0,p N p δ∀∈,则()00,p p ηρδ≤<()0,Q N p δη∀∈-,()()()00,,,Q p Q p p p ρρρηδηδ≤+<+-=故()()0,,N p N p δηδ-⊂. 故(),N p δ是开集得证.(){}(){}'''';,,;,n p p p p p p p p ρδρδ∀∈≤∈≤且 n p p → 则 ()(),0,,n n p p p p ρρδ→≤() ()() (),,,,n n n p p p p p p p p ρρρρδ≤+≤+. 令n →∞得 (),0p p ρδ≤+. 故(){}(){}''''';,;,p p p p p p ρδρδ≤⊂≤.表明(){}'';,p p p ρδ≤是闭集.又 (){}'';,p p p p ρδ∀∈≤令 11k px p k k ⎛⎫=+- ⎪⎝⎭, 则() ()111,1,1,1k px p p p p p k k k k ρρρδδ⎛⎫⎛⎫⎛⎫⎛⎫=+-=-≤-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.()()1,,0k x p p p kρρ=→故(),,k k x N p x p δ∈→ 这表明(){}()()''';,,,p p p N p Np ρδδδ≤⊂⊂而()(){}'',;,N p p p p δρδ⊂≤故()(){}(){}()'''',;,;,,N p p p p p p p N p δρδρδδ⊂≤=≤⊂这表明()(){}'',;,N p p p p δρδ=≤.4.设∆是一有限闭区间,()1,2,3,n F n = 都是∆的闭子集,证明如果1n n F ∞==∅ ,则必有正整数N ,使1Nn n F ==∅ .证明:令1n n i i S F == ,则显知11n n n n F S ∞∞=== ,且12n S S S ⊃⊃⊃⊃ (),1i n F i n ∀≤≤为闭集,故n S 也为闭集.下证 N ∃,使1Nn N n F S ===∅ .反证,设,n n S ∀≠∅,则n n x S ∃∈⊂∆,由于∆是有限闭区间,{}n x 是有界点列,若{},1,2,3,n x n = 为无限集合,则由聚点原理{}n x ∃的子列{}00,,kkn n x xx x →∈∆由于12n S S S ⊃⊃⊃⊃故任取,m N k ∈充分大时kkn n m x S S ∈⊂,又m S 为闭集,且0kn m x x S →∈由m 的任意性知,011m n m m x S F ∞∞==∈==∅ 得矛盾. 若{},1,2,3,n x n = 为有限集合,则0n ∃,当()00max ,n n m ≥时,0n n m x x S S =∈⊂,故 011m n m m x S F ∞∞==∈==∅ 得矛盾.所以∃ N ,使得1NN n n S F ===∅ .证毕.设,n E R μ⊂是一族完全覆盖E 的开邻域,则有μ中的(或有限)多个邻域12,,,m N N N ,它们也完全覆盖了E ( Lindelof 定理)证明:设{};,I αμα=∈ΛΛ为某指标集,则E I αα∈Λ⊂ .,x E ∀∈∃ x α∈Λ,使得x x I α∈.由于I Λ是开集,0x δ∃>使(),x N x I δΛ⊂.由有理点在n R 的稠密性易知,存在有理点nx a Q ∈和有理数0x r >,使()(),,x x x x N a r N x I δΛ∈⊂⊂,而n R 中全体以有理点为心,有理数为半径的球作成集合与nQ Q ⨯的一个子集对等,故这些(){},;x x N a r x E ∈至多是一个可数集,从而相应的{};xIx E α∈也是至多可数集.而这些{};xI x E α∈显然为E 的一个开覆盖,因为(),xx x x E x EE N a r I α∈∈⊂⊂因为每一个上述(),x x N a r 包含在某个I α中,故存在至多可数个i I M ∈,使{};i I i ∈Λ成为E 的一个开覆盖.1. 证明nR 中任何开集G 可表成()1ni i G I ∞== 的形式,其中()()()(){}12;,,,,,1,2,3,,n i i in j j j I p p x xx c x d j n ==<<=证明:(注意这里并为要求()ni I 互不相交)设G 为n R 中的任意开集,则0x G ∀∈,由开集的定义,∃一个球形邻域()()000,0x x N x G δδ⊂>,令()00001200,,,;x x x n j x j I x x x x x x n n δδδ⎧⎫==-<<+⎨⎬⎩⎭则显然()000,x xx I N x G δ∈⊂⊂,且x x GG I G ∈⊂⊂ .故x x GG I ∈= ,x I 显然是开区间,也是开集,{},x I x G μ=∈为G 的一个开覆盖.由本节习题5,μ中的至多可数个123,,,,,n I I I I 完全覆盖了G所以1i i G I G ∞=⊂⊂ .所以1i i G I ∞== ,i I 都是开区间.故本题结论得证.2. 试根据B orel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证,设E 为有限无穷点集而无聚点,则'E =∅,从而'E E =∅⊂, 故E 为有界闭集,且任意p E ∈,都是E 的孤立点.故0p δ∃>使(){},p Np E p δ= ,所以(),p p EE N p δ∈⊂.(){},pN p δ形成E 的一个开覆盖,由于E 为有界闭集,由Borel 有界覆盖定理,∃有限个()()11,,,,,m p mp Np N pδδ ,使()1,imip i E Np δ=⊂()(){}111,,iimmmip ip ii i i E E Np E N p p δδ====== .前已知(){},ii p i N p E p δ= .故{}1mi i E p == 为一有限集合,这与E 为有界无穷集矛盾.8. 证明nR 中任意非空开集的基数都是c .证明:∀开集n U R ⊂,显从n U R ⊂知n U R c ≤=.又存在一个点()00,0,,p U N x U δδ∈∃>⊂,()0,N x c δ=, 故()0,U N x c δ≥≥. 所以Berrstein 定理知U c =. 证毕9. 证明对任意n E R ⊂,E 都是n R 中包含E 的最小闭集.证明:任取n E R ⊂,设F 是包含E 的人一闭集,则E F ⊂,''E F ⇒⊂ 所以''E E EF F F =⊂= ,因为F 为闭集 所以''E F F ⊂=,所以E 是n R 中包含E 的最小闭集. 10. 对于1R 定义的实函数()f x ,令()()()'''',lim sup liminfx x x x W f x fx fx δδδδ++→→-<-<=-.证明:对任意的(){}0,;,x W f x εε>≥都是闭集.进而证明()f x 的全体不连续点作成一F δ集.证明:首先 ,当δ单调下降趋于0时,()''sup x x f x δ-<也单调下降趋于某极限(有限或无限)而()''inf x x f x δ-<单调上升地趋于某极限.故()()()'''',lim sup liminfx x x x Wf x fx fx δδδδ++→→-<-<=-是有确切定义的(可为无限值)先证明:()f x 在0x x =连续()0,0W f x ⇔=.证:先设()0,0Wf x =,则()00,0εδε∀>∃>使00δδ<<时()()''''sup infx x x x fx fx δδε-<-<-<所以y ∀满足0y x δ-<时()()()()''''0sup infx x x x fy f x fx fx δδε-<-<-≤-<故f 在0x 处连续.反过来,若()f x 在0x x =处连续,则()0000,,0x εδδε∀>∃=>, 当00y x δδ-<<时,()()0fy f x εε-<-<又()000,x δδδε∀<=,''''''00,,,y y y x y x δδδδδδ∃-<-< 且()()()()'''''''sup ,infx x x x f x fy f y fx δδδδεε-<-<-≤≤+所以()()()()'''00sup x x f x f x fy f x δδεε-<--≤-<()()()()''''infx x f xf x f x f y δδεε-<--+≤-<不等式相加得()()()()''''''''sup inf220lim sup liminf4x x x x x x x x fx fx fx fx δδδδδδεεε++-<-<→→-<-<--≤≤-≤即()00,4,0W f x εε≤≤<任意.所以()0,0Wf x =为证(){}0;,x Wf x ε≥为闭集,只用证(){}0;,x W f x ε<为开集. (){}00;,x x Wf x ε∀∈<必有()0,Wf x ε<所以存在()00,0x δδε=>使()00,δδ∀∈时, ()()()()000sup inf ,2N x N x f f W N x δδδεδ-<()02y N x δ∀∈,由三角不等式,则()()02N y N x δδ⊂.故()()()02,,W f N y Wf N x δδε⎛⎫≤< ⎪⎝⎭所以()()02,lim ,Wf y W f N y δδε+→⎛⎫=< ⎪⎝⎭这说明()(){}02;,N x x Wf x δε⊂<故(){};,x Wf x ε<是开集,从而(){};,x W f x ε≥是闭集.由于()f x 在x 不连续的充要条件是(),0Wf x ≥.所以使x 不连续的点集为表为()11;,k F x Wf x k ∞=⎧⎫=≥⎨⎬⎩⎭. 由于()1,;,k x Wf x k ⎧⎫∀≥⎨⎬⎩⎭是闭集,故F 为一F δ集. 同时我们看出,全体使f 连续的点集是()11;,ck F x Wf x k ∞=⎧⎫=<⎨⎬⎩⎭这是一个G δ集合.推广:(1)对1:n f R R →有一样的结论,只不过在定义(),Wf x 时,'x x -理解为n R 中的距离()';x x ρ,其它完全一样,因为三角不等式对().,.ρ成立, (2)若f 是n R 中的开集,G 到1R 的函数,则同样可定义()(),W f x x G ∀∈,因为当(){}0,;,,x x G W f x εε∀>∈<为开集,(){};,x G Wf x ε∈≥为闭集.f 的不连续点集为()11;,k x G Wf x k ∞=⎧⎫∈≥⎨⎬⎩⎭而f 的不连续点集为()11;,k x Wf x k ∞=⎧⎫<⎨⎬⎩⎭. 11. 于n E R ⊂及实数α,定义()(){}1212,,;,,,n n E x x x x x x E αααα=∈ .证明当E 为开集,00,p E αα≠∀∈,则∃ 0E X ∈,使00p α=XE 开集,0E X ∈,故0δ∃>,使()0,N E δX ⊂.则∀()0,y N αδ∈X ,则yy αα=而0001y y y αδααδαααααX -X --=-X <=.故()0,yN E δα∈X ⊂从而yy E ααα=∈这表明()0,N E αδαX ∈,故E α为开集.若E 为闭集,0α=,则(){}0,0,0E α= 为单点集.当然是闭集,若0α≠,则0,n n p E p p α∈→,则0,,,nn n n n n p p E p p αα=X X ∈=X →表明nn p p αα=X →,而E 为闭集,0n p αX →,故np E α∈,从而0p p E ααα=∈.这说明()'E E αα⊂.从而得知E α为闭集.12. 设()fp 是定义于n R 上的实函数,证明()f p 在n R 上连续的充要条件是对于1R 中任何开集G .()(){}1;fG p f p G -∈ 都是1R 中的开集.证明:设1:n f R R →连续,G 为任一1R 中开集. ()10p fG -∀∈,则()0f p G ∈,由G为开集知,0δ∃>,使()()0,Nf p G ε⊂对上述()00,,0p εδδε>∃=>,使当()0,y N p δ∈时()()0fy f p ε-<故()()()0,fy N f p G ε∈⊂即()1y fG -∈.这说明()()10,N p f G δ-⊂故()1fG -为开集.现设对1R 中任意开集,()1,G fG -为开集,0,ε∀>()()0,Nf p ε是1R中的开集.故()()()1,fN f pε-是开集,而()()()100,p fN f pε-∈.故()()()()00,,f N p Nf p δε⊂所以()()()()00,,,y N p fy N f p δε∀∈∈.()()0fy f p ε-<这说明f 在0p 连续 证毕13. nR 上的实函数()f P 称为是下半连续的,若对任意n P R ∈,都有()()()()()0,lim inf lim inf Q PP Q f P f Q f Q δρδ→→<≤ ,证明()f P 下半连续等价于对任意的实数(){},;P f P αα≤都是n R 中的闭集,也等价于(){};P f P α≤是n R 中的开集.现若f 下半连续,1R α∀∈,若(){}0;P P f P α∈>. 则()()()()000lim inf N P f P f Q δδα→<≤∀()00022f P αεε-<<,()0,0p δδε∃=>使()()()00inf N P f P f Q δαε<-<所以()0,y N P δ∀∈,有()()()()00inf N P f P f Q fy δαε<-<≤.所以()(){}0,;N P P f P δα⊂>.故(){};P f P α>为开集.(从而(){};P f P α>为闭集)f 在nR 上下半连续,0,0nP R ε⇔∀∈∀>,()0,0p δδε∃=>.当()0,P N P δ∈时,()()0f P f P ε-<-. 反过来,若(){}1,;R x f x αα∀∈>为开集.则()(){}000,0,;nP R P x f x f P εε∀∈∀>∈>-由于()(){}0;P f P f P ε>-是开集.所以()0,0P δε∃>使()()(){}00,;P N P P f P f P δε∈⊂>-()0,Q N P δ∀∈有()()0f P f P ε>-,即f 在n R 上下连续,故一个等价性得证.而f 在n R 上下连续(){}1,;R P f P αα⇔∀∈≤是闭集(){};P f P α⇔>是开集.下证(){}1,;R P f P αα∀∈≤()(){},;,nP y P Rf P y ⇔∈≤为闭集.先设(){};P f P α≤为闭集,α任意.所以()()(){},,;;n n n n n P y P y P R f P y ∀∈∈≤,00,n n P P y y →→. 所以0,,N ε∀>∃当n N ≥时0n y y ε≤+. 故(){}0;n P P f P y ε∈≤+,这是闭集. 而(){}00;n P P P f P y ε→⇔≤+ 所以()00f P y ε≤+,()0ε∀>故()00f P y ≤.这表明()()(){}00,,;;n P y P y P R f P y ∈∈≤是闭集.若()(){},;;n P y P R f P y ∈≤是闭集,而(){}0;,n n P P f P P P α∈≤→ 则()()(){},,;;nn P P y P Rf P y α→∈≤,()()0,,n P P αα→.因为()(){},;;n P y P R f P y ∈≤为闭集,故()()(){}0,,;;n P P y P R f P y α∈∈≤ 所以()0f P α≤.这说明(){}0;P P f P α∈≤ 故(){};P f P α≤为闭集. 得证.14. 设,A B 是n R 中的有界闭集,01λ<<,证明()(){}121;,,,n A B x x x x λλ+- 有()()1212,,,,,,,n n y y y A z z z B ∈∈ ,使()1,1,2,i i i x y z i λλ=+-= 为有界闭集.举例说明当,A B 无界时,()1A B λλ+-可以不是闭集. 证明:,A B 有界,故存在 M 使()22212,,n x A B x x x x x x M ρ∀∈==+++≤特别地 i x M ≤.()1x A B λλ∀∈+-,有()1x A B λλ∀∈+-使 ()1i i i x y z λλ=+-,故()1x y z λλ=+-.故()()()111x y z y z M M M λλλλλλ∈+-≤+-≤+-=. 所以01λ≤≤时,()1A B λλ+-也有界.为证()1A B λλ+-为闭集,设()1n x A B λλ∈+-,0n x x →, 则,n n y A z B ∃∈∈使()1n n n x y z λλ=+-.由,A B 有界,()1n x A B λλ∈+-, ,n n y A z B ∈∈,由聚点原理,n y ∃的子列k n y 使0k n y y →,{}k n z 有子列{}k l n z 使0k l n z z →,{}k l n x 有子列{}k li n x 使()0k li nx x i →→∞ 从()1k k k lili li n n n x y z λλ=+- 所以()0001x y z λλ=+-,而,A B 为闭集,故00,y A z B ∈∈.从而有()01x A B λλ=+- 这说明()1A B λλ+-是闭集. 若,A B 不全是有界闭集时,()1A B λλ+-可不为闭集,在2R 上考虑()()(){}11,;,0,,,0;1,2,A x y y R x y x B n n ⎧⎫=∈∈∞=⎨⎬⎩⎭=-= B 是全由孤立点组成的集合,显然为闭集,但无界. 任取(),n n x y A ∈,若()()100,,n n x y x y R →∈, 则00,x y 为有限数,故从01n n y y x =→知00x ≠ 所以00010,x y x >=这说明()00,x y A ∈,故A 为闭集合,显然 0x +→时,1y x =→∞,故A 无界. 但1122A B +都不是闭集.取()1,0,,n B n A n ⎛⎫-∈∈ ⎪⎝⎭ 则()111111,0,0,22222n p n n A B n n⎛⎫⎛⎫=-+=∈+ ⎪ ⎪⎝⎭⎝⎭. 显然()0,0n p →,但()110,022A B ∉+. 因为若()110,022A B ∈+,则()0001,0,,n B x A x ⎛⎫∃-∈∈ ⎪⎝⎭使 ()()0001110,0,,022x n x ⎛⎫=+- ⎪⎝⎭故00011,0x n x =≥=得矛盾 所以1122A B +不是闭集.。

实变函数课后习题答案

实变函数课后习题答案

第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。

当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。

{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。

实变函数第一章答案

实变函数第一章答案

第一章:集合与实数集(8)设是上的实函数,假若存在M>0,使得对于任何有限个两两不等的实数x1,...,x n,⃒⃒⃒n∑︁k=1f(x k)⃒⃒⃒≤M.证明:{x:f(x)=0}是至多可数集。

证明:令A+={x:f(x)>0},A−={x:f(x)<0}.则{x:f(x)=0}=A+∪A−.所以,只要证明A+,A−都是至多可数集。

我们仅考虑A+.注意到A+=∪∞n=1A n,+,其中A n,+={x:|f(x)|>1/n}.这样问题就归结为证明对于任意的n,A n是至多可数集.由假设条件知道:A n是一个有限集合,其中的点的个数不超过[nM]+1个.(9)证明:R上单调函数的间断点是至多可数的.证明:设f是R上的单增函数,我们首先证明:对于任意的x0∈R,lim x→x0−0f(x),limx→x0+0f(x)都是存在有限的.为简单起见,我们仅考虑左极限的存在性.我们只要证明:(a)对于任意的{x n},x n→x0,x n<x0,lim n→∞x n都存在有限(b)对于任意的{x n},x n→x0,x n<x0,{y n},y n→x0,y n<x0,lim n→∞x n=lim n→∞y n.结论(a)是明显的,至于结论(b),我们只要注意到对于任意的n,一定存在N>n使得当m>N时y m>x n,从而f(x m)>f(x n),这依次隐含着lim n→∞f(x n)≤limm→∞f(y m).2同理可证lim n→∞f(x n)≥limm→∞f(y m).现在回到要证明的结论.假如f在x0不连续,则f(x0−0)<f(x0+0),这样我们就得到一个区间(f(x0−),f(x0+)).对于f的任意两个不连续点x1,x2,区间(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相互不交(事实上,我们假设x1<x2.注意到f(x1−0)≤f(x1+0)≤f(x2−0)≤f(x2+0),则(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相交当然是不可能的),这样我们就知道:从集合{x0:f在x0不连续}到集合{所有开区间但这些开区间两两相互不交}之间存在一一映射.而后者是一个至多可数集,这就证明了我们的结论.(10)设f是[a,b]上的单调增加的函数,并且f([a,b])在[f(a),f(b)]中稠密。

实变函数(曹广福)1到5章答案

实变函数(曹广福)1到5章答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数参考答案

实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。

四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。

2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。

同理可证第2个集合等式。

3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。

当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。

当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。

4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。

实变函数课后题答案第二章

实变函数课后题答案第二章

习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求b E E E E ,,,' . 解 E =∅ ;[0,1][0,1]b E E E '===⨯。

2.设)}0,0{(1sin ,10:),( ⎭⎬⎫⎩⎨⎧=≤<=x y x y x E ,求b E E E E ,,,' .解 E =∅ ;{(,):0,11}.b E E x y x y E E '==-≤≤==3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明.(1) 11n n n n E E ∞∞=='⎛⎫'= ⎪⎝⎭; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==⎪⎪⎭⎫ ⎝⎛11 ; (4) B A B A =; (5) ︒︒︒=B A B A )(; (6) .)(︒︒︒=B A B A解 (1) 不一定。

如设12={,,,,}n r r r Q ,{}n n E r =(单点集),则1()n n E ∞=''==Q R , 而1.n n E ∞='=∅ 但是,总有11n n n n E E ∞∞=='⎛⎫'⊃ ⎪⎝⎭ 。

(2) 不一定。

如 A =Q , B =R \Q , 则(),A B '=∅ 而.A B ''=R R =R(3) 不一定。

如设12={,,,,}n r r r Q ,{}n n E r =(单点集),则1n n E ∞===Q R , 而1.n n E ∞==Q 但是,总有11n n n n E E ∞∞==⎛⎫⊃ ⎪⎝⎭ 。

(4) 不一定。

如(,)A a b =,(,)B b c =,则A B =∅ ,而{}A B b = 。

(5) 不一定。

如[,]A a b =, [,]B b c =, 则(,)A a b = , (,)B b c = ,而()(,)A B a c = ,(,)\{}A B a c b = .(6) 成立。

(完整版)实变函数论课后答案第一章3

(完整版)实变函数论课后答案第一章3

实变函数论课后答案第一章3(p20-21)第一章第三节1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为°()12,,,,nQ r r r =L L . []0,1全体无理数的集合为°R,则[]°°0,1Q R =U . 由于°Q 是一可数集合,°R 显然是无穷集合(否则[]0,1为可数集,°°Q R U 是可数集,得矛盾).故从P21定理7得 []°°°0,1QR R =U :. 所以°R=ℵ,°R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P .则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤,而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞==U .任取一,0,z f P m ∈∃≥有,z m f P ∈.f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=U至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=UU也是至多可数集.又{},1;1,2,n N nx n ∀∈+=L 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.3. 证明如果a 是可数基数,则2ac =.证明:一方面对于正整数N 的任意子集A ,考虑A 的示性函数()()()10A A An n An n n A ϕϕϕ=∈⎧⎪=⎨=∉⎪⎩当当{}2N A N ∀∈@的子集所构成的集令()()()0.1,2A A J A x ϕϕ==L则()()0,1J A x =∈若()()J A J B =,则()(),1,2,A B n n n ϕϕ=∀=L故A B =(否则()()0000,10A B n A n B n n ϕϕ∃∈∉⇒=≠=)故2N与()0,1的一个子集对等(()20,1N≤)另一方面,()0,1x ∀∈.令±{};,x A r r x r R =≤∈ (这里±0R 为()0,1中的全体有理数组成的集合) 若(),,0,1x y x y ≠∈,则由有理数的稠密性,x y A A ≠x A 是±0R 这一与N 对等的集合的子集. 故()0,1与±0R 的全体子集组成的集合的一个子集对等(()±00,1R ≤的全体子集组成集的势,即()()0,120,1N≤≤)也就与2N的一个子集对等. 由Berrstein 定理()0,12N:所以2ac =.4. 证明如果A B c =U ,则,A B 中至少一个为c . 证明:E A B c ==U ,故不妨认为(){},;01,01E x y x y =<<<<,,A B 为E 的子集.若存在x ,01x <<使得(){},;01x A E x y y ⊃=<<.则由于x E c =(显然()0,1x E :) 故A c ≥,而,A E A E c ⊂≤=. 由Berrsrein 定理A c =.若,01,x x x E A ∀<<⊄,则从x E E A B ⊂=U 知(){},;01x B E B x y y =<<≠∅I I所以(),x x y B ∃∈,则显然(){},;01xx y x <<具有势c故易知c B E c ≤≤= 由Berrsrein 定理B c = 证毕5. 设F 是[]0,1上全体实函数所构成的集合,证明2cF =证明:[]0,1∀的子集A ,作A 的示性函数()10A x Ax x A ϕ∈⎧=⎨∉⎩则映射()A A x ϕa规定了[]0,1的所有子集的集合到[]0,1上全体实函数所构成的集合的一个对应,且若A ,B ⊂[]0,1使得()()[],0,1A B x x x ϕϕ=∀∈成立 则必有A B = 所以[]0,12与F 的一个子集对等.反过来,任取()f x F ∈,()()[]{},;0,1f A t f t t =∈,fA 是f 在2R中的图象,是2R 中的一个子集.且若,f g F ∈,使f g A A =则[]0,1t ∀∈,()(),f g t f t A A ∈= 表明[]10,1t ∃∈使()()()()11,,t f t t g t =()()1,,t t f t g t t ⇒==∀故f g =.所以F 与2R 的全体子集所组成的集合的一个子集对等,故从[]20,1R :知[]20,122R F ≤=即F 与[]0,12的一个子集对等.所以由Berstein 定理[]0,122c F ==.。

实变函数第一章答案

实变函数第一章答案

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) c C B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \c C B A A =c c C B A )( =)(C B A c = )()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂; (2) ()A B B A =\ 的充分必要条件是:=B A Ø; (3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc ==== )()()()\(的充要条 是:.A B ⊂(2) cc c c B A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,c B x ∉ 于是,c B A x ∉ 但,B A x ∈ 与c C A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n nA x 存在N 使得,NA x ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x ,故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ; 另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Zk , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max{21N N N =, 则有k c x f n 1)(0->与kx f x f n 1|)()(|00<-同时成立, 于是有kc x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n nn n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n nm cm cmn nm mn n A E AE A E A Ec n nm m n c nm m n nm cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n nm n n m A E A E .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm cm n nm n n m cm m n n A E A E A E A Ec n nm m n cnm m n n m cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n nm n n m A E A E .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为:;11();(1,2,)210;2x x D x x n nn x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义::[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b aφ---=-+=+∀∈---可以验证::[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证::(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y bb b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知:A A A ≤⨯. 最后, 根据Bernstein 定理知:(0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为:(0,1)~R , 则由对等的传递性知:2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义::A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证::A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→与)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:cP b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E E F E E F E E E F E F ====, ()\()()()\c c c E F F E F F E F F F E F ===.所以\\()()\E F E EF EF F ==.(2) 因为()\()()()(\)(\),c c c c E F G EF G E F G E G F G E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n nn n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c c E f g c E f E g +≥⊂≥≥.4.证明:nR 中的一切有理点之集nQ 与全体自然数之集对等. 证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q nN ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][R ][R 0∞==n n x x显然,R ~][R 1n +x n 所以,R][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==WORD11 / 11 又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A 所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.。

实变函数参考答案(习题一)

实变函数参考答案(习题一)

旧版书习题一2.证明:(i )右边=⊂--))(())((D B C D B A 左边 (ii )右边=⊃--))(())((D B C D B A 左边3.解:等式右边=)()()(C C C A B A C B A --=- ,我们猜想C C A C =-,即A C ⊂为等式成立的充要条件。

由上充分性是显然的,再注意到由原等式,我们有A CB AC B A C ⊂--=-⊂)()( ,故而必要性也成立。

4.证明:(i )因为1inf lim ,..,inf lim 100inflim =⇔∈≥∀∈∃⇔∈⇔=n nnA nn n nA A x n n t s N n A x χχ,所以等式成立。

(ii )因为1sup lim ..,,sup lim 1sup lim =⇔∈≥∃∈∀⇔∈⇔=nknnA nn k n nA A x t s k n N k A x χχ,所以等式成立。

5.证明:先证明}{n B 互不相交。

事实上,Φ=-⊂>∀⊂≥∀n m n m m n n B B A A B n m A B n 故而,,,,1。

再证明集合等式。

等式左边。

等式右边时,时显然成立,当==-=-=≥===-===-=nj j ni i j j ij j ni i j j i A A A A A n n 11111111)()(216.证明:(i )左边⊃右边是显然的,下证另一边也成立。

右边。

故于是左边,则∈-≤∃>-∈∀x a x f nt s n a x f x ,)(1..,,0)((ii )以E 为全集,左边=ca x f E x a x f E x a x f x E })(|{})(|{})(|{->-∈=-≤-∈=≥∞=∞=+-<-=+-≥-=11)(}1)(|{)}1)(|{(n cn i na x f x E na x f x E右边=->=∞= 1}1)(|{n na x f x E7.证明:将需证的等式记为M=F=P 。

《实变函数》习题库参考答案

《实变函数》习题库参考答案

《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。

满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。

从而移项可得结论。

4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。

5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。

6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。

[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。

7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。

9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。

,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。

在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。

实变函数答案 第三版 第二章 点集精编版

实变函数答案 第三版 第二章 点集精编版

第二章 点集1、证明:'0P E ∈的充要条件是在任意含有0P 的领域(),P δ⋃(不一定以0P 为中心)中,恒有异于0P 的点1P 属于E (事实上,这样的1P 还有无穷多个);0oP E ∈ 的充要条件则是有含有0P 的领域(),P δ⋃(同样,不一定以0P 为中心)存在,使(),P E δ⋃⊂.()()()'00100010101001001'0010000:min ,,,,..oP E d P P d P P P P E P E P E P E P E P E E δδδδδδδδ∈⋃=-⋃⊂⋃⋃∈⋃∈⋃∈⋃∈∈∈⋃∈⋃ 证明若,对任意含有P 的领域(P,),取则(P ,)(P,),而(P ,)中含有异于的点,所以(P ,)中存在异于P 的点若任意一个含有P 的领域(P,)中有异于P 的点,则任一(P )也有异于P 的点,故 若,则存在(P ),使(P ()()()0100010=min ,,,.o d P P d P P E P E δδδδδδ⋃∈⋃⊂=-⋃⊂⋃⊂∈ )(P ,)即得证.若P (P,)E ,取,则有(P ,)(P,),从而4、设3E 是函数1sin ,0,0,0x y x x ⎧≠⎪=⎨⎪=⎩当 当的图形上的点所作成的集合,在2R 内讨论'333oE E 的E 与.(){}'33=0y 11.oE y E φ⋃-≤≤=解:E ,8.x -+a f ∞∞≥设()是(,)上的实值连续函数,则对于任意常数,E={x|f(x)>a}是一开集,而E={x|f(x)a}总是一闭集。

(){}()()(){}(){}()(){}()()o ,?,0,,,, ,|()||()| |{|}|{|}.{, |}. ' ',o o o o o co x E x f x a f x a f x x x x f x a x E x f x a x E E x f x a H x f x a x f x a H x f x a x H H f x a H x δδδ∈=>>>-<>⋃∈=><=≥=<=≥∈=≥⊂' 任取则由在处连续及极限的保号性知,存在当时有即即为的内点,从而 证明为开:集;类似可证为开集从而是闭集又要证是闭集,只需证任取则存在()()(){}()(){|}{| ,, ,}n o n o o H x f x x f x a f x a x x f x a x f x a ≥≥∈≥≥中的点列使得由在处连续及,可知所以从而是闭集.9.证明:每个闭集必是可数个开集的交集;每个开集可以表示成可数个闭集的和集。

实变函数论课后答案

实变函数论课后答案

λ∈∧
λ∈∧
λ∈∧
综上所述有 ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
定理
6
中第二式 ( ∩
λ∈∧
Aλ )c
=

λ∈∧
Aλc
.
证 : ∀x ∈ ( ∩ Aλ )c , 则 x ∉ ∩ Aλ , 故 存 在 λ ' ∈ ∧
λ∈∧
λ∈∧
, x ∉ Aλ' 所 以
( ) x0
∞∞ ∞
∈∩ ∪ ∩
k =1 m=1 i=m
E
⎡⎢⎣ x;
fi
x

a
+
1 k
⎤ ⎥⎦
.
所以E
⎡⎣ x;
f
(x)

a⎤⎦

∞∞ ∞
∩∪∩
k =1 m=1 i=m
理 9.
证明:定理 4 中的(3):若 Aλ ⊂ Bλ ( λ ∈ ∧ ),则 ∩ Aλ ⊂ ∩ Bλ .
λ∈∧
λ∈∧
证:若 x ∈ ∩ Aλ ,则对任意的 λ ∈ ∧ ,有 x ∈ Aλ ,所以 Aλ ⊂ Bλ( ∀ λ ∈ ∧ ) λ∈∧
成立
知 x ∈ Aλ ⊂ Bλ ,故 x ∈ ∩ Bλ ,这说明 ∩ Aλ ⊂ ∩ Bλ .
(因为 ∃n, 使 1 n

f
( x0 ) − a )
所以
x0


∪E
n=1
⎡ ⎢⎣
x;
f
(
x)

a
+
1⎤ n ⎥⎦
.
从而有
E

实变函数第一章答案解析

实变函数第一章答案解析

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A =cc C B A )( =)(C B A c =)()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与c B A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0. 由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},m ax {21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有kc x f k x f n 1)(1)(00->>+,从而kc x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有 [] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ; (4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm mn n A E A E AE A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm m n n A E A E A E A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应.解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x Dx x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数.证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c 2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射. (3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E EF EE F E E E F E F ====,()\()()()\c c c EF F EF F E F F F E F ===.所以\\()()\E F E EF E F F ==. (2) 因为()\()()()(\)(\),c c c c E F G EF G EFG EG FG E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n n n n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c cE f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥.4.证明:n R 中的一切有理点之集nQ 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c . 证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R ~][R 1n +x n 所以,R][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =.8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==0n n AA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R c B A B ===9.证明:A B B A \~\,则B A ~.证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A 所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =. 证明同上.。

实变函数第一章答案

实变函数第一章答案

实变函数第一章答案习题1、11.证明下列集合等式.(1) ()()()C A B A C B A I I I \\=; (2) ()()()C B C A C B A \\\Y Y =;(3) ()()()C A B A C B A I Y \\\=. 证明 (1) )()C \B (cC B A A I I I =)()( c c C B A A B A I I Y I I = c C A B A )()( I I I =)(\)(C A B A I I = 、(2) cC B A A I Y Y )(C \B)(=)()(c c C B C A I Y I ==)\()\(C A C A Y 、(3) )(\C)\(B \cC B A A I = c c C B A )(I I =)(C B A c Y I = )()(C A B A c I Y I =)()\(C A B A I Y =、2.证明下列命题.(1) ()A B B A =Y \的充分必要条件就是:A B ?; (2) ()A B B A =\Y 的充分必要条件就是:=B A I ?; (3) ()()B B A B B A \\Y Y =的充分必要条件就是:=B ?.证明 (1) A B A B B B A B B A B B A cc====Y Y I Y Y I Y )()()()\(的充要条就是:.A B ?(2) ccccB A B B B A B B A B B A I I Y I I Y Y ===)()()(\)(必要性、设A B B A =\)(Y 成立,则A B A c=I , 于就是有cB A ?, 可得.?=B A I反之若,?≠B A I 取B A x I ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与cB A ?矛盾、充分性、假设?=B A I 成立, 则cB A ?, 于就是有A B A c=I , 即.\)(A B B A =Y(3) 必要性、假设B B A B B A \)()\(Y Y =, 即.\cC A B A B A I Y == 若,?≠B 取,B x ∈ 则,cB x ? 于就是,cB A x I ? 但,B A x Y ∈ 与cC A B A I Y =矛盾、充分性、假设?=B 成立, 显然B A B A \=Y 成立, 即B B A B B A \)()\(Y Y =、 3.证明定理1、1、6.定理1、1、6 (1) 如果{}n A 就是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 如果{}n A 就是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且I ∞=∞→=1lim n n n n A A证明 (1) 设),1(1≥??+n A A n n 则对任意Y ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥?∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=?Y 又因为Y ∞=∞→∞→??1,lim lim n n n n n n A A A由此可见{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 当)1(1≥??+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥?<+k n n k k 使得),1(≥?∈k A x k n 于就是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ?∈ 可见.lim 1I=∞→?n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=??I所以可知{}n A 收敛且I ∞=∞→=1.lim n n n n A A4.设f 就是定义于集合E 上的实值函数,c 为任意实数,证明: (1)+≥=>∞=n c f E c f E n 1][1Y ;(2) ??+<=≤∞=n c f E c f E n 1][1I ;(3) 若))(()(lim E x x f x f n n ∈?=∞→,则对任意实数c 有->=->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111I I Y I .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立、即,1+≥∈n c f E x 那么.11Y ∞=+≥∈n n c f E x 故[];11Y ∞=+≥?>n n c f E c f E另一方面, 若,11Y ∞=+≥∈n n c f E x 则存在+∈Z n 0使得,110Y ∞=+≥∈n n c f E x 于就是c n c x f >+≥01)(, 故[]c f E x >∈、则有[].11Y ∞=+≥?>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于就是I ∞=+<∈11n n c f E x , 故有[];11I ∞=+另一方面, 设I ∞=+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[]I∞=+≤11n n c f E c f E 、(3) 设[]c f E x ≥∈, 则c x f ≥)(、由),)(()(lim E x x f x f n n ∈?=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥?<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥->∈∞→k k c f E x n n , 所以I ∞=∞→->∈11lim k n n k c f E x , 故[]I ∞=∞→->?≥11lim k n n k c f E c f E ;另一方面, 设I∞=∞→->∈101lim k n n k c f E x , 则对任意+∈Z k 有->∈∞→k c f E x n n 1lim 0、由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈?=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有k x f x f n 1|)()(|00<-、取},m ax {21N N N =,。

实变函数论课后答案第二章4

实变函数论课后答案第二章4

实变函数论课后答案第二章4第二章第四节习题1. 证明全体有理数所构成的集合不是G δ集,即不能表成可数多个开集的交. 证明:设1R 上全体有理数为{}123,,,,n r r r r Q =.则一个{}n r 作为单点集是闭集,所以{}1i i Q r ∞==是F δ集,但要证Q 不是G δ集,则不容易.这里用到:Baire 定理,设nE R ⊂是F δ集,即1k k E F ∞==.k F ()1,2,k =是闭集,若每个k F 皆无内点,则E 也无内点(最后再证之) 反证设{};1,2,i Q r i ==为G δ集,即1i i Q G ∞==,(i G 为开集,1,2,i =)1R 上的单调函数的全体所组成的集合的势为c =ℵ.证明:任取1R 上的单调函数f ,则其间断点至多可数个,设其无理数的间断点,为12,,,,m x x x (可为有限)设1R 中的有理数为{}12,,,,,n Q r r r f =∀∈令()()()()()()()()(){}21111,,,,,,,,iiiif x f x r f r x f x r f r Rϕ=⊂.则()f ϕ为2R 中可数集.若,f g ∈,使()()f g ϕϕ=,则()()(),i i x f x f ϕ∀∈存在()()(),j j x g x g ϕ∈使()()()(),,i i j jx f x x g x =所以()(),i j i j x x f x g x ==, 从而()(),i i i x Q f r g r ∀∈=.f ∀的无理数间断点i x ,i x 也是g 的无理数间断点,且()()i i g x f x =.反过来也是的,g ∀的无理间断点,i x 也是f ,的无理数间断点,且()()i i g x f x =. 故()()f g ϕϕ=表明f 与g 在有理点重合,无理间断点相同,且在无理间断点的值. 所以f g =于1R ,所以ϕ是11-的.利用下面结论:Claim :任何其有连续势的集合的全体可数子集所构成的族的势为连续势. 知:c ≤.另一方面()(){},0,1c c f x x c c ==+∈≤证毕.Lemma :设为,X Y 两集合,:X Y ϕ→是一个满射,则Y X ≤.即存在X 的一个子集,A A Y .证明:因为ϕ为满射,()(){}1,;,y Y y x x X x y ϕϕ-∀∈=∈=≠∅ 且,,y z Y y z ∈≠时必有()()11y z ϕϕ--=∅.令(){}1;y y Y ϕ-Γ=∈,则由选择公理存在一个集合X ,它由Γ中每一个集合()1y ϕ-中恰取一个元素而形成,显,X X a X ⊂∀∈,存在唯一一个y Y ∈,使()1a y ϕ-∈.所以X 与Y 是对等的,故Y X ≤.证毕.选择公理:若Γ是由互不相交的一些非空集合所形成的集合族,则存在集合X ,它由该族的每一个集合中恰取一个元素而形成.2. 证明[]0,1上全体无理数所作成的集合不是F δ集. 证明:设[]0,1上全体无理数所作成的集合是,则[]0,1Q =-,(Q 为1R 上全体有理数的集合) 若为F δ集,则存在闭集,1,2,i F i =使1i i F ∞==.所以[]10,1cc i i QF ∞===为G δ集.[][]{}{}110,10,1i k i k Q F r ∞∞==⎛⎫== ⎪⎝⎭,{}k r ,i F 为闭集,{}k r 无内点.1i i F ∞==显为内点.所以i F 无内点.这说明[]0,1无内点(Baire 定理)得矛盾. 证毕.3. 证明不可能有在[]0,1上定义的在有理点处都连续,在无理点处都不连续的实函数.证明:若存在这样的[]0,1上的实函数,它在有理点都连续,在无理点都不连续.()f x 的全体不连续点的集合为[]0,1上的全体无理数为,由本章第二节习题10结论知为F δ集,这于本节习题2的结论:不是F δ集矛盾.故不存在这样的[]0,1上的函数.4. 证明1R 中全体开集构成一基数为c 的集合,从而1R 中全体闭集也构成一基数为c 的集合.证明:对任意的1R 上开集合,由开集的构造定理,存在{}{}1,,,i i R αβαβ∞∞∈∞-∞使得()()()1,,,i i i G αββα∞∞∞==-∞+∞.下面建立1R 上的开集到全体实数列集成的集合的一个映射I . 若1G R =,令()()0,0,,0,I G =.若1G R ≠,则()()()1,,,m i i i G αββα∞∞==-∞+∞.令()()1122,,,,,,I G k k αβαβ∞∞=.这里k β∞∞=,若,0k β∞∞≠-∞=;若,k βα∞∞∞=-∞=;若,0k α∞∞≠+∞=;若α∞=+∞则这个映射I 是单射.若112,G G R ⊂()1212,G R G R ≠≠且()()12I G I G =.()()()()()()11''''21,,,,,,i i i iii G G αββααββα∞∞∞=∞∞∞==-∞+∞=-∞+∞则'''',,,i i i i ααββααββ∞∞∞∞====.故12G G =. 又若()()0,0,0,I G =则必有1G R =(否则()I G 至少有一个分量不等于零).故I 是单射,所以1R 上全体开集所作成的集合的势c ≤. 令一方面,()1,,1a R a a ∀∈+是一开集,令11:I RR 上全体开集之集合,则1c R ≤≤“1R 上全体开集之集的势” c ≤, 由Berstrein 定理,1R 上全体开集之集合的势为c . 证:记可数集(){}()()()(){}111,;,,,,,,m nm B x r x Q r QB x r B x r υ=∈∈=.显()(){}12:0,1,,,;01m m u a a a a ϕ∞→==或 ()()()12,,,,,m B x r VU B x r a a a ⊂=()()()()1,0,m m m m cm B x r U a B x r U ⎧⊂⎪=⎨≠∅⎪⎩()()()()(),,,,n U V B x r U x r Q Q B x r V ϕϕ+=⇒⊂∈⨯⇔⊂所以U V =. ϕ为单射.所以{}(){}()0,1,;0,c B x r r R c υ∞+=≥≥∈=∞=.由Berstein 定理 c υ={}{}n c n F F R F F R c υ=⊂=⊂==为闭集为闭集.故I 是单射,所以1R 上全体开集所作成的集合的势c ≤. 另一方面,()1,,1a R a a ∀∈+是一开集令11:I RR 上全体开集的集合则1c R ≤≤“1R 上全体开集的集合的势” c ≤, 由Berstein 定理,1R 上全体开集的集合的势为c .。

最新实变函数答案 第三版 第二章 点集

最新实变函数答案 第三版 第二章 点集

实变函数答案第三版第二章点集第二章 点集1、证明:'0P E ∈的充要条件是在任意含有0P 的领域(),P δ⋃(不一定以0P 为中心)中,恒有异于0P 的点1P 属于E (事实上,这样的1P 还有无穷多个);0oP E ∈ 的充要条件则是有含有0P 的领域(),P δ⋃(同样,不一定以0P 为中心)存在,使(),P E δ⋃⊂.()()()'00100010101001001'0010000:min ,,,,..oP E d P P d P P P P E P E P E P E P E P E E δδδδδδδδ∈⋃=-⋃⊂⋃⋃∈⋃∈⋃∈⋃∈∈∈⋃∈⋃ 证明若,对任意含有P 的领域(P,),取则(P ,)(P,),而(P ,)中含有异于的点,所以(P ,)中存在异于P 的点若任意一个含有P 的领域(P,)中有异于P 的点,则任一(P )也有异于P 的点,故 若,则存在(P ),使(P ()()()0100010=min ,,,.o d P P d P P E P E δδδδδδ⋃∈⋃⊂=-⋃⊂⋃⊂∈ )(P ,)即得证.若P (P,)E ,取,则有(P ,)(P,),从而4、设3E 是函数1sin ,0,0,0x y x x ⎧≠⎪=⎨⎪=⎩当 当的图形上的点所作成的集合,在2R 内讨论'333oE E 的E 与.(){}'33=0y 11.oE y E φ⋃-≤≤=解:E ,8.x -+a f ∞∞≥设()是(,)上的实值连续函数,则对于任意常数,E={x|f(x)>a}是一开集,而E={x|f(x)a}总是一闭集。

(){}()()(){}(){}()(){}()()o ,?,0,,,, ,|()||()| |{|}|{|}.{, |}. ' ',o o o o o co x E x f x a f x a f x x x x f x a x E x f x a x E E x f x a H x f x a x f x a H x f x a x H H f x a H x δδδ∈=>>>-<>⋃∈=><=≥=<=≥∈=≥⊂' 任取则由在处连续及极限的保号性知,存在当时有即即为的内点,从而 证明为开:集;类似可证为开集从而是闭集又要证是闭集,只需证任取则存在()()(){}()(){|}{| ,, ,}n o n o o H x f x x f x a f x a x x f x a x f x a ≥≥∈≥≥中的点列使得由在处连续及,可知所以从而是闭集.9.证明:每个闭集必是可数个开集的交集;每个开集可以表示成可数个闭集的和集。

实变函数参考答案

实变函数参考答案

实变函数参考答案实变函数参考答案实变函数是数学分析中的一个重要概念,它是指定义在实数域上的函数。

在数学学习中,我们经常会遇到实变函数相关的问题,而对于这些问题的解答往往需要参考答案。

本文将围绕实变函数参考答案展开讨论,探究实变函数的性质和求解方法。

一、实变函数的定义和性质实变函数是定义在实数域上的函数,其定义域和值域都是实数集。

实变函数的定义可以用一个公式或者算法来表示,比如常见的多项式函数、指数函数、对数函数等。

实变函数的性质包括可导性、连续性、单调性等。

对于实变函数的可导性,我们可以通过求导来判断。

如果一个函数在某一点处的导数存在,那么该函数在该点处可导。

可导性是实变函数的重要性质之一,它与函数的变化率密切相关。

实变函数的连续性是指函数在定义域上的每一点都存在极限,并且函数值与极限值相等。

连续性是实变函数的基本性质,它保证了函数在定义域上的平滑性和连贯性。

实变函数的单调性是指函数在定义域上的变化趋势。

如果函数在定义域上单调递增或者单调递减,那么它具有单调性。

单调性是实变函数的重要性质之一,它可以帮助我们判断函数的增减规律和求解不等式。

二、实变函数的求解方法在解决实变函数相关问题时,我们需要掌握一些常用的求解方法。

下面将介绍几种常见的实变函数求解方法。

1. 求导法求导法是解决实变函数问题的常用方法。

通过对函数求导,我们可以得到函数的导函数,从而求解函数的极值、拐点、单调区间等问题。

求导法可以帮助我们深入理解函数的性质和变化规律。

2. 极限法极限法是解决实变函数问题的另一种常用方法。

通过对函数的极限进行研究,我们可以得到函数在某一点处的性质和趋势。

极限法可以帮助我们求解函数的连续性、收敛性、发散性等问题。

3. 积分法积分法是解决实变函数问题的重要方法之一。

通过对函数进行积分,我们可以求解函数的面积、曲线长度、平均值等问题。

积分法可以帮助我们深入理解函数的几何意义和物理应用。

三、实变函数参考答案的重要性实变函数参考答案对于学习和理解实变函数的概念和性质具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 集合一、內容小结1. 这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。

2. 引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定理。

3. 引入了集合基数的概念,深入地研究了可数基数和连续基数。

二、学习要点1. 准确熟练地掌握集合的运算法则,特别要注意集合运算既有和代数运算在形式上一许多类似的公式,但也有许多本质。

但是千万不要不加证明地把代数恒等式搬到集合运算中来。

例如:(a+b)-a=b,但是(A+B)-B=A 却不一定成立。

条件为A,B 不交。

2. 可数集合是所有无限集中最小的无限集。

若可数A 去掉可数B 后若还无限则C必可数。

3. 存在不可数集。

无最大基数集。

以下介绍学习中应掌握的方法4. 肯定方面与否定方面。

B X B X ∉∈与,5. 集合列的上、下限集是用集合运算来解决分析问题的基础,应很好地掌握。

其中用交并表示很重要。

对第四章的学习特别重要。

6. 基数部分重点:集合对等、构造集合的一一对应;利用对等的传递性(伯恩斯坦定理)来进行相应的证明。

7. 集合可数性的证明方法很重要:可排列、与已知可数集对等、利用集合的运算得到可数、第四节定理6.8. 证明集合基数为C 中常用到已知的基数为C 的集合。

∞E R n,三、习题解答1. 证明:)()()(C A B A C B A Y I Y I Y =证明 则若设,).(A x C B A x ∈∈I Y B A x Y ∈,得).()(C A B A x Y I Y ∈若则同样有设,C B x I ∈BA x Y ∈且CA x Y ∈,得).()(C A B A x Y I Y ∈因此)()()(C A B A C B A Y I Y I Y ⊂设)()(C A B A x Y I Y ∈则若,.A x ∈当然有)()(C A B A x Y I Y ∈,若,.A x ∉由B A x Y ∈且C A x Y ∈,可知B x ∈若.且c x ∈.,所以,C B x I ∈同样有).(C B A x I Y ∈因此⊂)()(C A B A Y I Y )(C B A I Y ,所以)()()(C A B A C B A Y I Y I Y =2. 证明⑴B B A B A A B A -=-=-)()(Y I ⑵)()()(C A B A C B A I I I -=- ⑶)()(C B A C B A I -=-- ⑷)()()(C A B A C B A I Y -=-- ⑸)()()()(D B C A D C B A Y I I -=-- ⑹.)(B A B A A I =-- 证明 ⑴().)()()()(B A B C A A C A B C A C A B A C A B A A s s s s s -====-I Y I Y I I I IB C B A B B A s I Y Y )()(=-=B A B C B B C A s s -=)()(I Y I ⑵).()(()(()(()()()()()()(C B A C C B A C C B A A C B A C C A C B A C A C B A C A B A s s s s s s -=====-I I I I I Y I I Y I I I I I I I⑶)()()()(C B A C B C A CC B C A C B A s s s Y Y I I I -===--⑷).()()()()()()()(C A B A C A B C A C B C A C C B C A C C B A C B A s s s s s I Y I Y I Y I I I I -====-=--⑸).()()()()()()()(D B C A D B C C A D C C B C A D C B A s s s Y I Y I I I I I I -===--⑹.)()()(B A B A C A B C A C A B A A s s s I Y I I I ===--3. 证明:)()()(C B C A C B A --=-Y Y ;).()()(C A B A C B A --=-I Y 证明:).()()()()()(C B C A C C B C C A CC B A C B A s s s --===-Y I Y I I Y Y).()()()()()(C B A C B C A C C B C A C C A B C A C A B A s s s s s Y Y I I I I I I I -====--4.证明:I Y ∞=∞==11.)(i i s i is A C AC证明 设)(1Y ∞=∈i is AC x ,则S x ∈,但Y ∞=∉1i i A x ,因此对任意i ,i A x ∉,所以i s A C x ∈,因而I ∞=∈1.i i s A C x设I∞=∈1.i i s A C x 则任意i , i s A C x ∈,即S x ∈,i A x ∉,因此则S x ∈,但Y ∞=∉1i i A x ,得)(1Y ∞=∈i is AC x ,所以I Y ∞=∞==11.)(i i s i i s A C A C5.证明:⑴Y Y Λ∈Λ∈-=-αααα)()(B A B A ; ⑵I I Λ∈Λ∈-=-αααα)()(B A B A .证明 ⑴ Y Y Y Y I I Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A s s ⑵ I I I I I I Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A s s .6.设{}n A 是一列集合,作11A B =,1),(11>-=-=n A A B n n n Y νν。

证明{}nB 是一列互不相交的集,而且.1,11∞≤≤===n B A nn Y Y νννν 证明 若j i ≠,不妨设j i <,显然).1(n i A B ii ≤≤⊂.)(12111φ==-⊂--=j s i s s s j i j n n j i j i A C A C A C A C A A A A A B B I ΛI I ΛI I I I I I Y设Y ni iAx 1=∈,若1A x ∈,则Y ni iBB x 11=⊂∈,若1A x ∉,令n i 是最小的自然数使n i A x ∈,即Y 11-=∉n i i iAx 而n i A x ∈,这样Y Y ni i i i i ii B B AA x n n n 111=-=⊂=-∈,所以Y Y ni ini i BA 11===证毕。

7.设),1,0(12nA n =-Λ,2,1),,0(2==n n A n ,求出集列{}n A 的上限集和下限集。

解),0(lim ∞=∞→nn A;设),0(∞∈x ,则存在N ,使N x <时,因此N n >时,n x <<0,即n A x 2∈,所以x 属于下标比N 大的一切偶数指标集,从而x 属于无限多n A ,得n n A x lim ∞→∈,又显然),0(lim ∞⊂∞→n n A ,所以),0(lim ∞=∞→n n A 。

若有nn A x lim ∞→∈,则存在N ,使对任意N n >,有nAx ∈,因此若N n >-12时,12-∈n A x , 即nx 10<<,令∞→n ,得00≤<x ,此不可能,所以φ=∞→nn Alim 。

8. 证明YI∞=∞=∞→=1lim n nm m nn A A证明 设nn Ax lim ∞→∈则存在N ,使对任意N n >,有n A x ∈,所以YI I∞=∞=∞+=⊂∈11n nm m n m m A A x ,所以YI ∞=∞=∞→⊂1lim n n m m n n A A ;设YI ∞=∞=∈1n nm m A x ,则有n ,使I ∞=∈nm m A x ,即对任意n m ≥,有n A x ∈,所以n n A x lim ∞→∈,因此YI ∞=∞=∞→=1lim n nm m n n A A 。

9. 作出一个(-1,1)和),(+∞-∞的1—1对应,并写出这一一对应的解析表达式 解 ),()1,1(:∞-∞→-ϕ,对任意)1,1(-∈x ,x x 2tan )(πϕ=10. 证明:将球面去掉一点以后,余下的点所成的集合和整个平面上的点所成的集合是对等的.证明 只要证明球面S :2222)21()21(=-++z y x 去掉)1,0,0(点后与xoy 平面M 对等即可.此可由球极投影来做到;对任意)1,0,0(\),,(S z y x ∈,M zyz x z y x ∈--=)1,1(),,(ϕ, 易验证ϕ是1—1的,映上的,因此S 与M 是对等的,证毕。

11. 证明:由直线上某些互不相交的开区间所谓集A 的元素,则A 至多为可数集. 证明 设{}开区间是直线上的互不相交的z z G ∆∆=,在每一z ∆中任取一点有理数z r 使z ∆与z r 对应.因为z ∆是互不相交的,因此这个对应是1—1的,而G 与有理数的子集对等,因此G 至多可数。

12. 证明:所有系数为有理数的多项式组成一可数集. 证明 n A :n 次有理系数多项式全体所成的集合 Y ∞==n nAA :所有系数为有理数的多项式全体所成的集合n A 由n +1个独立记号所决定,(系数),每个记号(首位不取0)可独立跑遍全体有理数(可数个)因此由§4定理6,a A n =,又由§4定理6,a A =.13. 设A 是平面上以有理点(即坐标都是有理数)为中心,有理数为半径的圆的全体,则A 是可数集.证明 任意A 中的圆,由三个独立记号所决定;),,(r y x ,其中),(y x 是圆心的坐标,r 是圆半径,y x ,各自跑遍有理数,r 跑遍大于0的有理数,因而都是可数集.所以a A =.14. 证明:增函数的不连续点最多只有可数多个.证明 设f 是),(+∞-∞上的增函数,记不连续点全体为E ,由数学分析知: ⑴任意),(+∞-∞∈x ,)0()(lim 0+=∆+→∆x f x x f x 及)0()(lim 0-=∆-→∆x f x x f x 都存在。

⑵ E x ∈的充分必要条件为).0()0(->+x f x f ⑶任意Ex x ∈21,,若21x x <,则).0()0()0()0(2211+<-≤+<-x f x f x f x f15. 试找出使(0,1)和[]1,0之间1—1对应的一种方法.解 记(0,1)中有理数全体{}Λ,,21r r R =令 []⎪⎪⎩⎪⎪⎨⎧=====+中无理数,,为10,)(,2,1,)()1()0(221x x x n r r r r n n ϕϕϕϕΛ显然ϕ是(0,1)和[]1,0之间的1—1映射。

相关文档
最新文档