泰山区高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰山区高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.定义运算,例如.若已知,则
=()
A.B.C.D.
2.已知向量||=,•=10,|+|=5,则||=()
A.B. C.5 D.25
3.已知复数z满足z•i=2﹣i,i为虚数单位,则z=()
A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i
4.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
5.已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)•f′(x)<0的解集为()
A.(﹣2,0)B.(﹣∞,﹣2)∪(﹣1,0)C.(﹣∞,﹣2)∪(0,+∞)D.(﹣2,﹣1)∪(0,+∞)
6.与函数y=x有相同的图象的函数是()
A.B.C.D.
7.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,则f(2)+g(2)=()
A.16 B.﹣16 C.8 D.﹣8
8.已知i为虚数单位,则复数所对应的点在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5﹣b,P=()c,则M、N、P的大小关系为()
A.M>N>P B.P<M<N C.N>P>M
10.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()
A. B.(4+π)C. D.
11.若方程C:x2+=1(a是常数)则下列结论正确的是()
A.∀a∈R+,方程C表示椭圆B.∀a∈R﹣,方程C表示双曲线
C.∃a∈R﹣,方程C表示椭圆D.∃a∈R,方程C表示抛物线
12.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()
A.6
B.9
C.12
D.18
二、填空题
13.函数y=1﹣(x∈R)的最大值与最小值的和为2.
14.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564
的线性回归方程为
附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.
15.命题p:∀x∈R,函数的否定为.
16.已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则△MNF 的重心到准线距离为.
17.在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.
18.如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是.
三、解答题
19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).
20.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.
21.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
22.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.
(I)求p的值;
(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.
23.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A
到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;
(Ⅱ)判断▱ABCD能否为菱形,并说明理由.
(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.
24.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.
(1)证明:平面AED⊥平面BCDE;
(2)求二面角E﹣AC﹣B的余弦值.
泰山区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】解:由新定义可得,
====.
故选:D.
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
2.【答案】C
【解析】解:∵;
∴由得,=;
∴;
∴.
故选:C.
3.【答案】A
【解析】解:由z•i=2﹣i得,,
故选A
4.【答案】C
【解析】解:∵抛物线C方程为y2=2px(p>0),
∴焦点F坐标为(,0),可得|OF|=,
∵以MF为直径的圆过点(0,2),
∴设A(0,2),可得AF⊥AM,
Rt△AOF中,|AF|==,
∴sin∠OAF==,
∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,
∵|MF|=5,|AF|=
∴=,整理得4+=,解之可得p=2或p=8
因此,抛物线C的方程为y2=4x或y2=16x.
故选:C.
方法二:
∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),
设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,
因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,
由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,
即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.
所以抛物线C的方程为y2=4x或y2=16x.
故答案C.
【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.
5.【答案】B
【解析】解:由f(x)图象单调性可得f′(x)在(﹣∞,﹣1)∪(0,+∞)大于0,
在(﹣1,0)上小于0,
∴f(x)f′(x)<0的解集为(﹣∞,﹣2)∪(﹣1,0).
故选B.
6.【答案】D
【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误
B:与y=x的对应法则不一样,故B错误
C:=x,(x≠0)与y=x的定义域R不同,故C错误
D:,与y=x是同一个函数,则函数的图象相同,故D正确
故选D
【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题
7.【答案】B
【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,
∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.
即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.
故选:B.
【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.
8.【答案】A
【解析】解:==1+i,其对应的点为(1,1),
故选:A.
9.【答案】A
【解析】解:∵0<a<b<c<1,
∴1<2a<2,<5﹣b<1,<()c<1,
5﹣b=()b>()c>()c,
即M>N>P,
故选:A
【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.
10.【答案】D
【解析】解:由三视图知,几何体是一个组合体,
是由半个圆锥和一个四棱锥组合成的几何体,
圆柱的底面直径和母线长都是2,
四棱锥的底面是一个边长是2的正方形,
四棱锥的高与圆锥的高相同,高是=,
∴几何体的体积是=,
故选D.
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.
11.【答案】B
【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆
∴∃a∈R+,使方程C不表示椭圆.故A项不正确;
∵当a<0时,方程C:表示焦点在x轴上的双曲线
∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确
∵不论a取何值,方程C:中没有一次项
∴∀a∈R,方程C不能表示抛物线,故D项不正确
综上所述,可得B为正确答案
故选:B
12.【答案】
【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.
法二:a=6 102,b=2 016,r=54,
a=2 016,b=54,r=18,
a =54,
b =18,r =0. ∴输出a =18,故选D.
二、填空题
13.【答案】2
【解析】解:设f (x )=﹣
,则f (x )为奇函数,所以函数f (x )的最大值与最小值互为相反数,
即f (x )的最大值与最小值之和为0. 将函数f (x )向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣
(x ∈R )
的最大值与最小值的和为2. 故答案为:2.
【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.
14.【答案】 y=﹣1.7t+68.7
【解析】解: =
, =
=63.6.
=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.
=4+1+0+1+2=10.
∴
=﹣
=﹣1.7.
=63.6+1.7×3=68.7.
∴y 关于t 的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.
【点评】本题考查了线性回归方程的解法,属于基础题.
15.【答案】 ∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3 .
【解析】解:全称命题的否定是特称命题,即为∃x
0∈R ,函数f (x 0)=2cos 2
x 0+
sin2x 0>3,
故答案为:∃x
0∈R ,函数f (x 0)=2cos 2
x 0+sin2x 0>3,
16.【答案】 .
【解析】解:∵F 是抛物线y 2
=4x 的焦点,
∴F(1,0),准线方程x=﹣1,
设M(x1,y1),N(x2,y2),
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴△MNF的重心的横坐标为,
∴△MNF的重心到准线距离为.
故答案为:.
【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
17.【答案】(1,2).
【解析】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,
即y=2x2.
由ρcosθ=1,得x=1.
联立,解得:.
∴曲线C1与C2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.
18.【答案】①④.
【解析】解:由所给的正方体知,
△PAC在该正方体上下面上的射影是①,
△PAC在该正方体左右面上的射影是④,
△PAC在该正方体前后面上的射影是④
故答案为:①④
三、解答题
19.【答案】
【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b
再由已知得,解得
故函数v(x)的表达式为.
(Ⅱ)依题并由(Ⅰ)可得
当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200
当20≤x≤200时,
当且仅当x=200﹣x,即x=100时,等号成立.
所以,当x=100时,f(x)在区间(20,200]上取得最大值.
综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,
即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
答:(Ⅰ)函数v(x)的表达式
(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
20.【答案】
【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),
∴log a4=2,a=2,则g(x)=log2x.…
∵函数y=f(x)的图象与g(X)的图象关于x轴对称,
∴.…
(Ⅱ)∵f(x﹣1)>f(5﹣x),
∴,
即,解得1<x<3,
所以x的取值范围为(1,3)…
【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.
21.【答案】
【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点
则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)
22.【答案】
【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.
所以,直线l的方程为…
由消y并整理,得…
设A(x1,y1),B(x2,y2)
则x1+x2=3p,
又|AB|=|AF|+|BF|=x1+x2+p=4,
所以,3p+p=4,所以p=1…
(II)由(I)可知,抛物线的方程为y2=2x.
由题意,直线m的方程为y=kx+(2k﹣1).…
由方程组(1)
可得ky2﹣2y+4k﹣2=0(2)…
当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y2=2x,得.
这时.直线m与抛物线只有一个公共点.…
当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).
由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.
解得.
于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…
因此,所求m的取值范围是.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
23.【答案】
【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.
∴椭圆E的方程为=1.
(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.
①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,
取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
∴
k OA•k OB=====
,
假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|==.
点O到直线AB的距离d=.
∴S平行四边形ABCD=4×S△OAB=
=2××=.
则S2==<36,
∴S<6.
因此当平行四边形ABCD为矩形面积取得最大值6.
24.【答案】
【解析】(1)证明:取ED的中点为O,
由题意可得△AED为等边三角形,
,,
∴AC2=AO2+OC2,AO⊥OC,
又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,
∴平面AED⊥平面BCDE;…
(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),
,,,
设面EAC的法向量为,
面BAC的法向量为
由,得,∴,
∴,
由,得,∴,
∴,
∴,
∴二面角E﹣AC﹣B的余弦值为.…
2016年5月3日。