济宁市七年级上学期数学期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

济宁市七年级上学期数学期末试卷及答案-百度文库
一、选择题
1.在数3,﹣3,13,1
3
-中,最小的数为( ) A .﹣3
B .
1
3
C .13
-
D .3
2.下列方程中,以3
2
x =-为解的是( ) A .33x x =+ B .33x x =+
C .23x =
D .3-3x x = 3.下列每对数中,相等的一对是( )
A .(﹣1)3和﹣13
B .﹣(﹣1)2和12
C .(﹣1)4和﹣14
D .﹣|﹣13|和﹣(﹣
1)3
4.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a - 5.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=-
D .235a b ab +=
6.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离
B .过一点有且只有一条直线与已知直线垂直
C .对顶角相等
D .线段AB 的延长线与射线BA 是同一条射线
7.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )
A .2
B .2﹣1
C .2+1
D .1
8.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .
160160
3045x x
-= B .
1601601
452
x x -=
C .
1601601
542
x x -= D .
160160
3045x x
+= 9.解方程
121
123
x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6 D .3(x +1)﹣2×2x ﹣1=6 10.如果一个有理数的绝对值是6,那么这个数一定是( )
A .6
B .6-
C .6-或6
D .无法确定
11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元
B .赔了10元
C .赚了50元
D .不赔不赚
12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟
B .42分钟
C .44分钟
D .46分钟
二、填空题
13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.
14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
15.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.
17.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.
18.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.
19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()(
)22x y x y x y
-++,若取
9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()2
2
162x y +=,于
是就可以把“180162”作为一个六位数的密码,对于多项式32
4x xy -,取36x =,16
y =时,用上述方法产生的密码是________ (写出一个即可).
20.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.
21.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 22.52.42°=_____°___′___″. 23.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910
=-⨯, 所以:
111
1
122334
910
++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111191122334
9101010
=-+-+-+
+-=-= 则
111
1
100101101102102103
20192020
+++
+
=⨯⨯⨯⨯_________.
24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.
三、解答题
25.如图,AB 和CD 相交于点O ,∠A=∠B ,∠C=75°求∠D 的度数.
26.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T 恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利
多少元?
27.如图,直线AB 、CD 、MN 相交于O ,∠DOB=60°,BO ⊥FO ,OM 平分∠DOF . (1)求∠MOF 的度数; (2)求∠AON 的度数;
(3)请直接写出图中所有与∠AON 互余的角.
28.如图,点P 是线段AB 上的一点,请在图中完成下列操作. (1)过点P 画BC 的垂线,垂足为H ; (2)过点P 画AB 的垂线,交BC 于Q ; (3)线段 的长度是点P 到直线BC 的距离.
29.已知:∠AOD=150°,OB ,OM ,ON 是∠AOD 内的射线.
(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当射线OB 绕点O 在∠AOD 内旋转时, ∠MON= °;
(2)OC 也是∠AOD 内的射线,如图2,若∠BOC=m°,OM 平分∠AOC ,ON 平分∠BOD , 求∠MON 的大小(用含m 的式子表示);
(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC 在∠AOD 内部绕O 点以每秒2°的速度逆时针旋转t 秒,如图3,若3∠AOM=2∠DON 时,求t 的值.
30.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.
(1)填空:AB = ,BC = .
(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC AB -的值是否随着时间t 的变化而改变?
请说明理由。

、都从A点出发,点P以每秒1个单位长度的速度向终点C移动:当点(3)现有动点P Q
P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P
、两到达C点时,点Q就停止移动.设点P移动的时间为t秒,请试用含t的式了表示P Q
点间的距离(不必写过程,直接写出结果).
四、压轴题
31.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.
(1) 若b=-4,则a的值为__________.
(2) 若OA=3OB,求a的值.
(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.
32.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;
(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.
33.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是
∠AOC的平分线;
(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:∵3>1
3

1
3
->﹣3,
∴在数3,﹣3,1
3

1
3
-中,最小的数为﹣3.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.A
解析:A
【解析】
【分析】

3
2
x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.
【详解】解:
A中、把
3
2
x=-代入方程得左边等于右边,故A对;
B中、把
3
2
x=-代入方程得左边不等于右边,故B错;
C中、把
3
2
x=-代入方程得左边不等于右边,故C错;
D中、把
3
2
x=-代入方程得左边不等于右边,故D错.
故答案为:A.
【点睛】
本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可. 3.A
解析:A
【分析】
根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】
A.(﹣1)3=﹣1=﹣13,相等;
B.﹣(﹣1)2=﹣1≠12=1,不相等;
C.(﹣1)4=1≠﹣14=﹣1,不相等;
D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.
4.B
解析:B 【解析】 【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
5.B
解析:B 【解析】 【分析】
根据整式的加减法法则即可得答案. 【详解】
A.5x-3x=2x ,故该选项计算错误,不符合题意,
B.2ab ab ab -=,计算正确,符合题意,
C.-2a+3a=a ,故该选项计算错误,不符合题意,
D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意, 故选:B. 【点睛】
本题考查整式的加减,熟练掌握合并同类项法则是解题关键.
6.C
解析:C 【解析】 【分析】
分别利用直线的性质以及射线的定义和垂线定义分析得出即可.
A.连接两点的线段的长度叫做两点间的距离,错误;
B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;
C.对顶角相等,正确;
D.线段AB的延长线与射线BA不是同一条射线,错误.
故选C.
【点睛】
本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.
7.D
解析:D
【解析】
【分析】
根据题意列出算式,计算即可得到结果.
【详解】
解:∵A,B﹣1,
∴A,B﹣1)=1;
故选:D.
【点睛】
此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.
8.B
解析:B
【解析】
【分析】
甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.
【详解】
甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得
160 4x -160
5x
=1
2

故选B.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 9.C
解析:C
【解析】
【分析】
方程两边都乘以分母的最小公倍数即可.
【详解】
解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】
本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.
10.C
解析:C 【解析】 【分析】
由题意直接根据根据绝对值的性质,即可求出这个数. 【详解】
解:如果一个有理数的绝对值是6,那么这个数一定是6-或6. 故选:C . 【点睛】
本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
11.A
解析:A 【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元. 考点:一元一次方程的应用
12.C
解析:C 【解析】
试题解析:设开始做作业时的时间是6点x 分, ∴6x ﹣0.5x=180﹣120, 解得x≈11;
再设做完作业后的时间是6点y 分, ∴6y ﹣0.5y=180+120, 解得y≈55,
∴此同学做作业大约用了55﹣11=44分钟. 故选C .
二、填空题 13.14 【解析】
因为线段AB 被点C,D 分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,
因为M,N 分别是AC,DB 的中点,所以CM=,DN=, 因为mn=17cm,所以x+4x+=1
解析:14 【解析】
因为线段AB 被点C,D 分成2:4:7三部分,所以设AC =2x ,CD =4x ,BD =7x , 因为M,N 分别是AC,DB 的中点,所以CM =12AC x =,DN =1722
BD x =, 因为mn =17cm,所以x +4x +
7
2
x =17,解得x =2,所以BD =14,故答案为:14. 14.【解析】 【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元 解析:(23)a b +
【解析】 【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元. 故选C. 【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
15.-3 【解析】 【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧. 【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
解析:-3 【解析】 【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,
所以最小的整数是﹣3.
故答案为:﹣3.
【点睛】
本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.
16.10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得
∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P
解析:10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得
∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.
【详解】
解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,
∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,
即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,
又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,
∴∠B′PE+∠C′PF=∠B′PC′+85°,
∴2(∠B′PC′+85°)﹣∠B′PC′=180°,
解得∠B′PC′=10°.
故答案为:10°.
【点睛】
此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.
17.-3
【解析】
【分析】
根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案.
【详解】
解:将代入方程得到,变形得到,所以=
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方
解析:-3
【解析】
【分析】
根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.
【详解】
解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以
241a b -+=2(2)1 3.a b -+=-
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 18.20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB ,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB =90°,
∴∠2+∠3=90°.
解析:20
【解析】
【分析】
根据平行线的性质得到∠3=∠1+∠CAB ,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.
【详解】
解:如图,
∵∠ACB =90°,
∴∠2+∠3=90°.
∴∠3=90°−∠2.
∵a ∥b ,∠2=2∠1,
∴∠3=∠1+∠CAB,
∴∠1+30°=90°−2∠1,
∴∠1=20°.
故答案为:20.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.
19.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】
【分析】
首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】
=x(
解析:36684或36468或68364或68436或43668或46836等(写出一个即可)
【解析】
【分析】
首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码
【详解】
32
=x(x+2y)(x-2y).
x xy
4
当x=36,y=16时,x+2y=36+32=68
x-2y=36-32=4.
则密码是36684或36468或68364或68436或43668或46836
故答案为36684或36468或68364或68436或43668
或46836
【点睛】
此题考查因式分解的应用,解题关键在于把字母的值代入
20.2+
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】
∵数轴上点A,B表示的数分别是1,–,
∴AB=1–(–)=1+,
则点C表示的数为1+1+
解析:2
【解析】
【分析】
先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.
【详解】
∵数轴上点A,B表示的数分别是1,–2,
∴AB=1–(–2)=1+2,
则点C表示的数为1+1+2=2+2,
故答案为2
【点睛】
本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.
21.-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
解:,

,,
则原式,
故答案为
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
解析:-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
<<,
解:459
∴<<,
253
=,
a2
∴=,b3
=-=-,
则原式495
-
故答案为5
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
22.52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即
解析:52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.
【详解】
52.42°=52°25′12″.
故答案为52、25、12.
【点睛】
此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.
23.【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】
解:
故答案为
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525
【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭
1111111110010110110210210320192020
-+-+-++-= 96
10100242525=
= 故答案为
242525
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 24.1或-7
【解析】
【分析】
设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.
【详解】
设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,

解析:1或-7
【解析】
【分析】
设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.
【详解】
设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,
解得x=1或-7.
【点睛】
本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.
三、解答题
25.75°.
【解析】
【分析】
先判断AC//BD ,然后根据平行线的性质进行求解即可得.
【详解】
∵∠A=∠B ,
∴AC//BD ,
∴∠D=∠C=75°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 26.(1)甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.
【解析】
【分析】
(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据题意列出方程求解即可;
(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.
【详解】
(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有:78006400
30
1.5x x
+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;
(2)6400
x
=160,160﹣30=130(元),
130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣
640=5960(元).
答:售完这批T恤衫商店共获利5960元.
【点睛】
本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根. 27.(1)15°;(2)75︒;(3)∠CON、∠DOM、∠MOF.
【解析】
【分析】
(1)根据∠DOF=∠BOF-∠DOB,首先求得∠DOF的度数,然后根据角平分线的定义求解;(2)首先求得∠BOM的度数,然后根据对顶角相等即可求解;
(3)根据∠MOF=∠MOF=15°,∠AON=∠BOM=75°,据此即可写出.
【详解】
(1)∵∠DOB=60°,BO⊥FO,
∴∠DOF=∠BOF-∠DOB=90°-60°=30°,
又∵OM平分∠DOF,
∴∠MOF=1
2
∠DOF=15°;
(2)∵∠BOM=∠MOF+∠DOB=15°+60°=75°,
∴∠AON=∠BOM=75°;
(3)与∠AON互余的角有:∠CON、∠DOM、∠MOF.
【点睛】
本题考查了角的平分线的定义,以及对顶角相等,正确理解角平分线的定义是关键.28.(1)详见解析;(2)详见解析;(3)PH.
【解析】
【分析】
利用尺规作出过一点作已知直线的垂线即可解决问题.
【详解】
解:(1)过点P画BC的垂线,垂足为H,如图所示;
(2)过点P画AB的垂线,交BC于Q,如图所示;
(3)线段PH的长度是点P到直线BC的距离.
故答案为PH.
【点睛】
本题考查作图-基本作图,点到直线的距离等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
29.(1)75;(2)(75-1
2
m)°;(3)t为19秒.
【解析】【分析】
(1)根据角平分线的定义,以及角度和的关系,可得∠MON=1
2
∠AOD即可得出;
(2)根据角平分线的定义,得出∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,利用角度和与差的
关系,得出∠MON=∠MOC+∠BON﹣∠BOC,角度代换即可得出结果;
(3)由题意知,∠AOM=1
2
(10+2t+20°),∠DON=
1
2
(150﹣10﹣2t)°,根据
3∠AOM=2∠DON,列出方程求解即可.
【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠MOB=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠MOB+∠BON,
=1
2
∠AOB+
1
2
∠BOD,
=1
2
∠AOD,
=
12
×150°, =75°, 故答案为:75;
(2)∵OM 平分∠AOC ,ON 平分∠BOD ,
∴∠MOC=
12∠AOC ,∠BON=12
∠BOD , ∠MON=∠MOC+∠BON ﹣∠BOC =
12∠AOC+12∠BOD ﹣∠BOC =
12(∠AOC+∠BOD )﹣∠BOC =
12(∠AOB+∠BOC+∠BOD )﹣∠BOC =
12(∠AOD+∠BOC )﹣∠BOC =12
×(150°+m°)﹣m° =(75-12
m)°, 故答案为:(75-
12m)°; (3)∵∠AOM=
12 ∠AOC=12(10+2t+20°)=(15+t )°, ∠DON=12∠BOD=12
(150﹣10﹣2t )°=(70-t )°, 又∵3∠AOM=2∠DON ,
∴3(15+t )=2(70﹣t ),
得t=19.
答:t 为19秒,
故答案为:19秒.
【点睛】
本题考查了角平分线的定义,角度的和差关系式,一元一次方程的列式求解,掌握角平分线的定义是解题的关键.
30.(1)14,20;(2)BC AB -的值不会随时间t 的变化而变化,理由见解析;(3)t ,422t - 或242t -
【解析】
【分析】
(1)根据数轴上任意两点间的距离公式等于这两点所表示的数的差的绝对值而得出结论;
(2)先分别求出t秒后A、B、C三点所对应的数,就可以表示出BC,AB的值,从而求出BC-AB的值而得出结论;
(3)先求出经过t秒后,P、Q两点所对应的数,分类讨论①当0<t≤14时,点Q还在点A处,②当14<t≤21时,点P在点Q的右边,③当21<t≤34时,点Q在点P的右边,从而得出结论.
【详解】
解:(1)由题意,得AB=-10-(-24)=14,BC=10-(-10)=20.
故答案为:14,20;
(2)答:不变.
∵经过t秒后,A、B、C三点所对应的数分别是-24-t,-10+3t,10+7t,
∴BC=(10+7t)-(-10+3t)=4t+20,
AB=(-10+3t)-(-24-t)=4t+14,
∴BC-AB=(4t+20)-(4t+14)=6.
∴BC-AB的值不会随着时间t的变化而改变.
(3)经过t秒后,P、Q两点所对应的数分别是-24+t,-24+3(t-14),
由-24+3(t-14)-(-24+t)=0解得t=21,
①当0<t≤14时,点Q还在点A处,
∴PQ=t,
②当14<t≤21时,点P在点Q的右边,
∴PQ=(-24+t)-[-24+3(t-14)]=-2t+42,
③当21<t≤34时,点Q在点P的右边,
∴PQ=[-24+3(t-14)]-(-24+t)=2t-42.
【点睛】
本题考查线段的动点问题以及线段的长度的运用,数轴的运用,两点间的距离的运用,熟练运用数形结合思维分析是解题的关键.
四、压轴题
31.(1)10;(2)
21
2
±;(3)
28
8.
5
±±,
【解析】
【分析】
(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.
(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.
(3)画数轴,结合数轴分四种情况讨论计算即可.
【详解】
(1)解:若b=-4,则a的值为 10
(2)解:当A在原点O的右侧时(如图):
设OB=m,列方程得:m+3m=14,
解这个方程得,
7
m
2 ,
所以,OA=21
2
,点A在原点O的右侧,a的值为
21
2
.
当A在原点的左侧时(如图),
a=-21 2
综上,a的值为±21
2
.
(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5
.
当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.
当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5
.
当点A在原点的左侧,点B在点C的左侧时,图略,c=8.
综上,点c的值为:±8,±28 5
.
【点睛】
本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.
32.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-44
3
或4;(3) 当Q点开始运动后第
6、21秒时,P、Q两点之间的距离为8,理由见解析
【解析】
【分析】
(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;
(2)分两种情况讨论可求点P的对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且
Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.
【详解】
(1)∵|a+24|+|b+10|+(c-10)2=0,
∴a+24=0,b+10=0,c-10=0,
解得:a=-24,b=-10,c=10;
(2)-10-(-24)=14,
①点P在AB之间,AP=14×
2
21
=
28
3

-24+28
3
=-
44
3

点P的对应的数是-44
3

②点P在AB的延长线上,AP=14×2=28,
-24+28=4,
点P的对应的数是4;
(3)∵AB=14,BC=20,AC=34,
∴t P=20÷1=20(s),即点P运动时间0≤t≤20,
点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;
当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);
当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=46
3
<17(舍去);
当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=62
3
>20(舍去),
当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,
解得t=21;
综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.
【点睛】
此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.
33.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.
【解析】
整体分析:
(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.
解:(1)如图②,∠AOC=120°,
∴∠BOC=180°﹣120°=60°,
又∵OM平分∠BOC,
∴∠BOM=30°,
又∵∠NOM=90°,
∴∠BOM=90°﹣30°=60°,
故答案为60°;
(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,
∴∠AOP=1
2
∠AOC,
∴射线OP是∠AOC的平分线;
(3)如图④,∵∠AOC=120°,
∴∠AON=120°﹣∠NOC,
∵∠MON=90°,
∴∠AON=90°﹣∠AOM,
∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

相关文档
最新文档